版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
千里之行,始于足下讓知識帶有溫度。第第2頁/共2頁精品文檔推薦人教版初一數(shù)學(xué)知識點匯總(打印版)
七年級數(shù)學(xué)(上)學(xué)問點
人教版七年級數(shù)學(xué)上冊主要包含了有理數(shù)、整式的加減、一元一次方程、圖形的熟悉初步四個章節(jié)的內(nèi)容.
第一章有理數(shù)
一.學(xué)問框架
二.學(xué)問概念
1.有理數(shù):
(1)凡能寫成)0
p
q,p(
p
q
≠
為整數(shù)且形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注重:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);π不是有理數(shù);
(2)有理數(shù)的分類:①
?
?
?
?
?
?
?
?
?
?
?
?
?
負分數(shù)
負整數(shù)
負有理數(shù)
零
正分數(shù)
正整數(shù)
正有理數(shù)
有理數(shù)②
?
?
?
?
?
?
?
?
?
?
??
?
?
?
負分數(shù)
正分數(shù)
分數(shù)
負整數(shù)
零
正整數(shù)
整數(shù)
有理數(shù)
2.?dāng)?shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.
3.相反數(shù):
(1)惟獨符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;
(2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù).
4.肯定值:
(1)正數(shù)的肯定值是其本身,0的肯定值是0,負數(shù)的肯定值是它的相反數(shù);注重:肯定值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;
(2)肯定值可表示為:
??
?
?
?
=
)0
a(
a
)0
a(
)0
a(
a
a或
?
?
?
0,decimal-largenumber<0.
6.Reciprocalofeachother:Twonumberswhoseproductis1arereciprocalofeachother;Note:0hasnoreciprocal;ifa≠0,thenthereciprocalis;ifab=1a,barereciprocalofeachother;ifab=-1aAndbarenegativereciprocals.
7.Thelawofadditionofrationalnumbers:
(1)Addtwonumberswiththesamesign,takethesamesign,andaddtheabsolutevalue;
(2)Addtwonumberswithdifferentsigns,takethesignwithlargerabsolutevalue,andsubtractthesmallerabsolutevaluewiththelargerabsolutevalue;
(3)Ifanumberisaddedto0,youstillhavethisnumber.
8.Thearithmeticofrationalnumberaddition:
(1)Theexchangelawofaddition:a+b=b+a;(2)Thecombinationlawofaddition:(a+b)+c=a+(b+c).
9.Thelawofrationalnumbersubtraction:subtractinganumberisequaltoaddingtheoppositeofthisnumber;thatis,a-b=a+(-b).
10Therationalnumbermultiplicationrule:
(1)Thetwonumbersaremultiplied,thesamesignispositive,thedifferentsignisnegative,andtheabsolutevalueismultiplied;
(2)Anynumbermultipliedbyzerowillgetzero;
(3)Whenseveralnumbersaremultiplied,onefactoriszeroandtheproductiszero;eachfactorisnotzero,andthesignoftheproductisdeterminedbythenumberofnegativefactors.
11Operationlawofrationalnumbermultiplication:
(1)Theexchangelawofmultiplication:ab=ba;(2)Thecombinationlawofmultiplication:(ab)
c=a(bc);
(3)Thedistributionlawofmultiplication:a(b+c)=ab+ac.
12.Ruleofrationalnumberdivision:dividingbyanumberequalstomultiplyingbythereciprocalofthisnumber;note:zerocannotbedivided.
13.Thelawofpowerofrationalnumbers:
(1)Anypowerofapositivenumberisapositivenumber;
(2)Theoddpowerofnegativenumbersisnegative;theevenpowerofnegativenumbersispositive;Note:Whennisapositiveoddnumber:(-a)n=-anor(a-b)n=-(ba)n,Whennispositiveoreven:(-a)n=anor(ab)n=(ba)n.
