版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
PAGEPAGE29一、兩位數(shù)乘兩位數(shù)。
1.十幾乘十幾:
口訣:頭乘頭,尾加尾,尾乘尾。
例:12×14=?
解:1×1=1
2+4=6
2×4=8
12×14=168
注:個位相乘,不夠兩位數(shù)要用0占位。
2.頭相同,尾互補(尾相加等于10):
口訣:一個頭加1后,頭乘頭,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:個位相乘,不夠兩位數(shù)要用0占位。
3.第一個乘數(shù)互補,另一個乘數(shù)數(shù)字相同:
口訣:一個頭加1后,頭乘頭,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
注:個位相乘,不夠兩位數(shù)要用0占位。
4.幾十一乘幾十一:
口訣:頭乘頭,頭加頭,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5.11乘任意數(shù):
口訣:首尾不動下落,中間之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分別在首尾
11×23125=254375
注:和滿十要進一。
6.十幾乘任意數(shù):
口訣:第二乘數(shù)首位不動向下落,第一因數(shù)的個位乘以第二因數(shù)后面每一個數(shù)字,加下一位數(shù),再向下落。
例:13×326=?
解:13個位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
注:和滿十要進一。
數(shù)學中關于兩位數(shù)乘法的“首同末和十”和“末同首和十”速算法。所謂“首同末和十”,就是指兩個數(shù)字相乘,十位數(shù)相同,個位數(shù)相加之和為10,舉個例子,67×63,十位數(shù)都是6,個位7+3之和剛好等于10,我告訴他,象這樣的數(shù)字相乘,其實是有規(guī)律的。就是兩數(shù)的個位數(shù)之積為得數(shù)的后兩位數(shù),不足10的,十位數(shù)上補0;兩數(shù)相同的十位取其中一個加1后相乘,結(jié)果就是得數(shù)的千位和百位。具體到上面的例子67×63,7×3=21,這21就是得數(shù)的后兩位;6×(6+1)=6×7=42,這42就是得數(shù)的前兩位,綜合起來,67×63=4221。類似,15×15=225,89×81=7209,64×66=4224,92×98=9016。我給他講了這個速算小“秘訣”后,小家伙已經(jīng)有些興奮了。在“糾纏”著讓我給他出完所有能出的題目并全部計算正確后,他又嚷嚷讓我教他“末同首和十”的速算方法。我告訴他,所謂“末同首和十”,就是相乘的兩個數(shù)字,個位數(shù)完全相同,十位數(shù)相加之和剛好為10,舉例來說,45×65,兩數(shù)個位都是5,十位數(shù)4+6的結(jié)果剛好等于10。它的計算法則是,兩數(shù)相同的各位數(shù)之積為得數(shù)的后兩位數(shù),不足10的,在十位上補0;兩數(shù)十位數(shù)相乘后加上相同的個位數(shù),結(jié)果就是得數(shù)的百位和千位數(shù)。具體到上面的例子,45×65,5×5=25,這25就是得數(shù)的后兩位數(shù),4×6+5=29,這29就是得數(shù)的前面部分,因此,45×65=2925。類似,11×91=1001,83×23=1909,74×34=2516,97×17=1649。
為了易于大家理解兩位數(shù)乘法的普遍規(guī)律,這里將通過具體的例子說明。通過對比大量的兩位數(shù)相乘結(jié)果,我把兩位數(shù)相乘的結(jié)果分成三個部分,個位,十位,十位以上即百位和千位。(兩位數(shù)相乘最大不會超過10000,所以,最大只能到千位)現(xiàn)舉例:42×56=2352
其中,得數(shù)的個位數(shù)確定方法是,取兩數(shù)個位乘積的尾數(shù)為得數(shù)的個位數(shù)。具體到上面例子,2×6=12,其中,2為得數(shù)的尾數(shù),1為個位進位數(shù);
得數(shù)的十位數(shù)確定方法是,取兩數(shù)的個位與十位分別交叉相乘的和加上個位進位數(shù)總和的尾數(shù),為得數(shù)的十位數(shù)。具體到上面例子,2×5+4×6+1=35,其中,5為得數(shù)的十位數(shù),3為十位進位數(shù);
得數(shù)的其余部分確定方法是,取兩數(shù)的十位數(shù)的乘積與十位進位數(shù)的和,就是得數(shù)的百位或千位數(shù)。具體到上面例子,4×5+3=23。則2和3分別是得數(shù)的千位數(shù)和百位數(shù)。
因此,42×56=2352。再舉一例,82×97,按照上面的計算方法,首先確定得數(shù)的個位數(shù),2×7=14,則得數(shù)的個位應為4;再確定得數(shù)的十位數(shù),2×9+8×7+1=75,則得數(shù)的十位數(shù)為5;最后計算出得數(shù)的其余部分,8×9+7=79,所以,82×97=7954。同樣,用這種算法,很容易得出所有兩位數(shù)乘法的積。一、加一法———頭相同,個位相加之相加之和等于10.公式:一個頭加“1”后,頭×頭;尾×尾,連起來。例:62×68=4216解:(6+1)×6=422×8=16連起來得4216.練習題:73×7728×2264×6643×47二、加尾數(shù)法——尾相加,十位相加等于10.公式:頭×頭加一個尾;尾尾連起來例:26×86=2236解:2×8+6=226×6=36連起來得2236練習題:38×7847×6785×2564×44三、減1法———個位數(shù)是1和9且兩個首數(shù)相差1.公式:用較大數(shù)的首數(shù)平方減去1,后面連寫99.例:81(較大數(shù))×79=6399解:82-1=63后面連寫99,得6399.練習題:61×5971×6929×3149×51四、求兩個一百零幾數(shù)的積,一數(shù)加另一數(shù)尾數(shù)法。公式:一數(shù)+另一數(shù)尾數(shù);尾×尾,連起來。例:105×107=11235解:105+7=1125×7=35連起來得11235.練習題:108×109106×104102×108103×105五、1、求51——59的平方數(shù),常數(shù)加尾數(shù)法。(常數(shù)是25)公式:常數(shù)25+尾;尾×尾,連起來。例1、582=3364解:25+8=338×8=64連起來得3364.