陜西省西安市交大附中達標名校2022-2023學年中考數(shù)學最后沖刺模擬試卷含解析_第1頁
陜西省西安市交大附中達標名校2022-2023學年中考數(shù)學最后沖刺模擬試卷含解析_第2頁
陜西省西安市交大附中達標名校2022-2023學年中考數(shù)學最后沖刺模擬試卷含解析_第3頁
陜西省西安市交大附中達標名校2022-2023學年中考數(shù)學最后沖刺模擬試卷含解析_第4頁
陜西省西安市交大附中達標名校2022-2023學年中考數(shù)學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列運算中正確的是()A.x2÷x8=x?6 B.a(chǎn)·a2=a2 C.(a2)3=a5 D.(3a)3=9a32.右圖是由四個小正方體疊成的一個立體圖形,那么它的俯視圖是()A. B. C. D.3.如圖,已知AB是⊙O的直徑,弦CD⊥AB于E,連接BC、BD、AC,下列結論中不一定正確的是()A.∠ACB=90° B.OE=BE C.BD=BC D.4.已知二次函數(shù)y=ax2+bx+c的圖像經(jīng)過點(0,m)、(4、m)、(1,n),若n<m,則()A.a(chǎn)>0且4a+b=0 B.a(chǎn)<0且4a+b=0C.a(chǎn)>0且2a+b=0 D.a(chǎn)<0且2a+b=05.如圖,邊長為1的正方形ABCD繞點A逆時針旋轉30°到正方形AB’C’D’,圖中陰影部分的面積為().A. B. C. D.6.小明在一次登山活動中撿到一塊礦石,回家后,他使用一把刻度尺,一只圓柱形的玻璃杯和足量的水,就測量出這塊礦石的體積.如果他量出玻璃杯的內直徑d,把礦石完全浸沒在水中,測出杯中水面上升了高度h,則小明的這塊礦石體積是()A. B. C. D.7.如圖是某個幾何體的展開圖,該幾何體是()A.三棱柱 B.三棱錐 C.圓柱 D.圓錐8.下列計算正確的是()A.a(chǎn)3?a2=a6 B.(a3)2=a5 C.(ab2)3=ab6 D.a(chǎn)+2a=3a9.某商品的標價為200元,8折銷售仍賺40元,則商品進價為()元.A. B. C. D.10.如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.125二、填空題(共7小題,每小題3分,滿分21分)11.同時擲兩個質地均勻的骰子,觀察向上一面的點數(shù),兩個骰子的點數(shù)相同的概率為.12.如圖,△ABC中,過重心G的直線平行于BC,且交邊AB于點D,交邊AC于點E,如果設=,=,用,表示,那么=___.13.如圖,在正六邊形ABCDEF中,AC于FB相交于點G,則值為_____.14.若關于x的方程x2﹣8x+m=0有兩個相等的實數(shù)根,則m=_____.15.如圖,小明在A時測得某樹的影長為3米,B時又測得該樹的影長為12米,若兩次日照的光線互相垂直,則樹的高度為_________米.16.若方程x2+(m2﹣1)x+1+m=0的兩根互為相反數(shù),則m=______17.若代數(shù)式在實數(shù)范圍內有意義,則實數(shù)x的取值范圍為_____.三、解答題(共7小題,滿分69分)18.(10分)某商場經(jīng)營某種品牌的玩具,購進時的單價是30元,根據(jù)市場調查:在一段時間內,銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.不妨設該種品牌玩具的銷售單價為x元(x>40),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結果填寫在表格中:銷售單價(元)x銷售量y(件)銷售玩具獲得利潤w(元)(2)在(1)問條件下,若商場獲得了10000元銷售利潤,求該玩具銷售單價x應定為多少元.在(1)問條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于540件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?19.(5分)中華文明,源遠流長;中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽.為了解本次大賽的成績,校團委隨機抽取了其中200名學生的成績作為樣本進行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:頻數(shù)頻率分布表成績x(分)頻數(shù)(人)頻率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25根據(jù)所給信息,解答下列問題:(1)m=,n=;(2)補全頻數(shù)分布直方圖;(3)這200名學生成績的中位數(shù)會落在分數(shù)段;(4)若成績在90分以上(包括90分)為“優(yōu)”等,請你估計該校參加本次比賽的3000名學生中成績是“優(yōu)”等的約有多少人?20.(8分)如圖,四邊形ABCD中,對角線AC、BD相交于點O,若AB,求證:四邊形ABCD是正方形21.(10分)計算﹣14﹣22.(10分)如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點E,交CB的延長線于點F,連接AF,BE.(1)求證:△AGE≌△BGF;(2)試判斷四邊形AFBE的形狀,并說明理由.23.(12分)如圖,已知一次函數(shù)y=kx+b的圖象與x軸交于點A,與反比例函數(shù)(x<0)的圖象交于點B(﹣2,n),過點B作BC⊥x軸于點C,點D(3﹣3n,1)是該反比例函數(shù)圖象上一點.求m的值;若∠DBC=∠ABC,求一次函數(shù)y=kx+b的表達式.24.(14分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.若將這種水果每斤的售價降低x元,則每天的銷售量是斤(用含x的代數(shù)式表示);銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

