2022-2023學(xué)年湖南省張家界市普通高校對口單招數(shù)學(xué)自考預(yù)測試題(含答案)_第1頁
2022-2023學(xué)年湖南省張家界市普通高校對口單招數(shù)學(xué)自考預(yù)測試題(含答案)_第2頁
2022-2023學(xué)年湖南省張家界市普通高校對口單招數(shù)學(xué)自考預(yù)測試題(含答案)_第3頁
2022-2023學(xué)年湖南省張家界市普通高校對口單招數(shù)學(xué)自考預(yù)測試題(含答案)_第4頁
2022-2023學(xué)年湖南省張家界市普通高校對口單招數(shù)學(xué)自考預(yù)測試題(含答案)_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年湖南省張家界市普通高校對口單招數(shù)學(xué)自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(20題)1.從1,2,3,4這4個數(shù)中任取兩個數(shù),則取出的兩數(shù)之和是奇數(shù)的概率是()A.1/5B.1/5C.2/5D.2/3

2.某校選修乒乓球課程的學(xué)生中,高一年級有30名,高二年級有40名.現(xiàn)用分層抽樣的方法在這70名學(xué)生中抽取一個樣本,已知在高一年級的學(xué)生中抽取了6名,則在高二年級的學(xué)生中應(yīng)抽取的人數(shù)為()A.6B.8C.10D.12

3.A.一B.二C.三D.四

4.已知讓點P到橢圓的一個焦點的距離為3,則它到另一個焦點的距離為()A.2B.3C.5D.7

5.在△ABC中,“x2

=1”是“x=1”的()

A.充分不必要條件B.必要不充分條件C.充分必要條件D.既不充分也不必要條件

6.某商品降價10%,欲恢復(fù)原價,則應(yīng)提升()A.10%

B.20%

C.

D.

7.橢圓的中心在原點,焦距為4,一條準(zhǔn)線為x=-4,則該橢圓的方程為()A.x2/16+y2/12=1

B.x2/12+y2/8=1

C.x2/8+y2/4=1

D.x2/12+y2/4=1

8.己知向量a=(3,-2),b=(-1,1),則3a+2b

等于()A.(-7,4)B.(7,4)C.(-7,-4)D.(7,-4)

9.在等差數(shù)列{an}中,如果a3+a4+a5+a6+a7+a8=30,則數(shù)列的前10項的和S10為()A.30B.40C.50D.60

10.某中學(xué)有高中生3500人,初中生1500人.為了解學(xué)生的學(xué)習(xí)情況,用分層抽樣的方法從該校學(xué)生中抽取一個容量為n的樣本,已知從高中生中抽取70人,則n為()A.100B.150C.200D.250

11.若f(x)=logax(a>0且a≠1)的圖像與g(x)=logbx(b>0,b≠1)的關(guān)于x軸對稱,則下列正確的是()A.a>bB.a=bC.a<bD.AB=1

12.某學(xué)校為了了解三年級、六年級、九年級這三個年級之間的學(xué)生視力是否存在顯著差異,擬從這三個年級中按人數(shù)比例抽取部分學(xué)生進行調(diào)查,則最合理的抽樣方法是()A.抽簽法B.系統(tǒng)抽樣法C.分層抽樣法D.隨機數(shù)法

13.A.B.C.D.

14.要得到函數(shù)y=sin2x的圖像,只需將函數(shù):y=cos(2x-π/4)的圖像A.向左平移π/8個單位B.向右平移π/8個單位C.向左平移π/4個單位D.向右平移π/4個單位

15.A.B.C.D.

16.“沒有公共點”是“兩條直線異面”的()A.充分而不必要條件B.充分必要條件C.必要而不充分條件D.既不充分也不必要條件

17.(1-x)4的展開式中,x2的系數(shù)是()A.6B.-6C.4D.-4

18.將三名教師排列到兩個班任教的安排方案數(shù)為()A.5B.6C.8D.9

19.l1,l2,l3是空間三條不同的直線,則下列命題正確的是()A.l1丄l2,l2丄l3,l1//l3

B.l1丄l2,l2//l3,l1丄l3

C.l1//l2//l3,l1,l2,l3共面

D.l1,l2,l3共點l1,l2,l3共面

20.己知tanα,tanβ是方程2x2+x-6=0的兩個根,則tan(α+β)的值為()A.-1/2B.-3C.-1D.-1/8

二、填空題(10題)21.設(shè)AB是異面直線a,b的公垂線段,已知AB=2,a與b所成角為30°,在a上取線段AP=4,則點P到直線b的距離為_____.

22.設(shè){an}是公比為q的等比數(shù)列,且a2=2,a4=4成等差數(shù)列,則q=

。

23.方程擴4x-3×2x-4=0的根為______.

24.已知數(shù)列{an}是各項都是正數(shù)的等比數(shù)列,其中a2=2,a4=8,則數(shù)列{an}的前n項和Sn=______.

25.

26.在ABC中,A=45°,b=4,c=,那么a=_____.

27.若log2x=1,則x=_____.

28.若lgx=-1,則x=______.

29.

30.不等式|x-3|<1的解集是

。

三、計算題(5題)31.求焦點x軸上,實半軸長為4,且離心率為3/2的雙曲線方程.

32.已知函數(shù)f(x)的定義域為{x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.