14.Definitionofpower:
(1)Theoperationoffindingthesamefactorproductiscalledpower;
(2)Inpower,thesamefactoriscalledthebase,thenumberofthesamefactoriscalledtheexponent,andtheresultofthepoweriscalledthepower;
15.Scientificnotation:recordanumbergreaterthan10intheformofa×10n,whereaisanumberwithonlyonedigitintheintegernumber,thisnotationiscalledscientificnotation.
16.Theexactdigitoftheapproximatenumber:anapproximatenumber,roundedtothatdigit,itissaidthattheapproximatenumberisaccuratetothatdigit.
17.Significantdigits:Fromthefirstnon-zerodigitonthelefttotheexactdigits,alldigitsarecalledsignificantdigitsofthisapproximatenumber.
18.Mixedalgorithm:powerfirst,thenmultiplicationanddivision,andfinallyadditionandsubtraction.
Thecontentofthischapterrequiresstudentstocorrectlyunderstandtheconceptofrationalnumbers,basedonactuallifeandlearningthenumberaxis,tounderstandthemeaningofpositiveandnegativenumbers,oppositenumbers,andabsolutevalues.Emphasisisplacedonsolvingpracticalproblemsusingrationalnumberarithmetic.
Animportantreasonforexperiencingthedevelopmentofmathematicsisthepracticalneedsoflife.Stimulatestudents'interestinlearningmathematics,teacherstrainstudents'abilitytoobserve,generalizeandgeneralize,sothatstudentscanbuildcorrectsenseofnumbersandsolvepracticalproblems.Whenteachingthecontentofthischapter,teachersshouldcreatemoresituationstofullyreflectthesubjectivestatusofstudents'learning.
Chapter2Integeradditionandsubtraction
One.KnowledgeFramework2.KnowledgeConcept
1.Singleterm:Inanalgebraicexpression,ifitcontainsonlymultiplication(includingpower)operation.Oralthoughthereisadivisionoperation,butatypeofalgebraicexpressionswithoutlettersinthedivisioniscalledasingleterm.
2.Coefficientandfrequencyofsingleterm:Thedigitalfactorofnon-zeroinsingletermiscalledthedigitalcoefficientofsingleterm,referredtoasthecoefficientofsingleterm;whenthecoefficientisnotzero,thesumofallletterindexesinsingletermiscalledthenumberofsingleterm.
3.Polynomial:Thesumofseveralsingletermsiscalledapolynomial.
4.Thenumberanddegreeofpolynomials:thenumberofpolynomialscontainedinthepolynomialisthenumberofpolynomials.Eachpolynomialiscalledapolynomialterm;inpolynomials,thedegreeofthehighestpolynomialtermisthedegreeofpolynomial.
Throughthischapter,studentsshouldachievethefollowinglearningobjectives:
1.Understandandmastertheconceptsofsingleterms,polynomials,integers,etc.,andunderstandthedifferencesandconnectionsbetweenthem.
2.Understandtheconceptofsimilaritems,masterthemethodofmergingsimilaritems,andgraspthechangingrulesofsymbolswhenremovingparentheses,andbeabletocorrectlymergeandremoveparenthesesofsimilaritems.Onthebasisofaccuratejudgmentandcorrectcombinationofsimilaritems,integraladditionandsubtractionoperationsareperformed.
3.Understandthatlettersinintegersrepresentnumbers.Theadditionandsubtractionofintegersisbasedonthecalculationofnumbers;thebasisforunderstandingthecombinationofsimilaritemsandtheremovalofparenthesesisthedistributionlaw;theunderstandingoftheoperationlawandthenatureofoperationsintheadditionandsubtractionofintegersChinaisstillestablished.
4.Abletoanalyzethequantitativerelationshipintheactualproblemandexpressitintheformofletters.
