




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若不等式對恒成立,則實數(shù)的取值范圍是()A. B. C. D.2.已知函數(shù).下列命題:①函數(shù)的圖象關于原點對稱;②函數(shù)是周期函數(shù);③當時,函數(shù)取最大值;④函數(shù)的圖象與函數(shù)的圖象沒有公共點,其中正確命題的序號是()A.①④ B.②③ C.①③④ D.①②④3.已知是虛數(shù)單位,若,,則實數(shù)()A.或 B.-1或1 C.1 D.4.某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費開支占總開支的百分比為()A. B. C. D.5.某校為提高新入聘教師的教學水平,實行“老帶新”的師徒結(jié)對指導形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導,現(xiàn)選出3位老教師負責指導5位新入聘教師,則不同的師徒結(jié)對方式共有()種.A.360 B.240 C.150 D.1206.“哥德巴赫猜想”是近代三大數(shù)學難題之一,其內(nèi)容是:一個大于2的偶數(shù)都可以寫成兩個質(zhì)數(shù)(素數(shù))之和,也就是我們所謂的“1+1”問題.它是1742年由數(shù)學家哥德巴赫提出的,我國數(shù)學家潘承洞、王元、陳景潤等在哥德巴赫猜想的證明中做出相當好的成績.若將6拆成兩個正整數(shù)的和,則拆成的和式中,加數(shù)全部為質(zhì)數(shù)的概率為()A. B. C. D.7.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于8.已知拋物線上一點到焦點的距離為,分別為拋物線與圓上的動點,則的最小值為()A. B. C. D.9.設,其中a,b是實數(shù),則()A.1 B.2 C. D.10.已知定義在上函數(shù)的圖象關于原點對稱,且,若,則()A.0 B.1 C.673 D.67411.若均為任意實數(shù),且,則的最小值為()A. B. C. D.12.已知滿足,,,則在上的投影為()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.若,則=____,=___.14.已知數(shù)列的前項和為,,,,則滿足的正整數(shù)的所有取值為__________.15.已知實數(shù)滿足,則的最小值是______________.16.已知拋物線的焦點為,斜率為2的直線與的交點為,若,則直線的方程為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,是正方形,點在以為直徑的半圓弧上(不與,重合),為線段的中點,現(xiàn)將正方形沿折起,使得平面平面.(1)證明:平面.(2)三棱錐的體積最大時,求二面角的余弦值.18.(12分)已知圓M:及定點,點A是圓M上的動點,點B在上,點G在上,且滿足,,點G的軌跡為曲線C.(1)求曲線C的方程;(2)設斜率為k的動直線l與曲線C有且只有一個公共點,與直線和分別交于P、Q兩點.當時,求(O為坐標原點)面積的取值范圍.19.(12分)在中,角,,所對的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大?。唬?)求的值.20.(12分)如圖,在四棱錐中,側(cè)面為等邊三角形,且垂直于底面,,分別是的中點.(1)證明:平面平面;(2)已知點在棱上且,求直線與平面所成角的余弦值.21.(12分)已知函數(shù)(為實常數(shù)).(1)討論函數(shù)在上的單調(diào)性;(2)若存在,使得成立,求實數(shù)的取值范圍.22.(10分)已知首項為2的數(shù)列滿足.(1)證明:數(shù)列是等差數(shù)列.(2)令,求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
轉(zhuǎn)化為,構(gòu)造函數(shù),利用導數(shù)研究單調(diào)性,求函數(shù)最值,即得解.【詳解】由,可知.設,則,所以函數(shù)在上單調(diào)遞增,所以.所以.故的取值范圍是.故選:B【點睛】本題考查了導數(shù)在恒成立問題中的應用,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.2、A【解析】
根據(jù)奇偶性的定義可判斷出①正確;由周期函數(shù)特點知②錯誤;函數(shù)定義域為,最值點即為極值點,由知③錯誤;令,在和兩種情況下知均無零點,知④正確.【詳解】由題意得:定義域為,,為奇函數(shù),圖象關于原點對稱,①正確;為周期函數(shù),不是周期函數(shù),不是周期函數(shù),②錯誤;,,不是最值,③錯誤;令,當時,,,,此時與無交點;當時,,,,此時與無交點;綜上所述:與無交點,④正確.故選:.【點睛】本題考查函數(shù)與導數(shù)知識的綜合應用,涉及到函數(shù)奇偶性和周期性的判斷、函數(shù)最值的判斷、兩函數(shù)交點個數(shù)問題的求解;本題綜合性較強,對于學生的分析和推理能力有較高要求.3、B【解析】
由題意得,,然后求解即可【詳解】∵,∴.又∵,∴,∴.【點睛】本題考查復數(shù)的運算,屬于基礎題4、A【解析】
由折線圖找出水、電、交通開支占總開支的比例,再計算出水費開支占水、電、交通開支的比例,相乘即可求出水費開支占總開支的百分比.【詳解】水費開支占總開支的百分比為.故選:A【點睛】本題考查折線圖與柱形圖,屬于基礎題.5、C【解析】
