Matlab語言的Neural Network Toolbox 及其在同步中的應(yīng)用-設(shè)計應(yīng)用_第1頁
Matlab語言的Neural Network Toolbox 及其在同步中的應(yīng)用-設(shè)計應(yīng)用_第2頁
Matlab語言的Neural Network Toolbox 及其在同步中的應(yīng)用-設(shè)計應(yīng)用_第3頁
Matlab語言的Neural Network Toolbox 及其在同步中的應(yīng)用-設(shè)計應(yīng)用_第4頁
Matlab語言的Neural Network Toolbox 及其在同步中的應(yīng)用-設(shè)計應(yīng)用_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

精品文檔-下載后可編輯Matlab語言的NeuralNetworkToolbox及其在同步中的應(yīng)用-設(shè)計應(yīng)用1引言

神經(jīng)網(wǎng)絡(luò)工具箱擴(kuò)充了Matlab的設(shè)計、應(yīng)用、顯示和仿真神經(jīng)網(wǎng)絡(luò)的工具。如今神經(jīng)網(wǎng)絡(luò)能夠用來解決常規(guī)計算機(jī)和人難以解決的問題,神經(jīng)網(wǎng)絡(luò)已經(jīng)在各個領(lǐng)域中應(yīng)用,以實(shí)現(xiàn)各種復(fù)雜的功能。這些領(lǐng)域包括:模式識別、非線性系統(tǒng)鑒定和系統(tǒng)控制。神經(jīng)網(wǎng)絡(luò)工具箱除了提供方便用戶設(shè)計和管理網(wǎng)絡(luò)的可視化接口(GUI)外,還提供了大量已經(jīng)證實(shí)的網(wǎng)絡(luò)設(shè)計的支持。標(biāo)準(zhǔn)、開放、可擴(kuò)張的工具箱設(shè)計方便了用戶自定義函數(shù)和網(wǎng)絡(luò)的生成。

像生物學(xué)神經(jīng)系統(tǒng)一樣,一個神經(jīng)網(wǎng)絡(luò)會學(xué)習(xí),因此,也就可以被訓(xùn)練去解決問題,識別模式,劃分?jǐn)?shù)據(jù)和預(yù)測事態(tài)發(fā)展。神經(jīng)網(wǎng)絡(luò)的行為由它的各個計算參數(shù)的結(jié)合方式以及它們的權(quán)重來決定。一般的神經(jīng)網(wǎng)絡(luò)都是可調(diào)節(jié)的,或者說可訓(xùn)練的,這樣一個特定的輸入便可得到要求的輸出。這里,網(wǎng)絡(luò)根據(jù)輸出和目標(biāo)的比較而調(diào)整,直到網(wǎng)絡(luò)輸出和目標(biāo)匹配。神經(jīng)網(wǎng)絡(luò)工具GUI使神經(jīng)網(wǎng)絡(luò)變得簡單,它使你能夠?qū)舜罅繌?fù)雜的數(shù)據(jù),并能夠很快地產(chǎn)生、初始化、訓(xùn)練、仿真和管理網(wǎng)絡(luò)。簡單的圖像表示有助于明確和理解網(wǎng)絡(luò)的結(jié)構(gòu)。因?yàn)樯窠?jīng)網(wǎng)絡(luò)需要復(fù)雜的矩陣計算,Matlab提供一個神經(jīng)框架,幫助快速地使用神經(jīng)網(wǎng)絡(luò)和學(xué)習(xí)它們的行為和應(yīng)用。

文獻(xiàn)[5]討論了用擴(kuò)充的神經(jīng)系統(tǒng)工具的方法在仿真環(huán)境里解決現(xiàn)存的問題。這種新方法簡化了網(wǎng)絡(luò)結(jié)構(gòu),并且也實(shí)現(xiàn)對其他軟件工具的利用。目前還沒有論文公開討論NNT在同步機(jī)制中的應(yīng)用,而這一部分的研究也是具有現(xiàn)實(shí)意義的。

2Matlab神經(jīng)網(wǎng)絡(luò)工具箱

NNT使在Matlab中使用神經(jīng)網(wǎng)絡(luò)變得簡單。其工具箱中包含了大量函數(shù)和網(wǎng)絡(luò)結(jié)構(gòu)框圖(圖1是一個簡單的神經(jīng)網(wǎng)絡(luò)框圖,圖中獨(dú)立的符號簡化了對網(wǎng)絡(luò)結(jié)構(gòu)的理解),因此,這里不需要介紹所有的將用到的函數(shù)、訓(xùn)練算法等。

2.1NNT的結(jié)構(gòu)