Inthestudyofthischapter,teacherscanexperiencetheprocessofconceptformationbyallowing
studentstodiscussingroupsandcooperativelearning,etc.,toinitiallycultivatestudents'thinkingskillsandapplicationawarenesssuchasobservation,analysis,abstraction,andgeneralization.
Chapter2Unarylinearequation
One.Knowledgeframework
two.Knowledgeconcept
1.Unarylinearequation:Theintegerequationcontainingonlyanunknownnumber,andthedegreeoftheunknownnumberis1,andthecoefficientoftheunknownnumbertermisnotzeroisaunarylinearequation.
2.Thestandardformofalinearequationinonevariable:ax+b=0(xisanunknownnumber,aandbareknownnumbers,anda≠0).
3.Thegeneralstepsofthesolutiontotheunarylinearequation:sortingtheequationtothedenominatortotheparenthesesshifttermmergesimilartermscoefficientinto1(testthesolutionoftheequation).
4.Listone-dimensionallinearequationstosolvewordproblems:
(1)Theanalysismethodofreadingquestions:Itismostlyusedfor"sum,difference,times,points"
Readthequestioncarefullytofindkeywordsthatrepresentanequalrelationship,suchas:"big,small,more,less,yes,common,combined,for,complete,increase,decrease,matching",usethesekeywordsListthetextequations,andsettheunknownnumberaccordingtotheintentionofthequestion.Finally,usetherelationshipbetweenthequantityandthequantityinthetitletofillinthealgebraicformulatogettheequation.
(2)Drawinganalysismethod:…………mostlyusedfor“travelproblem”
Theuseofgraphicstoanalyzemathematicalproblemsistheembodimentofthecombinationofnumbersandshapesinmathematics.Readthequestionscarefullyanddrawtherelevantgraphicsaccordingtothemeaningoftheproblemtomakeeachpartofthegraphicshaveaspecificmeaning.Findingtheequalrelationshipthroughthegraphicsisthekeytosolvingtheproblem.Thebasisforarrangingtheequations,andfinallytherelationshipbetweenthequantityandthequantity(theunknowncanberegardedasaknownquantity),andfillingintherelevantalgebraicformulaisthebasisforobtainingtheequation.
11.Thecommonlyusedformulasofthecolumnequationstosolvetheapplicationproblems:
(1)Travelproblem:distance=speed·time;
(2)Engineeringissues:workload=ergonomicsandworkinghours;
(3)Theratioproblem:part=whole·ratio;
(4)Theproblemofforwardandreverseflow:forwardflowspeed=stillwaterspeed+waterflowspeed,reverseflowspeed=stillwaterspeed-waterflowspeed;
(5)Commoditypriceissues:sellingprice=pricing·discount·,profit=sellingprice-cost,;
(6)Perimeter,areaandvolume:Ccircle=2πR,Scircle=πR2,Crectangle=2(a+b),Srectangle=ab,Csquare=4a,
Ssquare=a2,Sring=π(R2-r2),Vcuboid=abc,Vcube=a3,Vcylinder=πR2h,Vcone=πR2h.
Thischapteristhecoreofalgebraandthefoundationofallalgebraicequations.Thecolorfulproblemsituationsandthejoyofsolvingproblemsareeasytoarousestudents'funinmathematics,sowemustpayattentiontoguidestudentstocarryouteffectivemathematicsactivitiesandcooperativeexchangesfromtheresearchofproblemsaroundthem,sothatstudentscanactivelystudyandexplorelearning.Intheprocessofgainingknowledge,improvingability,experiencingmathematicalthinkingmethods.