33.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。

34.近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機抽取了該市四類垃圾箱總計100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。

35.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

四、簡答題(10題)36.已知函數(shù)(1)求函數(shù)f(x)的最小正周期及最值(2)令判斷函數(shù)g(x)的奇偶性,并說明理由

37.已知函數(shù):,求x的取值范圍。

38.等比數(shù)列{an}的前n項和Sn,已知S1,S3,S2成等差數(shù)列(1)求數(shù)列{an}的公比q(2)當(dāng)a1-a3=3時,求Sn

39.三個數(shù)a,b,c成等差數(shù)列,公差為3,又a,b+1,c+6成等比數(shù)列,求a,b,c。

40.一條直線l被兩條直線:4x+y+6=0,3x-5y-6=0截得的線段中點恰好是坐標(biāo)原點,求直線l的方程.

41.已知函數(shù).(1)求f(x)的定義域;(2)判斷f(x)的奇偶性,并加以證明;(3)a>1時,判斷函數(shù)的單調(diào)性并加以證明。

42.已知的值

43.已知求tan(a-2b)的值

44.等差數(shù)列的前n項和為Sn,已知a10=30,a20=50。(1)求通項公式an。(2)若Sn=242,求n。

45.求經(jīng)過點P(2,-3)且橫縱截距相等的直線方程

五、證明題(10題)46.己知直線l:x+y+4=0且圓心為(1,-1)的圓C與直線l相切。證明:圓C的標(biāo)準(zhǔn)方程為(x-1)2

+(y+1)2

=8.

47.如圖所示,四棱錐中P-ABCD,底面ABCD為矩形,點E為PB的中點.求證:PD//平面ACE.

48.己知sin(θ+α)=sin(θ+β),求證:

49.△ABC的三邊分別為a,b,c,為且,求證∠C=

50.己知正方體ABCD-A1B1C1D1,證明:直線AC1與直線A1D1所成角的余弦值為.

51.若x∈(0,1),求證:log3X3<log3X<X3.

52.己知x∈(1,10),A=lg2x,B=lgx2,證明:A<B.

53.

54.己知

a

=(-1,2),b

=(-2,1),證明:cos〈a,b〉=4/5.

55.長、寬、高分別為3,4,5的長方體,沿相鄰面對角線截取一個三棱錐(如圖).求證:剩下幾何體的體積為三棱錐體積的5倍.

六、綜合題(2題)56.在△ABC中,角A,B,C的對邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

57.

(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標(biāo)軸相切的圓的標(biāo)準(zhǔn)方程.

參考答案

1.D古典概型的概率.任意取到兩個數(shù)的方法有6種:1,2;1,3;1,4;2,3;2,4;3,4;,滿足題意的有4種:1,2;1,4;2,3;3,4;,則所求的概率為4/6=2/3

2.B分層抽樣方法.試題分析:根據(jù)題意,由分層抽樣知識可得:在高二年級的學(xué)生中應(yīng)抽取的人數(shù)為:40×6/30=8

3.A

4.D

5.Bx2=1不能得到x=1,但是反之成立,所以是必要不充分條件。

6.C

7.C橢圓的標(biāo)準(zhǔn)方程.橢圓的焦距為4,所以2c=4,c=2因為準(zhǔn)線為x=-4,所以橢圓的焦點在x軸上,且-a2/c=-4,所以a2=4c=8,b2=a2-c2=8-4=4,所以橢圓的方程為x2/8+y2/4+=1

8.D

9.C

10.A分層抽樣方法.樣本抽取比70/3500=1/50例為該???cè)藬?shù)為1500+3500=5000,則=n/5000=1/50,∴n=100.

11.D

12.C為了解三年級、六年級、九年級這三個年級之間的學(xué)生視力是否存在顯著差異,這種方式具有代表性,比較合理的抽樣方法是分層抽樣。

13.B

14.B三角函數(shù)圖像的性質(zhì).將函數(shù)y=cos(2x-π/4)向右平移π/8個單位,得到y(tǒng)=cos(2(x-π/8)-π/4)=cos(2x-π/2)=sin2x

15.A

16.C

17.A

18.B

19.B判斷直線與直線,直線與平面的位置關(guān)系.A項還有異面或者相交,C、D不一定.

20.D

21.

,以直線b和A作平面,作P在該平面上的垂點D,作DC垂直b于C,則有PD=,BD=4,DC=2,因此PC=,(PC為垂直于b的直線).

22.

,由于是等比數(shù)列,所以a4=q2a2,得q=。

23.2解方程.原方程即為(2x)-3.2x-4=0,解得2x=4或2x=-1(舍去),解得x=2.

24.2n-1

25.π/2

26.

27.2.指數(shù)式與對數(shù)式的轉(zhuǎn)化及其計算.指數(shù)式轉(zhuǎn)化為對數(shù)式x=2.

28.1/10對數(shù)的運算.x=10-1=1/10

29.16

30.

31.解:實半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為

32.

33.

34.

35.

36.(1)(2)∴又∴函數(shù)是偶函數(shù)

37.

X>4

38.

39.由已知得:由上可解得

40.

41.(1)-1<x<1(2)奇函數(shù)(3)單調(diào)遞增函數(shù)

42.

∴∴則

43.

44.

45.設(shè)所求直線方程為y=kx+b由題意可知-3=2k+b,b=解得,時,b=0或k=-1時,b=-1∴所求直線為

46.

47.

∴PD//平面ACE.

48.

49.

50.

51.

52.證明:考慮對數(shù)函數(shù)y=lgx的限制知

:當(dāng)x∈(1,10)時,y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴l(xiāng)gx-2<0A-B<0∴A<B

53.

54.

55.證明:根據(jù)該幾何體的特征,可知所剩的幾何體的體積為長方體的體積減去所截的三棱錐的體積,即

56.

57.解:(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論