可分成兩類,一類是3個新教師與一個老教師結(jié)對,其他一新一老結(jié)對,第二類兩個老教師各帶兩個新教師,一個老教師帶一個新教師,分別計算后相加即可.【詳解】分成兩類,一類是3個新教師與同一個老教師結(jié)對,有種結(jié)對結(jié)對方式,第二類兩個老教師各帶兩個新教師,有.∴共有結(jié)對方式60+90=150種.故選:C.【點睛】本題考查排列組合的綜合應用.解題關鍵確定怎樣完成新老教師結(jié)對這個事情,是先分類還是先分步,確定方法后再計數(shù).本題中有一個平均分組問題.計數(shù)時容易出錯.兩組中每組中人數(shù)都是2,因此方法數(shù)為.6、A【解析】
列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質(zhì)數(shù)的只有,利用古典概型求解即可.【詳解】6拆成兩個正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數(shù)全為質(zhì)數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.【點睛】本題主要考查了古典概型,基本事件,屬于容易題.7、D【解析】
試題分析:由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D.考點:平面與平面的位置關系,平面的基本性質(zhì)及其推論.8、D【解析】
利用拋物線的定義,求得p的值,由利用兩點間距離公式求得,根據(jù)二次函數(shù)的性質(zhì),求得,由取得最小值為,求得結(jié)果.【詳解】由拋物線焦點在軸上,準線方程,則點到焦點的距離為,則,所以拋物線方程:,設,圓,圓心為,半徑為1,則,當時,取得最小值,最小值為,故選D.【點睛】該題考查的是有關距離的最小值問題,涉及到的知識點有拋物線的定義,點到圓上的點的距離的最小值為其到圓心的距離減半徑,二次函數(shù)的最小值,屬于中檔題目.9、D【解析】
根據(jù)復數(shù)相等,可得,然后根據(jù)復數(shù)模的計算,可得結(jié)果.【詳解】由題可知:,即,所以則故選:D【點睛】本題考查復數(shù)模的計算,考驗計算,屬基礎題.10、B【解析】
由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個周期內(nèi)的和是0,利用函數(shù)周期性對所求式子進行化簡可得.【詳解】因為為奇函數(shù),故;因為,故,可知函數(shù)的周期為3;在中,令,故,故函數(shù)在一個周期內(nèi)的函數(shù)值和為0,故.故選:B.【點睛】本題考查函數(shù)奇偶性與周期性綜合問題.其解題思路:函數(shù)的奇偶性與周期性相結(jié)合的問題多考查求值問題,常利用奇偶性及周期性進行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解.11、D【解析】
該題可以看做是圓上的動點到曲線上的動點的距離的平方的最小值問題,可以轉(zhuǎn)化為圓心到曲線上的動點的距離減去半徑的平方的最值問題,結(jié)合圖形,可以斷定那個點應該滿足與圓心的連線與曲線在該點的切線垂直的問題來解決,從而求得切點坐標,即滿足條件的點,代入求得結(jié)果.【詳解】由題意可得,其結(jié)果應為曲線上的點與以為圓心,以為半徑的圓上的點的距離的平方的最小值,可以求曲線上的點與圓心的距離的最小值,在曲線上取一點,曲線有在點M處的切線的斜率為,從而有,即,整理得,解得,所以點滿足條件,其到圓心的距離為,故其結(jié)果為,故選D.【點睛】本題考查函數(shù)在一點處切線斜率的應用,考查圓的程,兩條直線垂直的斜率關系,屬中檔題.12、A【解析】
根據(jù)向量投影的定義,即可求解.【詳解】在上的投影為.故選:A【點睛】本題考查向量的投影,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、12821【解析】
令,求得的值.利用展開式的通項公式,求得的值.【詳解】令,得.展開式的通項公式為,當時,為,即.【點睛】本小題主要考查二項式展開式的通項公式,考查賦值法求解二項式系數(shù)有關問題,屬于基礎題.14、20,21【解析】
由題意知數(shù)列奇數(shù)項和偶數(shù)項分別為等差數(shù)列和等比數(shù)列,則根據(jù)為奇數(shù)和為偶數(shù)分別算出求和公式,代入數(shù)值檢驗即可.【詳解】解:由題意知數(shù)列的奇數(shù)項構(gòu)成公差為的等差數(shù)列,偶數(shù)項構(gòu)成公比為的等比數(shù)列,則;.當時,,.當時,,.由此可知,滿足的正整數(shù)的所有取值為20,21.故答案為:20,21【點睛】本題考查等差數(shù)列與等比數(shù)列通項與求和公式,是綜合題,分清奇數(shù)項和偶數(shù)項是解題的關鍵.15、【解析】
先畫出不等式組對應的可行域,再利用數(shù)形結(jié)合分析解答得解.【詳解】畫出不等式組表示的可行域如圖陰影區(qū)域所示.由題得y=-3x+z,它表示斜率為-3,縱截距為z的直線系,平移直線,易知當直線經(jīng)過點時,直線的縱截距最小,目標函數(shù)取得最小值,且.故答案為:-8【點睛】本題主要考查線性規(guī)劃問題,意在考查學生對這些知識的理解掌握水平和數(shù)形結(jié)合分析能力.16、【解析】
設直線l的方程為,,聯(lián)立直線l與拋物線C的方程,得到A,B點橫坐標的關系式,代入到中,解出t的值,即可求得直線l的方程【詳解】設直線.由題設得,故,由題設可得.