工具箱是基于網(wǎng)絡(luò)對象的。網(wǎng)絡(luò)對象包括關(guān)于神經(jīng)網(wǎng)絡(luò)的所有信息,例如:網(wǎng)絡(luò)的層數(shù)和結(jié)構(gòu)、層與層之間的連接等。Matlab提供了高等網(wǎng)絡(luò)層的創(chuàng)建函數(shù),比如:newlin(創(chuàng)建一個線性層),newp(創(chuàng)建一個感知機(jī)),newff(創(chuàng)建一個反向傳播網(wǎng)絡(luò))等。舉例說明,這里創(chuàng)建了1個感知機(jī),2個輸入向量p1=[01],p2=[-22],神經(jīng)元數(shù)為1。

子對象結(jié)構(gòu)中包含了網(wǎng)絡(luò)單個對象的信息。神經(jīng)元的每一層有相同的傳輸函數(shù)net.transferFcn和網(wǎng)絡(luò)輸入函數(shù)InputFcn,對于創(chuàng)建感知機(jī)采用hardlim和netsum函數(shù)。如果神經(jīng)元要有不同的傳輸函數(shù),則將設(shè)計不同的層以滿足要求。參數(shù)net.Input-Weights和net.layerWeights描述了被應(yīng)用的訓(xùn)練函數(shù)以及它們的參數(shù)。

接下來敘述訓(xùn)練函數(shù)、初始化函數(shù)和性能函數(shù)。

trainFcn和adaptFcn是2種不同的訓(xùn)練方式,分別指批處理方式和增加方式或稱在線方式。通過設(shè)置trainFcn的參數(shù),就可以告訴Matlab哪種運(yùn)算法被使用;在運(yùn)用循環(huán)順序增加方式時,多用trainc函數(shù)。ANN工具箱包含大約20個訓(xùn)練函數(shù)。性能函數(shù)用來測定ANN完成規(guī)定任務(wù)時的性能。對于感知機(jī),它的平均差錯性能測定用函數(shù)mae;對于線性衰退系統(tǒng),它的均方根差錯性能測定用函數(shù)mae。initFcn函數(shù)用來初始化網(wǎng)絡(luò)的權(quán)重和偏置。神經(jīng)網(wǎng)絡(luò)工具箱包含在nnet目錄中,鍵入helpnnet可得到幫助主題。如果要將這些函數(shù)替換為工具箱里的其他函數(shù)或者是自己編寫的函數(shù),只需把這些函數(shù)名配置新的參數(shù)即可,例如:

通過改變參數(shù),可以改變上面提到的函數(shù)的默認(rèn)行為。經(jīng)常用到的函數(shù)的參數(shù)就是:trainParam,格式:net.trainParam.epochs,用來設(shè)置運(yùn)算的時間點(diǎn)的數(shù)目;格式:net.trainParam.show,用來設(shè)置性能測定間隔的時間點(diǎn)的數(shù)目??梢酝ㄟ^輸入幫助help獲得更多信息。

網(wǎng)絡(luò)的權(quán)重和偏置也被存儲在下面的結(jié)構(gòu)體里面:

IW(i,j)部分是一個二維的元胞矩陣,存儲輸入j與網(wǎng)絡(luò)層i的連接的權(quán)重。LW(i,j)部分,用來存儲網(wǎng)絡(luò)層j和網(wǎng)絡(luò)層i間連接的權(quán)重。元胞數(shù)組b存儲每一層的偏置向量。

2.2模式分類

如果一個問題可以被分解為多個模式級別,則可以用神經(jīng)網(wǎng)絡(luò)來解決這一問題。在大多數(shù)情況下,利用神經(jīng)網(wǎng)絡(luò)解決問題是可能的。神經(jīng)網(wǎng)絡(luò)的函數(shù)用來接收輸入模式,然后輸出適合這別的模式。

這方面的例子由產(chǎn)生和訓(xùn)練一個感知機(jī)對屬于3個不同等級的點(diǎn)進(jìn)行正確的分級。神經(jīng)網(wǎng)絡(luò)的輸入數(shù)據(jù)被定義如下:

X矩陣的每一行代表一個采樣點(diǎn),采樣點(diǎn)的等級用矩陣C的相應(yīng)元素值來描述。因?yàn)橄胍獙?個不同的等級進(jìn)行區(qū)分,所以需要3個感知機(jī),每一個等級有1個。相應(yīng)的目標(biāo)函數(shù)描述如下:

2.3訓(xùn)練與泛化

神經(jīng)網(wǎng)絡(luò)是模式分級的,但并不是所有的模式分級都指的是神經(jīng)網(wǎng)絡(luò)。下面將講述神將神經(jīng)網(wǎng)絡(luò)與其他分級的一些區(qū)別。它們的主要區(qū)別在2個屬性上:學(xué)習(xí)與泛化。