例2、532=2809解:25+3=283×3=09連起來得2809。練習題:5425625725222、求41——49的平方數(shù),常數(shù)減個位數(shù)的補數(shù)法。把個位數(shù)補夠10,就能找到個位數(shù)的補數(shù)。如個位4的補數(shù)是6,6的補數(shù)是4,2的補數(shù)是8.公式:常數(shù)25減個位數(shù)的補數(shù);補數(shù)×補數(shù),連起來。例1、462=2116解:個位6的補數(shù)是4,25-4=214×4=16連起來得2116.例2、482=2304解:個位8的補數(shù)是2,25-2=232×2=04連起來得2304.練習題:4724824524923、求個位數(shù)字是5的數(shù)的平方數(shù)。公式:頭+1后×頭;尾×尾連起來。例:852=7225解:(8+1)×8=725×5=25連起來得7225練習題:3526527524524、求91——99的平方數(shù);本數(shù)減個位數(shù)的補數(shù)法。公式:本數(shù)減個位數(shù)的補數(shù);補數(shù)×補數(shù),連起來例1、942=8836解:94-6=886×6=36連起來得8836.例2、982=9604解:98-2=962×2=04連起來得9604.練習題:952972962992六、求任意數(shù)與11的積。例1、235×11=2585748×11=82282357482585711128方法:首尾照寫,中間寫合數(shù),滿十進一。練習題:816×114536×119247×115672×11七、999乘以任意數(shù)公式:任意數(shù)末尾減“1”后,接寫其同位補數(shù)。什么叫補數(shù):能把一位數(shù)補成10,二位數(shù)補成100,三位數(shù)補成1000的數(shù)叫補數(shù)。如:7的補數(shù)是3,42的補數(shù)是58,472的補數(shù)是528.例1、999×516=515484解:516-1=515516的補數(shù)是484連寫為515484.例2、999×74=73926解:74-1=73074的同位補數(shù)是936連寫為73926.練習題:999×547999×873999×67999×82999乘以多位數(shù):999×2437=2434563解:2437-(2+1)=2434,同位437的補數(shù)=563,連寫為2434563.999×24738=24713262解:24738-(24+1)=24713,同位738的補數(shù)=262,連寫為24713262.練習題:999×3576999×5628999×24736999×51472八、萬能法——任意數(shù)相乘(三個例題全學懂后,方可應用)。公式:內(nèi)、外項自乘,積相加,頭×頭+頭;尾×尾十位加尾連起來。例1、62×57=3534解:eq\o\ac(○,1)內(nèi)、外項自乘,積相加。2(內(nèi)項)×5(內(nèi)項)=106(外項)×7(外項)=4210+42=52eq\o\ac(○,2)先默記內(nèi)、外項積的和“52”,然后頭×頭加“52”的頭5,6×5+5=35,尾×尾十位加“52”的尾數(shù)2,2×7=14十位加2得34連寫為3534練習題:43×5823×4672×8593×64例2、63*82=5166解:eq\o\ac(○,1)內(nèi)、外項自乘,積相加:3×8+6×2=36eq\o\ac(○,2)先默記內(nèi)、外項積的和36,然后頭×頭加“36”的頭3,6×8+3=51,尾×尾十位加“36”的尾數(shù)6,3×2=06,十位加6得66連寫為5166練習題:74×6251×9883×5382×73例3、38+56=2128解:eq\o\ac(○,1)內(nèi)、外項自乘,積相加:8×5+3×6=58eq\o\ac(○,2)先默記“58”,然后:頭×頭加“58”的頭5,3×5+5=20,尾×尾十位加“58”的尾數(shù)8,8×6=48,十位加8,得12820與128連起來時,必須“進1”練習題:47×6974×3889×3556×68附:乘除快速驗算法——棄9余數(shù)驗算法。應用此法,不用動筆,省時省腦,快捷,一目了然。什么叫棄9余數(shù)?將一個數(shù)的各位數(shù)字是9或任意相加得9的數(shù)字就棄掉,剩下的各位數(shù)字相加,相加的得數(shù)比9大,得數(shù)的各位數(shù)字再相加,加到比9小為止。如:32966472先將其中9棄掉,再將其3加6得9棄掉,2加7得9棄掉,余下的6、4、2相加,6+4+2=12,12比9大,再相加,1+2=3.3比9小,這個“3”叫棄9余數(shù)。乘法棄9驗算法:分別目測口算出等號兩邊各數(shù)棄9余數(shù),如兩邊相等為計算正確,不等為錯。例:5349×746=3990354,用棄9余數(shù)驗算是否計算正確。左邊驗算:5349×7463(7+4+6)3×173×(1+7)3×8242+4=6右邊得數(shù):39903543+3=6左邊6=右邊6兩邊相等,計算正確。(實際應用棄9余數(shù)驗算快速法時,全部過程都用目測口算,不用筆算,目心一致,一起呵成,如目測幾個數(shù)字相加之和為9的2——3倍,也可棄掉)除法棄9驗算法:被除數(shù)棄9余數(shù)=除數(shù)棄9余數(shù)×商棄9余數(shù)(方法與乘法相同)試用棄9余數(shù)驗算法檢查以下各題是否計算正確。4252×613=26064764359×861=37520996137×145=8898656388515÷765=83515604152÷365=157423265866÷921=3546(二)速效秒開方一、加一定理:凡是被開方數(shù)的個位數(shù)是1,這個數(shù)大于10的乘方或10的乘方的倍數(shù)時,給10或10的倍數(shù)加上最后一位數(shù)的1,就是這個數(shù)的開方根。例:=1110×10=100<12110+1=11=5150×50=2500<260150+1=51二、減一定理:凡是被開放數(shù)的個位數(shù)字是1,這個數(shù)小于10的乘方或10的乘方的倍數(shù)時,給10或10的倍數(shù)減去最后一位數(shù)的1,就是這個數(shù)的開方根。例:=2930×30=900>84130-1=29=3940×40=1600>152140-1=39=99100×100=10000>9801100-1=99三、加五定理:方數(shù)的個位數(shù)字是5,這個數(shù)大于10的乘方或10的乘方的倍數(shù)時,給10或10的倍數(shù)加上最后一位數(shù)的5,就是這個數(shù)的開方根。