Chapter3PreliminaryUnderstandingofGraphics
Knowledgeframework
Themaincontentofthischapteristhepreliminaryunderstandingofgraphics.Startingwithfamiliarobjectsaroundlife,theunderstandingoftheshapeofobjectsgraduallyrisesfromsensibilitytoabstractgeometricfigures.Bylookingatthethree-dimensionalgraphicsandexpandingthethree-dimensionalgraphicsfromdifferentdirections,theinitialunderstandingofthethree-dimensionalgraphicsConnectionwithflatgraphics.Onthisbasis,recognizesomesimpleflatgraphics-straightlines,rays,linesegmentsandangles.Themathematicalideasinvolvedinthischapter:
1.Discussideasbycategory.Whendrawingstraightlinesatseveralpointsontheplane,youshouldpayattentiontodiscussingthesepoints;whendrawinggraphics,youshouldpayattentiontothevariouspossibilitiesofthegraphics.
2.Equationthinking.Whendealingwiththecalculationofthesizeoftheangleandthesizeofthelinesegment,itisoftennecessarytosolveitthroughthecolumnequation.
3.Graphictransformationideas.Whenstudyingtheconceptofangle,wemustfullyappreciatetheknowledgeoftherotationofrays.Whenprocessinggraphics,attentionshouldbepaidtotheapplicationoftransformationideas,suchastheconversionbetweenthree-dimensionalgraphicsandflatgraphics.
4.Turntothought.Whencountingstraightlines,linesegments,angles,andrelatedfigures,itshouldalwaysbeassignedtothespecificapplicationoftheformulan(n-1)/2.
Theseventhgrademathematics(below)knowledgepoints
Theseventhvolumeofthe7thgrademathematicsofthePeople'sEducationEditionmainlyincludesthesixchaptersofcollection,collationandexpressionofintersectinglinesandparallellines,planerectangularcoordinatesystems,triangles,binarylinearequations,inequalitiesandinequalitiesanddata.
Chapter5IntersectingLinesandParallelLines
1.KnowledgeFramework
Second,theconceptofknowledge
1.Adjacentcomplementaryangle:Amongthefourcornersformedbytheintersectionoftwostraightlines,twocornerswithacommonvertexandacommonsideareadjacentcomplementaryangles.
2.Oppositeangle:Thetwosidesofoneanglearetheoppositeextensionlinesoftheothercalledtwosides,andthetwoangleslikethisareoppositeeachother.
3.Verticalline:Whentwostraightlinesintersectatarightangle,theyarecalledperpendiculartoeachother,andoneofthemiscalledanotherperpendicularline.
4.Parallellines:Inthesameplane,twostraightlinesthatdonotintersectarecalledparallellines.
5.Co-locatedangle,internalstaggeredangle,co-locatedinternalangle:
Co-locatedangle:∠1and∠5likethispairofangleswiththesamepositionalrelationshiparecalledco-locatedangles.
Internalwrongangle:∠2and∠6Apairofangleslikethisiscalledinternalwrongangle.Ipsilateralinternalangle:∠2and∠5Apairofangleslikethisiscalledtheipsilateralinternalangle.
6.Proposition:Thesentencetojudgeathingiscalledaproposition.
7.Translation:Inaplane,agraphicismovedbyacertaindistanceinacertaindirection.Thismovementofthegraphiciscalledtranslationtranslation,ortranslationforshort.
8.Correspondingpoint:Eachpointinthenewfigureobtainedaftertranslationisobtainedbymovingacertainpointintheoriginalfigure.Suchtwopointsarecalledcorrespondingpoints.9.Theoremandnature
Thenatureoftheapexangle:theapexangleisequal.
Thenatureof10verticallines:
Property1:Thereisonlyonestraightlineperpendiculartotheknownstraightline.
Property2:Amongallthelinesegmentsconnectingapointoutsidethelineandeachpointontheline,theverticallinesegmentistheshortest.
11.Parallelaxiom:thereisonlyonestraightlineparalleltotheknownstraightlineafterpassing
astraightline.
CorollaryoftheParallelAxiom:Iftwostraightlinesareparalleltothethirdstraightline,thenthetwostraightlinesarealsoparalleltoeachother.
12.Thenatureofparallellines:
Property1:Thetwostraightlinesareparallelandtheangleofco-locationisequal.