根據(jù)同底數(shù)冪的除法法則:底數(shù)不變,指數(shù)相減;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;冪的乘方法則:底數(shù)不變,指數(shù)相乘;積的乘方法則:把每一個因式分別乘方,再把所得的冪相乘進行計算即可.【詳解】解:A、x2÷x8=x-6,故該選項正確;

B、a?a2=a3,故該選項錯誤;

C、(a2)3=a6,故該選項錯誤;

D、(3a)3=27a3,故該選項錯誤;

故選A.【點睛】此題主要考查了同底數(shù)冪的乘除法、冪的乘方和積的乘方,關鍵是掌握相關運算法則.2、B【解析】解:從上面看,上面一排有兩個正方形,下面一排只有一個正方形,故選B.3、B【解析】

根據(jù)垂徑定理及圓周角定理進行解答即可.【詳解】∵AB是⊙O的直徑,∴∠ACB=90°,故A正確;∵點E不一定是OB的中點,∴OE與BE的關系不能確定,故B錯誤;∵AB⊥CD,AB是⊙O的直徑,∴,∴BD=BC,故C正確;∴,故D正確.故選B.【點睛】本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關鍵.4、A【解析】

由圖像經(jīng)過點(0,m)、(4、m)可知對稱軸為x=2,由n<m知x=1時,y的值小于x=0時y的值,根據(jù)拋物線的對稱性可知開口方向,即可知道a的取值.【詳解】∵圖像經(jīng)過點(0,m)、(4、m)∴對稱軸為x=2,則,∴4a+b=0∵圖像經(jīng)過點(1,n),且n<m∴拋物線的開口方向向上,∴a>0,故選A.【點睛】此題主要考查拋物線的圖像,解題的關鍵是熟知拋物線的對稱性.5、C【解析】

設B′C′與CD的交點為E,連接AE,利用“HL”證明Rt△AB′E和Rt△ADE全等,根據(jù)全等三角形對應角相等∠DAE=∠B′AE,再根據(jù)旋轉角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根據(jù)陰影部分的面積=正方形ABCD的面積﹣四邊形ADEB′的面積,列式計算即可得解.【詳解】如圖,設B′C′與CD的交點為E,連接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋轉角為30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴陰影部分的面積=1×1﹣2×(×1×)=1﹣.故選C.【點睛】本題考查了旋轉的性質,正方形的性質,全等三角形判定與性質,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,從而求出∠DAE=30°是解題的關鍵,也是本題的難點.6、A【解析】圓柱體的底面積為:π×()2,∴礦石的體積為:π×()2h=.故答案為.7、A【解析】

側面為長方形,底面為三角形,故原幾何體為三棱柱.【詳解】解:觀察圖形可知,這個幾何體是三棱柱.故本題選擇A.【點睛】會觀察圖形的特征,依據(jù)側面和底面的圖形確定該幾何體是解題的關鍵.8、D【解析】

根據(jù)同底數(shù)冪的乘法、積的乘方與冪的乘方及合并同類項的運算法則進行計算即可得出正確答案.【詳解】解:A.x4?x4=x4+4=x8≠x16,故該選項錯誤;B.(a3)2=a3×2=a6≠a5,故該選項錯誤;C.(ab2)3=a3b6≠ab6,故該選項錯誤;D.a(chǎn)+2a=(1+2)a=3a,故該選項正確;故選D.考點:1.同底數(shù)冪的乘法;2.積的乘方與冪的乘方;3.合并同類項.9、B【解析】

設商品進價為x元,則售價為每件0.8×200元,由利潤=售價-進價建立方程求出其解即可.【詳解】解:設商品的進價為x元,售價為每件0.8×200元,由題意得0.8×200=x+40解得:x=120答:商品進價為120元.故選:B.【點睛】此題考查一元一次方程的實際運用,掌握銷售問題的數(shù)量關系利潤=售價-進價,建立方程是關鍵.10、B【解析】

根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理即可求得CE2+CF2=EF2,進而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,

又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,

∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,

∴CM=EM=MF=5,EF=10,

由勾股定理可知CE2+CF2=EF2=1.