例:=2520×20=400<62520+5=25=6560×60=3600<22560+5=65四、加二、八定理:如果被開方數(shù)的個位數(shù)是4,這個數(shù)大于10的乘方或10的乘方倍數(shù)時,相差小的給10或10的倍數(shù)加2;相差大的給0或10的倍數(shù)加8,就是這個數(shù)的開放根。例:=1210×10=100<14410+2=12五、加三、八定理:如果被開放數(shù)的各位數(shù)是9,這個數(shù)大于10的乘方或10的乘方的倍數(shù)時,相差小的給10或10的倍數(shù)加3;相差大的給10或10的倍數(shù)加7,就是這個數(shù)的開方根。例:=1310×10=100<169六、逢六加六定理:如果被開方數(shù)的個位數(shù)是6,這個數(shù)大于10的乘方或10的乘方的倍數(shù)時,給10或10的倍數(shù)加上被開方數(shù)的個數(shù)6,就是這個數(shù)的開方根。例:=1610×10=100<25610+6=16=7670×70=4900<577670+6=76乘除快速驗算法棄9余數(shù)驗算法應用此法,不用動筆,省時省腦。快速,一目了然。1、什么叫棄9余數(shù)?將一個數(shù)的各位數(shù)字是9或任意相加得9的數(shù)就棄掉,剩下的各位數(shù)字相加,相加的得數(shù)比9大,得數(shù)的各位數(shù)字再相加,加到比9小為止。如:32966472—先將其中9棄掉,再將其3加6得9棄掉;2加7得9棄掉,余下的6、4、2相加,6+4+2=12,12比9大,再相加,1+2=3。3比9小,這個‘‘3叫棄9余數(shù)。2、乘法棄9驗算法:分別目測出等號兩邊各數(shù)棄9余數(shù)。如兩邊相等為計算正確,不等為錯。例:5349×746—3(7+4+6)—3×17—3×(1+7)—3×8—24—2+4=6右邊得數(shù):3990354—3+3=6左邊6=右邊6兩邊相等,計算正確。(實際應用棄9數(shù)驗算快速法時,全部過程都用目測口算,不用筆算,目心一致,一氣呵成,如目測幾個數(shù)字相加之和為9的2—3倍,也可棄掉)3、除法棄9驗法:被除數(shù)棄9余數(shù)=除數(shù)棄9余數(shù)×商棄9余數(shù)(方法與乘法相同)試用棄9余數(shù)驗算法檢查以下各題是否計算正確。4252×613=26064764359×861=37520996137×145=8898656388515÷765=83515604152÷365=157423265866÷921=3546多位數(shù)的平方運用完全平方公式進行多位數(shù)平方的運算這樣可以大大提高計算速度和準確程度。兩個數(shù)和的平方公式:(a+b)2=a2+2ab+b2例:2解:原式=(200+3)2=2021+2×200×32=412021兩個數(shù)差的平方公式:(a+b)2=a2-2ab+b22=(160-1)2=1602-2×160×1+12=25600-320+1=252811.十幾乘十幾:口訣:頭乘頭,尾加尾,尾乘尾。例:12×14=?解:1×1=12+4=62×4=812×14=168注:個位相乘,不夠兩位數(shù)要用0占位。2.頭相同,尾互補(尾相加等于10):口訣:一個頭加1后,頭乘頭,尾乘尾。例:23×27=?解:2+1=32×3=63×7=2123×27=621注:個位相乘,不夠兩位數(shù)要用0占位。3.第一個乘數(shù)互補,另一個乘數(shù)數(shù)字相同:口訣:一個頭加1后,頭乘頭,尾乘尾。例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:個位相乘,不夠兩位數(shù)要用0占位。4.幾十一乘幾十一:口訣:頭乘頭,頭加頭,尾乘尾。例:21×41=?解:2×4=82+4=61×1=121×41=8615.11乘任意數(shù):口訣:首尾不動下落,中間之和下拉。例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分別在首尾11×23125=254375注:和滿十要進一。6.十幾乘任意數(shù):口訣:第二乘數(shù)首位不動向下落,第一因數(shù)的個位乘以第二因數(shù)后面每一個數(shù)字,加下一位數(shù),再向下落。例:13×326=?解:13個位是33×3+2=113×2+6=123×6=1813×326=4238注:和滿十要進一。速算方法一、個位數(shù)字的和為十,其他各位數(shù)字相同的兩個數(shù)的速算方法。個位前的數(shù)字加1乘自己的積的末尾添上個位上的數(shù)字的積。如:56×545+1=6,6×5=30,在30的末尾添上個位上的數(shù)4與6的積24,得到3024,這樣56×54=3024。再如:61×69(6+1)×6=42,1×9=9,當個位上的數(shù)相乘的積是一位數(shù)時,仍要占兩位,故在9的前面還應添一個0。故61×69=4209。
二、十位相同,個位數(shù)字和不為10的兩位數(shù)乘兩位數(shù)的速算方法。
用一個數(shù)加上另一個數(shù)的個位上的數(shù),乘以由十位上的數(shù)字組成的整十數(shù),再加上個位上兩個數(shù)的積。例如:53×54=(53+4)×50+3×4=57×50+12=2850+12=2862
三、個位上的數(shù)字相同,十位上的數(shù)字和為10的兩個兩位數(shù)相乘的速算方法,十位相乘加個位,末尾添上個位積。(個位積不足兩位,積前添0補足兩位),例如:24×84十位相乘加個位:2×8+4=20,個位積是:4×4=16,故24×84=2021。練習:35×7517×9748×68
四、各位數(shù)字和為10的兩位數(shù),與各位數(shù)字相同的兩位數(shù)相乘的速算方法。
數(shù)字和為10的兩位數(shù)的十位加1乘以各位相同的兩位數(shù)的十位的積的末尾添上兩個個位數(shù)的積。(個位積不足兩位添0補足兩位)如:46×33數(shù)字和為10的兩位數(shù)的十位加1乘以各位相同的兩位數(shù)的十位的積:(4+1)×3=15,個位數(shù)字的積為:3×6=18,故46×33=1518
五:個位上的數(shù)和為10,十位上的數(shù)相差1的兩個兩位數(shù)相乘的速算方法。大數(shù)十位上的數(shù)乘10后的平方減去大數(shù)個位數(shù)的平方。如:46×34=(4×10)×(4×10)-6×6=1600-36=1564。1.十幾乘十幾:口訣:頭乘頭,尾加尾,尾乘尾。例:12×14=?解:1×1=12+4=62×4=8
12×14=168,注:個位相乘,不夠兩位數(shù)要用0占位。2.頭相同,尾互補(尾相加等于10):口訣:一個頭加1后,頭乘頭,尾乘尾。例:23×27=?