Property2:Twostraightlinesareparallel,andtheinternalerroranglesareequal.
Property3:Thetwostraightlinesareparallelandcomplementarytotheinternalangle.
13.Determinationofparallellines:
Judgment1:Theco-locationangleisequal,andthetwostraightlinesareparallel.
Judgment2:Theinternalerroranglesareequal,andthetwostraightlinesareparallel.Judgment3:Theinternalangleisthesameastheside,andthetwostraightlinesareparallel.Thischapterenablesstudentstounderstandthetwopositionalrelationshipsbetweentwostraightlinesthatdonotcoincideintheplane,andtostudythecharacteristicsoftheangleformedwhenthetwostraightlinesintersect.Thecharacteristicsofthetwostraightlinesareperpendiculartoeachother,andthetwostraightlinesareparallelThelong-termcoexistenceconditionsandallofitscharacteristicsandthenatureofthetranslationaltransformationofgraphics,usingtranslationtodesignsomebeautifulpatterns.Keypoints:verticallinesandtheirproperties,parallellinejudgmentmethodsanditsproperties,translationanditsproperties,Andtheorganizationandapplicationofthese.Difficulties:Exploringtheconditionsandcharacteristicsofparallellines,thedifferencebetweentheconditionsandcharacteristicsofparallellines,usingtranslationpropertiestoexplorethetranslationrelationshipbetweengraphics,anddesigningpatterns.
Chapter6PlaneCartesianCoordinateSystem
One.Knowledgeframework
two.Knowledgeconcept
1.Orderednumberpair:Thepairconsistingoftwonumbersaandbinorderiscalledanorderednumberpairandiswrittenas(a,b)
2.Planerectangularcoordinatesystem:Intheplane,twonumberaxesperpendiculartoeachotherandhavingacommonoriginformaplanerectangularcoordinatesystem.
3.Horizontalaxis,verticalaxis,origin:thehorizontalnumberaxisiscalledthex-axisorthehorizontalaxis;theverticalnumberaxisiscalledthey-axisorthevertical
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆寧夏吳忠市高三上學(xué)期適應(yīng)性考試(一模)歷史試題(解析版)
- 《社區(qū)自治》課件
- 單位管理制度范例匯編【人力資源管理篇】十篇
- 第7單元 工業(yè)革命和國際共產(chǎn)主義運動的興起(高頻非選擇題25題)(解析版)
- 2014年高考語文試卷(江西)(空白卷)
- 《神經(jīng)內(nèi)科病例分享》課件
- 藤制品與現(xiàn)代家居的融合-洞察分析
- 遙感數(shù)據(jù)質(zhì)量評價-洞察分析
- 虛擬現(xiàn)實藝術(shù)版權(quán)保護策略-洞察分析
- 虛擬現(xiàn)實游戲健康影響研究-洞察分析
- 《寒假安全教育班會》課件模板四套
- (T8聯(lián)考)2025屆高三部分重點中學(xué)12月第一次聯(lián)考 生物試卷(含答案詳解)
- 2024年世界職業(yè)院校技能大賽高職組“關(guān)務(wù)實務(wù)組”賽項參考試題庫(含答案)
- 江西省2023-2024學(xué)年高二上學(xué)期期末教學(xué)檢測數(shù)學(xué)試題 附答案
- 報關(guān)稅費代繳服務(wù)合同
- 耐火材料行業(yè)競爭格局分析(如市場份額、競爭優(yōu)劣勢等)
- 僅銷售預(yù)包裝食品經(jīng)營者備案信息采集表
- 信息化工程建設(shè)項目可行性研究報告編制要求
- 床旁教學(xué)方法
- 2024湖南株洲攸縣城關(guān)國家糧食儲備庫員工招聘2人歷年高頻難、易錯點500題模擬試題附帶答案詳解
- 塵埃粒子95%置信上限UCL計算公式
評論
0/150
提交評論