故選:B.【點睛】本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運用,解題的關鍵是首先證明出△ECF為直角三角形.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】試題分析:首先列表,然后根據(jù)表格求得所有等可能的結果與兩個骰子的點數(shù)相同的情況,再根據(jù)概率公式求解即可.解:列表得:(1,6)

(2,6)

(3,6)

(4,6)

(5,6)

(6,6)

(1,5)

(2,5)

(3,5)

(4,5)

(5,5)

(6,5)

(1,4)

(2,4)

(3,4)

(4,4)

(5,4)

(6,4)

(1,3)

(2,3)

(3,3)

(4,3)

(5,3)

(6,3)

(1,2)

(2,2)

(3,2)

(4,2)

(5,2)

(6,2)

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(6,1)

∴一共有36種等可能的結果,兩個骰子的點數(shù)相同的有6種情況,∴兩個骰子的點數(shù)相同的概率為:=.故答案為.考點:列表法與樹狀圖法.12、【解析】

連接AG,延長AG交BC于F.首先證明DG=GE,再利用三角形法則求出即可解決問題.【詳解】連接AG,延長AG交BC于F.

∵G是△ABC的重心,DE∥BC,

∴BF=CF,

,

∵,,

∴,

∵BF=CF,

∴DG=GE,

∵,,

∴,

∴,

故答案為.【點睛】本題考查三角形的重心,平行線的性質,平面向量等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.13、.【解析】

由正六邊形的性質得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性質得出∠ABF=∠BAC=∠BCA=30°,證出AG=BG,∠CBG=90°,由含30°角的直角三角形的性質得出CG=2BG=2AG,即可得出答案.【詳解】∵六邊形ABCDEF是正六邊形,∴AB=BC=AF,∠ABC=∠BAF=120°,∴∠ABF=∠BAC=∠BCA=30°,∴AG=BG,∠CBG=90°,∴CG=2BG=2AG,∴=;故答案為:.【點睛】本題考查了正六邊形的性質、等腰三角形的判定、含30°角的直角三角形的性質等知識;熟練掌握正六邊形的性質和含30°角的直角三角形的性質是解題的關鍵.14、1【解析】

根據(jù)判別式的意義得到△=(﹣8)2﹣4m=0,然后解關于m的方程即可.【詳解】△=(﹣8)2﹣4m=0,解得m=1,故答案為:1.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2﹣4ac有如下關系:當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程無實數(shù)根.15、1【解析】

根據(jù)題意,畫出示意圖,易得:Rt△EDC∽Rt△FDC,進而可得;即DC2=ED?FD,代入數(shù)據(jù)可得答案.【詳解】根據(jù)題意,作△EFC,樹高為CD,且∠ECF=90°,ED=3,F(xiàn)D=12,易得:Rt△EDC∽Rt△DCF,有,即DC2=ED×FD,代入數(shù)據(jù)可得DC2=31,DC=1,故答案為1.16、﹣1【解析】

根據(jù)“方程x2+(m2﹣1)x+1+m=0的兩根互為相反數(shù)”,利用一元二次方程根與系數(shù)的關系,列出關于m的等式,解之,再把m的值代入原方程,找出符合題意的m的值即可.【詳解】∵方程x2+(m2﹣1)x+1+m=0的兩根互為相反數(shù),∴1﹣m2=0,解得:m=1或﹣1,把m=1代入原方程得:x2+2=0,該方程無解,∴m=1不合題意,舍去,把m=﹣1代入原方程得:x2=0,解得:x1=x2=0,(符合題意),∴m=﹣1,故答案為﹣1.【點睛】本題考查了根與系數(shù)的關系,正確掌握一元二次方程兩根之和,兩個之積與系數(shù)之間的關系式解題的關鍵.若x1,x2為方程的兩個根,則x1,x2與系數(shù)的關系式:,.17、x≤1【解析】