解:2+1=32×3=63×7=21
23×27=621,注:個位相乘,不夠兩位數(shù)要用0占位。3.第一個乘數(shù)互補,另一個乘數(shù)數(shù)字相同:口訣:一個頭加1后,頭乘頭,尾乘尾。例:37×44=?解:3+1=4
4×4=16
7×4=28
37×44=1628
注:個位相乘,不夠兩位數(shù)要用0占位。4.幾十一乘幾十一:口訣:頭乘頭,頭加頭,尾乘尾。例:21×41=?解:2×4=8
2+4=6
1×1=1
21×41=8615.11乘任意數(shù):口訣:首尾不動下落,中間之和下拉。例:11×23125=?解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分別在首尾
11×23125=254375
注:和滿十要進一。6.十幾乘任意數(shù):口訣:第二乘數(shù)首位不動向下落,第一因數(shù)的個位乘以第二因數(shù)后面每一個數(shù)字,加下一位數(shù),再向下落。例:13×326=?解:13個位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
注:和滿十要進一。兩位數(shù)乘法速算口訣一般口訣:首位之積排在前,首尾交叉積之和十倍再加尾數(shù)積。如37x64=1828+(3x4+7x6)x10=23681、同尾互補,首位乘以大一數(shù),尾數(shù)之積后面接。如:23×27=6212、尾同首互補,首位之積加上尾,尾數(shù)之積后面接。87×27=23493、首位差一尾數(shù)互補者,大數(shù)首尾平方減。如76×64=48644、末位皆一者,首位之積接著首位之和,尾數(shù)之積后面接。如:51×21=1071“幾十一乘幾十一”速算特殊:用于個位是1的平方,如21×21=4415、首同尾不同,一數(shù)加上另數(shù)尾,整首倍后加上尾數(shù)積。23×25=5751)首位皆一者,一數(shù)加上另數(shù)尾,十倍加上尾數(shù)積。17×19=323“十幾乘十幾”速算包括了十位是1(即11~19)的平方,如11×11=121“十幾平方”速算2)首位皆二者,一數(shù)加上另數(shù)尾,廿倍加上尾數(shù)積。25×29=725“二十幾乘二十幾”速算3)首位皆五者,廿五接著尾數(shù)積,百位再加尾數(shù)之和半。57×57=3249“五十幾乘五十幾”速算4)首位皆九者,八十加上兩尾數(shù),尾補之積后面接。95×99=9405“九十幾乘九十幾”速算5)首位是四平方者,十五加上尾,尾補平方后面接。46×46=2116“四十幾平方”速算6)首位是五平方者,廿五加上尾,尾數(shù)平方后面接。51×51=2601“五十幾平方”速算6、互補乘以疊數(shù)者,首位加一乘以疊數(shù)頭,尾數(shù)之積后面接。37×99=36637、末位是五平方者,首位加一乘以首,尾數(shù)之積后面接。如65×65=4225“幾十五平方”速算8、某數(shù)乘以一一者,首尾拉開,首尾之和中間站。如34×11=33+44=3749、某數(shù)乘以十五者,原數(shù)加上原數(shù)的一半后后面加個0(原數(shù)是偶數(shù))或小數(shù)點往后移一位。如151×15=2265,246×15=369010、一百零幾乘一百零幾,一數(shù)加上另數(shù)尾,尾數(shù)之積后面接。如108×107=1155611、倆數(shù)差2者,倆數(shù)平均數(shù)平方再減去一。如49x51=50x50-1=249912、幾位數(shù)乘以幾位九者,這個數(shù)減去(位數(shù)前幾位的數(shù)+1)的差作積的前幾位,末位與個位補足幾個0。1)一個數(shù)乘9:這個數(shù)減去(個位前幾位的數(shù)+1)的差作積的前幾位,末位與個位補足104×9=36想:個位前是0,4-(0+1)=3,末位是10-4=6合起來是36783×9=7047想個位前是78,783-(78+1)=704,末位是10-3=7合起來是70472)一個數(shù)乘99:這個數(shù)減去(十位前幾位的數(shù)+1),末兩位湊100:14×99=14-(0+1)=13,100-14=861386158×99=158-(1+1)=156,100-58=42156427357×99=7357-(73+1)=7283100-57=437283433)一個數(shù)乘999:可以依照上面的方法進行推理:這個數(shù)減去(百位前幾位的數(shù)+1),末三位湊100011234×999=11234-(11+1)=11222,末三位是1000-234=766,11222766一、關于9的數(shù)學速算技巧(兩位數(shù)乘法)關于9的口訣:1×9=9
2×9=18
3×9=27
4×9=36,5×9=45
6×9=54
7×9=63
8×9=72,9×9=81上面的口訣小朋友們已經(jīng)會了嗎?小學一年級可能只學了加法,二年級第一學期數(shù)學就要學乘法口訣了。其實很多家長可能在小朋友沒上學時就教會了上面的口訣了。但是小朋友有沒有再細看一下上面的口訣有什么特點呢?從上面的口訣口有沒有看到從1到9任何一個數(shù)和9相乘的積,個位數(shù)和十位數(shù)的和還是等于9。你看上面的:0+9=9;1+8=9;2+7=9;3+6=9;,4+5=9;5+4=9;6+3=9;7+2=9;8+1=9,或許小朋友們會問,發(fā)現(xiàn)這個秘密有什么用呢?我的答復是很有用的。這是鍛煉你們善于觀察、總結(jié)、找出事物規(guī)律的基礎。下面我們再做一些復雜一點的乘法:
18×12=?27×12=?36×12=?45×12=?