在使用電子存儲器解決數(shù)字分級器時,管理存儲器,特別是完成輸入的合并方面,花費(fèi)很大精力。要求能夠通過給它較少數(shù)目的簡單且具有正確響應(yīng)的例子來解決問題,這就指的是學(xué)習(xí)或稱為訓(xùn)練:系統(tǒng)學(xué)習(xí)識別默寫特定的模式,然后給出正確的輸出響應(yīng)。

某種程度上,這一部分已經(jīng)被如今的電子存儲器實(shí)現(xiàn)了。首先初始化設(shè)置存儲器的所有值為0,然后,調(diào)用范例對存儲器的值進(jìn)行訓(xùn)練,將結(jié)果存入存儲器的相應(yīng)位置。在相應(yīng)的位置用1替換原來的0。1顯示了相應(yīng)的輸入模式等級。訓(xùn)練階段結(jié)束后,進(jìn)入實(shí)際操作。如果這些模式與訓(xùn)練階段的模式是一樣的,則輸出結(jié)果就是正確的。

理想的,器件應(yīng)該給出正確的響應(yīng),即使有些例子沒有明確的顯示。這部分被稱為泛化。系統(tǒng)能夠推斷出例子給的不同模式等級的屬性。神經(jīng)網(wǎng)絡(luò)能夠做這種事,如果他們被正確操作,他們將對那些在訓(xùn)練階段學(xué)習(xí)的模式非常相似的模式做出響應(yīng)。那么,對于數(shù)字分級器來說,這意味著神經(jīng)網(wǎng)絡(luò)被數(shù)據(jù)范例進(jìn)行訓(xùn)練,它就能正確地區(qū)分相似的數(shù)據(jù),而以前這些都是次要的。這里設(shè):

訓(xùn)練參數(shù)一般都依賴于選擇的訓(xùn)練函數(shù)。兩個重要的參數(shù):net.trainParam.epochs設(shè)置所有數(shù)據(jù)全部用于訓(xùn)練的多次數(shù),net.trainParam.show設(shè)置訓(xùn)練函數(shù)狀態(tài)的時間。例如:

3在同步中的應(yīng)用

在加性高斯白噪聲條件下,接收端對信號進(jìn)行高速采樣,根據(jù)香農(nóng)定理,在一個模擬信號持續(xù)時間內(nèi)至少要保證4個采樣點(diǎn),才能完整和準(zhǔn)確地恢復(fù)信號的信息,由此決定了系統(tǒng)的采樣要求。軟件上主要由若干BP(Back-Propagation)前向神經(jīng)網(wǎng)絡(luò)完成,網(wǎng)絡(luò)的個數(shù)與算法精度有關(guān)。

在搜索長度一定的條件下,根據(jù)整個搜索區(qū)間上采樣點(diǎn)個數(shù)確定各個神經(jīng)網(wǎng)絡(luò)的輸出節(jié)點(diǎn)數(shù)目。使用的網(wǎng)絡(luò)個數(shù)由捕獲精度來確定,即整個捕獲區(qū)間上劃分為N個搜索相位,則采樣N個網(wǎng)絡(luò)并行執(zhí)行。每個網(wǎng)絡(luò)都具有相同的一組輸入信號,一個輸出為0或者1。

為體現(xiàn)神經(jīng)網(wǎng)絡(luò)對信號進(jìn)行捕獲的思想,訓(xùn)練樣本為不含噪聲的高斯脈沖信號,搜索的相位區(qū)間為6個,識別的結(jié)果是6維向量,在出現(xiàn)信號相應(yīng)得區(qū)間位置上對應(yīng)的元素為1,其他元素為0,測試樣本信噪比為30dB。圖2是6個不含噪聲的訓(xùn)練樣本;圖2和圖3左邊是信噪比為30dB的分別出現(xiàn)在6個不同區(qū)間的測試樣本,右邊是網(wǎng)絡(luò)輸出的識別結(jié)果,在向量的對應(yīng)元素上出現(xiàn)尖峰。仿真結(jié)果說明在30dB信噪比的情況下,利用神經(jīng)網(wǎng)絡(luò)能夠準(zhǔn)確檢測到信號的出現(xiàn)時刻。由于仿真使用的訓(xùn)練樣本比較少,神經(jīng)網(wǎng)絡(luò)沒有充分提取樣本的統(tǒng)計特性,也沒有足夠的網(wǎng)絡(luò)結(jié)構(gòu)和訓(xùn)練過程對神經(jīng)網(wǎng)絡(luò)檢測信號能力的影響和噪聲對訓(xùn)練過程和測試

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論