根據(jù)二次根式有意義的條件可求出x的取值范圍.【詳解】由題意可知:1﹣x≥0,∴x≤1故答案為:x≤1.【點睛】本題考查二次根式有意義的條件,解題的關鍵是利用被開方數(shù)是非負數(shù)解答即可.三、解答題(共7小題,滿分69分)18、(1)1000﹣x,﹣10x2+1300x﹣1;(2)50元或80元;(3)8640元.【解析】

(1)由銷售單價每漲1元,就會少售出10件玩具得銷售量y=600﹣(x﹣40)x=1000﹣x,銷售利潤w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.(2)令﹣10x2+1300x﹣1=10000,求出x的值即可;(3)首先求出x的取值范圍,然后把w=﹣10x2+1300x﹣1轉化成y=﹣10(x﹣65)2+12250,結合x的取值范圍,求出最大利潤.【詳解】解:(1)銷售量y=600﹣(x﹣40)x=1000﹣x,銷售利潤w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.故答案為:1000﹣x,﹣10x2+1300x﹣1.(2)﹣10x2+1300x﹣1=10000解之得:x1=50,x2=80答:玩具銷售單價為50元或80元時,可獲得10000元銷售利潤.(3)根據(jù)題意得,解得:44≤x≤46.w=﹣10x2+1300x﹣1=﹣10(x﹣65)2+12250∵a=﹣10<0,對稱軸x=65,∴當44≤x≤46時,y隨x增大而增大.∴當x=46時,W最大值=8640(元).答:商場銷售該品牌玩具獲得的最大利潤為8640元.19、(1)70,0.2;(2)補圖見解析;(3)80≤x<90;(4)750人.【解析】分析:(1)根據(jù)第一組的頻數(shù)是10,頻率是0.05,求得數(shù)據(jù)總數(shù),再用數(shù)據(jù)總數(shù)乘以第四組頻率可得m的值,用第三組頻數(shù)除以數(shù)據(jù)總數(shù)可得n的值;(2)根據(jù)(1)的計算結果即可補全頻數(shù)分布直方圖;(3)根據(jù)中位數(shù)的定義,將這組數(shù)據(jù)按照從小到大的順序排列后,處于中間位置的數(shù)據(jù)(或中間兩數(shù)據(jù)的平均數(shù))即為中位數(shù);(4)利用總數(shù)3000乘以“優(yōu)”等學生的所占的頻率即可.詳解:(1)本次調查的總人數(shù)為10÷0.05=200,則m=200×0.35=70,n=40÷200=0.2,(2)頻數(shù)分布直方圖如圖所示,(3)200名學生成績的中位數(shù)是第100、101個成績的平均數(shù),而第100、101個數(shù)均落在80≤x<90,∴這200名學生成績的中位數(shù)會落在80≤x<90分數(shù)段,(4)該校參加本次比賽的3000名學生中成績“優(yōu)”等的約有:3000×0.25=750(人).點睛:本題考查讀頻數(shù)(率)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.也考查了中位數(shù)和利用樣本估計總體.20、詳見解析.【解析】

四邊形ABCD是正方形,利用已知條件先證明四邊形ABCD是平行四邊形,再證明四邊形ABCD是矩形,再根據(jù)對角線垂直的矩形是正方形即可證明四邊形ABCD是正方形.【詳解】證明:在四邊形ABCD中,OA=OC,OB=OD,∴四邊形ABCD是平行四邊形,∵OA=OB=OC=OD,又∵AC=AO+OC,BD=OB+DO,∴AC=BD,∴平行四邊形是矩形,在△AOB中,,∴△AOB是直角三角形,即AC⊥BD,∴矩形ABCD是正方形.【點睛】本題考查了平行四邊形的判定、矩形的判定、正方形的判定以及勾股定理的運用和勾股定理的逆定理的運用,題目的綜合性很強.21、1【解析】

直接利用絕對值的性質以及二次根式的性質分別化簡得出答案.【詳解】原式=﹣1﹣4÷+27=﹣1﹣16+27=1.【點睛】本題考查了實數(shù)的運算,解題的關鍵是熟練掌握運算順序.22、(1)證明見解析(2)四邊形AFBE是菱形【解析】試題分析:(1)由平行四邊形的性質得出AD∥BC,得出∠AEG=∠BFG,由AAS證明△AGE≌△BGF即可;(2)由全等三角形的性質得出AE=BF,由AD∥BC,證出四邊形AFBE是平行四邊形,再根據(jù)EF⊥AB,即可得出結論.試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論