54×12=?
63×12=?
72×12=?81×12=?關于兩位數(shù)的乘法,可能要等到3年級才能學到,但小朋友是不是看到了上面的題目中,前面的乘數(shù)都是9的倍數(shù),而且個位和十位的和都等于9。這樣我們能不能找到一種簡便的算法呢?也就是把兩位數(shù)的乘法變成一位數(shù)的乘法呢?我們先把上面這些數(shù)變一變。18=1×10+8;27=2×10+7;36=3×10+6;45=4×10+5;54=5×10+4;63=6×10+3;72=7×10+2;81=8×10+1;我們再把上面的數(shù)變一變好嗎?1×10+8=1×9+1+8=1×9+9=
1×9+9=2×9,當然如果知道口訣你們可以直接把18=2×9,這里主要是為了讓小朋友學會把一個數(shù)拆來拆去的方法。同樣的方法你們可以拆出下面的數(shù),也可以背口訣,你們自己回去練習吧。27=3×9;
36=4×9;45=5×9,54=6×9;
63=7×9;72=8×9,81=9×9,為了找到計算上面問題的方法,我們把上面的式子再變一次。18=2×(10-1);27=3×(10-1);36=4×(10-1)45=5×(10-1);54=6×(10-1);63=7×(10-1),72=8×(10-1);81=9×(10-1),現(xiàn)在我們來算上面的問題:,18×12=2×(10-1)×12,
=2×(12×10-12),
=2×(120-12),括號里的加法小朋友們應該會了吧,那是一年級就會了的。120-12=108;這樣就有了,
18×12=
2×108=216,是不是把一個兩位數(shù)的乘法變成了一位數(shù)的乘法?而且可以通過口算就得出結(jié)果?小朋友們可以自己試一試嗎?我用這種方法教威威算乘法,他只需要我算這一個,后邊的題目就自己會算了。上面我們的計算好象很麻煩,其實現(xiàn)在總結(jié)一下就簡單了。看下一個題目:27×12=3×(10-1)×12=3
×(120-12)
=3×108
=324
36×12=4×(10-1)×12=4×(120-12)
=4×108
=432,小朋友發(fā)現(xiàn)什么規(guī)律沒有?下面的題目好象不用算了,都是把前面的數(shù)加1再乘108,45×12=5×108=540,54×12=6×108=648,63×12=7×108=756
72×12=8×108=864,81×12=9×108=972,我們再看看上面的計算結(jié)果,小朋友發(fā)現(xiàn)什么了嗎?,我們把一個兩位數(shù)乘法變成了一位數(shù)的乘法。其中一個乘數(shù)的個位和十位的和等于9,這樣變化以后的數(shù)中一位數(shù)的那個乘數(shù),都是正好比前面的乘數(shù)大1。而后面的一個兩位數(shù)也有一個特點,就是一個連續(xù)數(shù)(12),1和2是連續(xù)的。能不能找到一種更簡便的計算方法呢?為了找到一種更簡便的算法。我在這里給小朋友引入一個新的名詞——補數(shù)。什么是補數(shù)呢?因為這個名詞很簡單,所以就算是幼兒園的小朋友也很快會明白的。,1+9=10;2+8=10;3+7=10;4+6=10;5+5=10;6+4=10;7+3=10;8+2=10;9+1=10;從上面的幾個加法可見,如果兩個數(shù)的和等于10,那么這兩個數(shù)就互為補數(shù)。,也就是說1和9為補數(shù),2和8為補數(shù),3和7為補數(shù),4和6為補數(shù),5的補數(shù)還是5就不用記了,只要記4個就行了。現(xiàn)在我們再看看上面的計算結(jié)果:,拿一個63×12=7×108=756舉例吧,結(jié)果的最前面一個數(shù)是7(不用管它是什么位),是不是正好等于第一個乘數(shù)(63)中前面的數(shù)加1?
6+1=7,結(jié)果的后兩位怎么算出來的呢?如果拿這個7去乘后面那個乘數(shù)(12)的最后一位的補數(shù)(8)會是什么?7×8=56呵呵,我們現(xiàn)在不用再分解了,只要把第一個乘數(shù)(63)中前面的數(shù)加1就是結(jié)果的最前面的數(shù),再把這個數(shù)乘以后面那個乘數(shù)(12)的最后一位的補數(shù)(8)就得到結(jié)果的后兩位。這樣行嗎?如果行的話,那可真是太快了,真的是速算了。
試一試其他的題:18×12=
第一個乘數(shù)(18)的前面的數(shù)加1:1+1=2——結(jié)果最前面的數(shù)
拿2去乘第二個乘數(shù)(12)的后面的數(shù)(2)的補數(shù)(8):2×8=16
結(jié)果就是216??匆豢瓷厦鎸??27×12=
,結(jié)果最前面的數(shù)——2+1=3
結(jié)果最后面的數(shù)——3×8=24結(jié)果324,36×12=
,結(jié)果最前面的數(shù)——3+1=4
結(jié)果最后面的數(shù)——4×8=32,結(jié)果432,45×12=
,結(jié)果最前面的數(shù)——4+1=5
結(jié)果最后面的數(shù)——5×8=40,結(jié)果540,54×12=
,結(jié)果最前面的數(shù)——5+1=6
結(jié)果最后面的數(shù)——6×8=48,結(jié)果648,63×12=
,結(jié)果最前面的數(shù)——6+1=7
結(jié)果最后面的數(shù)——7×8=56,結(jié)果756,72×12=
,結(jié)果最前面的數(shù)——7+1=8
結(jié)果最后面的數(shù)——8×8=64,結(jié)果864,81×12=
,結(jié)果最前面的數(shù)——8+1=9
結(jié)果最后面的數(shù)——9×8=72,結(jié)果972,計算結(jié)果是不是和上面的方法一樣?