由可得,
則,從而,得,所以l的方程為,故答案為:【點睛】本題主要考查了直線的方程,拋物線的定義,拋物線的簡單幾何性質(zhì),直線與拋物線的位置關系,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)利用面面垂直的性質(zhì)定理證得平面,由此證得,根據(jù)圓的幾何性質(zhì)證得,由此證得平面.(2)判斷出三棱錐的體積最大時點的位置.建立空間直角坐標系,通過平面和平面的法向量,計算出二面角的余弦值.【詳解】(1)證明:因為平面平面是正方形,所以平面.因為平面,所以.因為點在以為直徑的半圓弧上,所以.又,所以平面.(2)解:顯然,當點位于的中點時,的面積最大,三棱錐的體積也最大.不妨設,記中點為,以為原點,分別以的方向為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,設平面的法向量為,則令,得.設平面的法向量為,則令,得,所以.由圖可知,二面角為銳角,故二面角的余弦值為.【點睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1);(2).【解析】
(1)根據(jù)題意得到GB是線段的中垂線,從而為定值,根據(jù)橢圓定義可知點G的軌跡是以M,N為焦點的橢圓,即可求出曲線C的方程;(2)聯(lián)立直線方程和橢圓方程,表示處的面積代入韋達定理化簡即可求范圍.【詳解】(1)為的中點,且是線段的中垂線,,又,∴點G的軌跡是以M,N為焦點的橢圓,設橢圓方程為(),則,,,所以曲線C的方程為.(2)設直線l:(),由消去y,可得.因為直線l總與橢圓C有且只有一個公共點,所以,.①又由可得;同理可得.由原點O到直線的距離為和,可得.②將①代入②得,當時,,綜上,面積的取值范圍是.【點睛】此題考查了軌跡和直線與曲線相交問題,軌跡通過已知條件找到幾何關系從而判斷軌跡,直線與曲線相交一般聯(lián)立設而不求韋達定理進行求解即可,屬于一般性題目.19、(1);(2)7.【解析】分析:(1)由三角形面積公式和已知條件求得sinA的值,進而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.詳解:(1)∵,∴,∵為銳角,∴;(2)由余弦定理得:.點睛:本題主要考查正弦定理邊角互化及余弦定理的應用與特殊角的三角函數(shù),屬于簡單題.對余弦定理一定要熟記兩種形式:(1);(2),同時還要熟練掌握運用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關的問題時,還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應用.20、(1)證明見解析;(2).【解析】
(1)由平面幾何知識可得出四邊形是平行四邊形,可得面,再由面面平行的判定可證得面面平行;(2)由(1)可知,兩兩垂直,故建立空間直角坐標系,可求得面PAB的法向量,再運用線面角的向量求法,可求得直線與平面所成角的余弦值.【詳解】(1),,又,,,而、分別是、的中點,,故面,又且,故四邊形是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 優(yōu)化企業(yè)人力資源管理策略
- 學校多功能綜合樓建設項目全新規(guī)劃方案
- 推動現(xiàn)代產(chǎn)業(yè)體系建設的策略與路徑探索
- 推動經(jīng)濟社會綠色轉(zhuǎn)型的策略與路徑探索
- 生物識別技術(shù)發(fā)展與市場前景深度解析
- 普惠托育網(wǎng)絡建設新路徑
- 2025年女裝行業(yè)發(fā)展趨勢與市場機遇分析
- 優(yōu)化外包管理的年度策略計劃
- 培養(yǎng)學生的創(chuàng)新能力計劃
- 倉庫外部審核與整改計劃
- 不銹鋼的電鍍工藝流程
- 汽車展覽策劃方案
- 鋼材抗拉強度不確定度
- 5.1《阿Q正傳(節(jié)選)》同步練習(解析) 2022-2023學年統(tǒng)編高中語文選擇性必修下冊
- 學習正確的床上用品清潔與消毒流程
- 竹、木(復合)地板工程施工工藝
- 【環(huán)氧樹脂復合材料研究進展文獻綜述6000字】
- 數(shù)字媒體實習報告
- 預應力張拉安全操作規(guī)程
- 常見眼壓計對比分析文檔
- 呼吸科常用吸入藥物介紹
評論
0/150
提交評論