小朋友從結(jié)果中還能看出什么?,是不是計算結(jié)果的三位數(shù)的和還是等于9或者是9的倍數(shù)?
自己算一下看是不是?,看我這篇文章的小朋友,下面我給你們出幾個題,看你們掌握了方法沒有。
54×34=?
18×78=?36×56=?,72×89=?
45×67=?27×45=?81×23=?,通過這個題目,我主要是為了讓小朋友能從一個題目中舉一反三,舉一反十,從中發(fā)現(xiàn)規(guī)律性的東西。這樣不需要做太多的題目就可以快速掌握數(shù)學的加、減、乘、除運算。上面的題目如果再擴展一下,把后面的連續(xù)數(shù)擴大到多位數(shù)。,如:123、234、345、2345、34567、123456、23456789等等,看一看有沒有什么運算規(guī)律,或許你們都能找出快速的計算方法。
如果能的話,象,
63×2345678=
這樣的題目你們用口算就能快速計算出結(jié)果來。
我相信只要不斷總結(jié)科學的方法,個個小孩都是天才!如果不能找到方法,我明天再幫你們尋找速算的方法一、兩首位相同,兩尾數(shù)和是10的兩位數(shù)乘法,(被乘數(shù)首位加1),然后兩首位相乘得一積,兩尾數(shù)相乘再得一積,兩積連起來就是所求之積。例如:726384
×78×67×86,561642217224
注:兩位數(shù)的平方尾數(shù)是5的亦可用此法。如25×25=62545×45=202575×75=562595×95=9025
二、兩位數(shù)相同,兩尾數(shù)和不等于10的兩位數(shù)乘法,首先兩尾數(shù)相乘得一積,然后兩尾數(shù)之和與被乘數(shù)的首位相乘又得一積,最后兩首位相乘(首位數(shù)的平方)再得一積,三積連加起來即為所求之積。例如526173,×53×62×74,275637825402,注:兩位數(shù)的平方尾數(shù)不是5的亦可用此法。如:2266,×22×66,4844356
三、被乘數(shù)首尾相同,乘數(shù)首尾和是10的兩位數(shù)乘法:(乘數(shù)首位加1)然后兩尾數(shù)相乘得一積,兩首位再相乘又得一積,最后兩積相連就是所求之積。如:224488,×19×28×37
41812323256
四、兩首位和是10,兩尾數(shù)相同的兩位數(shù)乘法,首先兩尾數(shù)相乘得一積,兩首位相乘之積再加上一個相同的尾數(shù),又得一積,兩積連來就是所求之積。如:267647,×86×35×67,223626563149
五、兩首位相差是1,兩尾數(shù)和是10的兩位數(shù)乘法:如:38×22=836可分解為(30+8)×(30-8)=30×30-8×8=836,原理:a×a-b×b=(a+b)×(a-b)又如:46×34=156485×75=6375
六、任意兩位數(shù)乘法:(十字相乘法或?qū)蔷€相乘法)首先用十字相乘法得和數(shù)(被乘數(shù)首位與乘數(shù)尾數(shù)相乘之積加上被乘數(shù)尾數(shù)與乘數(shù)首位數(shù)相乘之積)加上兩首位數(shù)相乘與兩尾數(shù)相乘之積。如:43×85=3655
七、三位數(shù)乘法,首位和中間數(shù)相同,尾數(shù)之和等于10的三位數(shù)乘法,首先兩尾數(shù)相乘得一積,(給被乘數(shù)中加1)再兩中位相乘又得一積。然后兩中位數(shù)相加再和被乘數(shù)首位相乘得一積,最后兩首位相乘得一積,四積連起來就是所求之積。112×118=13216,112×118,13216,八、任意數(shù)與11相乘:任意數(shù)與11相乘,在計算的過程中:首尾數(shù)字不變?nèi)缓髢上噜彅?shù)相加,滿十向前進一。如:12468×11=137148,25124×11=276364
九、9、99、999等與任意數(shù)相乘:即首先找出任意數(shù)的補數(shù)(兩個數(shù)之和為10,這兩個數(shù)互為補數(shù)),然后將補數(shù)連在9、99、999等數(shù)末位,最后由所得新數(shù)最高位減去補數(shù),就是所求之積。如:999×999=998001
9999×8997=89961003
高考語文試卷一、語言文字運用(15分)1.在下面一段話的空缺處依次填入詞語,最恰當?shù)囊唤M是(3分)提到桃花源,許多人會聯(lián)想到瓦爾登湖。真實的瓦爾登湖,早已成為▲的觀光勝地,梭羅的小木屋前也經(jīng)常聚集著▲的游客,不復有隱居之地的氣息。然而虛構(gòu)的桃花源一直就在我們的心中,哪怕▲在人潮洶涌的現(xiàn)代城市,也可以獲得心靈的寧靜。A.名聞遐邇聞風而至雜居 B.名噪一時聞風而至棲居C.名噪一時紛至沓來雜居 D.名聞遐邇紛至沓來棲居2.在下面一段文字橫線處填入語句,銜接最恰當?shù)囊豁検牵?分)在南方,芭蕉栽植容易,幾乎四季常青?!劣谠掠辰队啊⒀簹埲~,那更是詩人畫家所向往的了。①它覆蓋面積大,吸收熱量大,葉子濕度大。②古人在走廊或書房邊種上芭蕉,稱為蕉廊、蕉房,饒有詩意。③因此蕉陰之下,是最舒適的小坐閑談之處。④在旁邊配上幾竿竹,點上一塊石,真像一幅元人的小景。⑤在夏日是清涼世界,在秋天是分綠上窗。⑥小雨乍到,點滴醒人;斜陽初過,青翠照眼。A.①③②④⑥⑤ B.①④②③⑥⑤C.②①④③⑤⑥ D.②③④①⑤⑥3.下列詩句與“憫農(nóng)館”里展示的勞動場景,對應全部正確的一項是(3分)①笑歌聲里輕雷動,一夜連枷響到明②種密移疏綠毯平,行間清淺縠紋生③分疇翠浪走云陣,刺水綠針抽稻芽④陰陰阡陌桑麻暗,軋軋房櫳機杼鳴A.①織布②插秧③車水④打稻 B.①織布②車水③插秧④打稻C.①打稻②插秧③車水④織布D.①打稻②車水③插秧④織布4.閱讀下圖,對VR(即“虛擬現(xiàn)實”)技術的解說不正確的是一項是(3分)A.VR技術能提供三個維度的體驗:知覺體驗、行為體驗和精神體驗。 B.現(xiàn)有的VR技術在精神體驗上發(fā)展較快,而在知覺體驗上發(fā)展較慢。C.VR技術的未來方向是知覺體驗、行為體驗和精神體驗的均衡發(fā)展。D.期許的VR體驗將極大提高行為體驗的自由度和精神體驗的滿意度。二、文言文閱讀(20分)閱讀下面的文言文,完成5—8題。臨川湯先生傳鄒迪光先生名顯祖,字義仍,別號若士。豫章之臨川人。生而穎異不群。體玉立,眉目朗秀。見者嘖嘖曰:“湯氏寧馨兒。”五歲能屬對。試之即應,又試之又應,立課數(shù)對無難色。十三歲,就督學公試,補邑弟子員。每試必雄其曹偶。庚午舉于鄉(xiāng),年猶弱冠耳。見者益復嘖嘖曰:“此兒汗血,可致千里,非僅僅蹀躞康莊也者?!倍〕髸嚕旯賹倨渌饺肃⒁晕〖锥粦?。曰:“吾不敢從處女子失身也。”公雖一老孝廉乎,而名益鵲起,海內(nèi)之人益以得望見湯先生為幸。至癸未舉進士,而江陵物故矣。諸所為附薰炙者,骎且澌沒矣。公乃自嘆曰:“假令予以依附起,不以依附敗乎?”而時相蒲州、蘇州兩公,其子皆中進士,皆公同門友也。意欲要之入幕,酬以館選,而公率不應,亦如其所以拒江陵時者。以樂留都山川,乞得南太常博士。至則閉門距躍,絕不懷半刺津上。擲書萬卷,作蠹魚其中。每至丙夜,聲瑯瑯不輟。家人笑之:“老博士何以書為?”曰:“吾讀吾書,不問博士與不博士也?!睂ひ圆┦哭D(zhuǎn)南祠部郎。部雖無所事事,而公奉職毖慎,謂兩政府進私人而塞言者路,抗疏論之,謫粵之徐聞尉。居久之,轉(zhuǎn)遂昌令。又以礦稅事多所蹠戾②,計偕之日,便向吏部堂告歸。雖主爵留之,典選留之,御史大夫留之,而公浩然長往,神武之冠竟不可挽矣。居家,中丞惠文,郡國守令以下,干旄往往充斥巷左,而多不延接。即有時事,非公憤不及齒頰。人勸之請托,曰:“吾不能以面皮口舌博錢刀,為所不知后人計?!敝复采蠒局骸坝写瞬回氁印!惫跁鵁o所不讀,而尤攻《文選》一書,到掩卷而誦,不訛只字。于詩若文無所不比擬,而尤精西京六朝青蓮少陵氏。公又以其緒余為傳奇,若《紫簫》、《還魂》諸劇,實駕元人而上。每譜一曲,令小史當歌,而自為之和,聲振寥廓。識者謂神仙中人云。公與予約游具區(qū)靈巖虎丘諸山川,而不能辦三月糧,逡巡中輟。然不自言貧,人亦不盡知公貧。公非自信其心者耶?予雖為之執(zhí)鞭,所忻慕焉。(選自《湯顯祖詩文集》附錄,有刪節(jié))[注]①江陵公:指時相張居正,其為江陵人。②蹠戾:乖舛,謬誤。5.對下列加點詞的解釋,不正確的一項是(3分)A.每試必雄其曹偶 雄:稱雄B.酬以館選 酬:應酬C.以樂留都山川 樂:喜愛D.為所不知后人計 計:考慮6.下列對原文有關內(nèi)容的概括和分析,不正確的一項是(3分)A.湯顯祖持身端潔,拒絕了時相張居正的利誘,海內(nèi)士人都以結(jié)識他為榮幸。B.因為上書批評當權者徇私情、塞言路,湯顯祖被貶官至廣東,做了徐聞尉。C.湯顯祖辭官回家后,當?shù)毓賳T爭相與他交往,而湯顯祖不為私事開口求人。D.湯顯祖與鄒迪光相約三月份到江南一帶游玩,但沒準備好糧食,因而作罷。7.把文中畫線的句子翻譯成現(xiàn)代漢語。(10分)(1)見者益復嘖嘖曰:“此兒汗血,可致千里,非僅僅蹀躞康莊也者。”(2)然不自言貧,人亦不盡知公貧。公非自信其心者耶?予雖為之執(zhí)鞭,所忻慕焉。8.請簡要概括湯顯祖讀書為文的特點。(4分)三、古詩詞鑒賞(11分)閱讀下面這首唐詩,完成9—10題。學諸進士作精衛(wèi)銜石填海韓愈鳥有償冤者,終年抱寸誠??阢暽绞?,心望海波平。渺渺功難見,區(qū)區(qū)命已輕。人皆譏造次,我獨賞專精。豈計休無日,惟應盡此生。何慚刺客傳,不著報讎名。9.本讀前六句是怎樣運用對比手法勾勒精衛(wèi)形象的?請簡要分析。(6分)10.詩歌后六句表達了作者什么樣的人生態(tài)度?(5分)四、名句名篇默寫(8分)11.補寫出下列名句名篇中的空缺部分。(1)名余曰正則兮,__________________。(屈原《離騷》)(2)__________________,善假于物也。(荀子《勸學》)(3)艱難苦恨繁霜鬢,__________________。(杜甫《登高》)(4)樹林陰翳,__________________,游人去而禽鳥樂也。(歐陽修《醉翁亭記》)(5)__________________,抱明月而長終。(蘇軾《赤壁賦》)(6)浩蕩離愁白日斜,__________________。(龔自珍《己亥雜詩》)(7)道之以德,__________________,有恥且格。(《論語·為政》)(8)蓋文章,經(jīng)國之大業(yè),__________________。(曹丕《典論·論文》)五、現(xiàn)代文閱讀(一)(15分)閱讀下面的作品,完成12~14題。表妹林斤瀾矮凳橋街背后是溪灘,那灘上鋪滿了大的碎石,開闊到叫人覺著是不毛之地。幸好有一條溪,時寬時窄,自由自在穿過石頭灘,帶來水草野樹,帶來生命的歡喜。灘上走過來兩個女人,一前一后,前邊的挎著個竹籃子,簡直有搖籃般大,里面是衣服,很有點分量,一路拱著腰身,支撐著籃底。后邊的女人空著兩手,幾次伸手前來幫忙,前邊的不讓。前邊的女人看來四十往里,后邊的四十以外。前邊的女人不走現(xiàn)成的小路,從石頭灘上斜插過去,走到一個石頭圈起來的水潭邊,把竹籃里的東西一下子控在水里,全身輕松了,透出來一口長氣,望著后邊的。后邊的走不慣石頭灘,盯著腳下,挑著下腳的地方。前邊的說:“這里比屋里清靜,出來走走,說說話……再呢,我要把這些東西洗出來,也就不客氣了?!闭f著就蹲下來,抓過一團按在早鋪平好了的石板上,拿起棒槌捶打起來,真是擦把汗的工夫也節(jié)約了。看起來后邊的是客人,轉(zhuǎn)著身于看這個新鮮的地方,有一句沒一句地應著:“水倒是清的,碧清的……樹也陰涼……石頭要是走慣了,也好走……”“不好走,一到下雨天你走走看,只怕?lián)鷶嗔四_筋。哪有你們城里的馬路好走。”“下雨天也洗衣服?”“一下天呢,二十天呢。就是三十天不洗也不行。嗐,現(xiàn)在一天是一天的事情,真是日日清,月月結(jié)。”客人隨即稱贊:“你真能干,三表妹,沒想到你有這么大本事,天天洗這么多?!敝魅宋⑽⑿χ?,手里捶捶打打,嘴里喜喜歡歡的:事情多著呢。只有晚上吃頓熱的,別的兩頓都是馬馬虎虎。本來還要帶子,現(xiàn)在托給人家。不過洗完衣服,還要踏縫紉機?!笨腿似鋵嵤莻€做活的能手,又做飯又帶孩子又洗衣服這樣的日子都過過。現(xiàn)在做客人看著人家做活,兩只手就不知道放在哪里好。把左手搭在樹杈上,右手背在背后,都要用點力才在那里閑得住。不覺感慨起來:“也難為你,也虧得是你,想想你在家里的時候,比我還自在呢。”主人放下棒槌,兩手一刻不停地揉搓起來:“做做也就習慣了。不過,真的,做慣了空起兩只手來,反倒沒有地方好放。鄉(xiāng)下地方,又沒有什么好玩的,不比城里?!笨腿诵睦镉行┟?,就學點見過世面的派頭,給人家看,也壓壓自己的煩惱:“說的是,”右手更加用力貼在后腰上,“空著兩只手不也沒地方放嘛。城里好玩是好玩,誰還成天地玩呢。城里住長久了,一下鄉(xiāng),空氣真就好,這個新鮮空氣,千金難買。”單夸空氣,好比一個姑娘沒有什么好夸的,單夸她的頭發(fā)。主人插嘴問道:“你那里工資好好吧?”提起工資,客人是有優(yōu)越感的,卻偏偏埋怨道:“餓不死吃不飽就是了,連獎金帶零碎也有七八十塊?!薄澳鞘亲龆嘧錾僬諛幽醚?!”“還吃著大鍋飯?!薄安蛔霾蛔鲆材昧呤??”“鐵飯碗!”客人差不多叫出來,她得意。主人不住手地揉搓,也微微笑著??腿说勾蚱稹氨Р黄健眮恚骸澳愫闷?,要是我,氣也氣死了,做多做少什么也不拿?!薄按蟊斫悖覀円哺愠邪?。我們家庭婦女洗衣店,給旅店洗床單,給工廠洗工作服都洗不過來?!薄澳且粋€月能拿多少呢?”客人問得急點。主人不忙正面回答,笑道:“還要苦干個把月,洗衣機買是買來了,還沒有安裝。等安裝好了,有時間多踏點縫紉機,還可以翻一番呢!”“翻一番是多少?”客人急得不知道轉(zhuǎn)彎。主人停止揉搓,去抓棒槌,這功夫,伸了伸兩個手指頭。客人的腦筋飛快轉(zhuǎn)動:這兩個手指頭當然不會是二十,那么是二百……聽著都嚇得心跳,那頂哪一級干部了?廠長?……回過頭來說道:“還是你們不封頂好,多勞多得嘛?!薄安贿^也不保底呀,不要打算懶懶散散混日子?!笨腿藘刹綋溥^來,蹲下來抓過一堆衣服,主人不讓,客人已經(jīng)揉搓起來了,一邊說:“懶懶散散,兩只手一懶,骨頭都要散……鄉(xiāng)下地方比城里好,空氣第一新鮮,水也碧清……三表妹,等你大侄女中學一畢業(yè),叫她頂替我上班,我就退下來……我到鄉(xiāng)下來享幾年福,你看怎么樣?”(選自《十月》1984年第6期,有刪改)12.下列對小說相關內(nèi)容和藝術特色的賞析,不正確的一項是?A.小說開頭的景物描寫,以自由流動的溪水所帶來的“水草野樹”以級“生命的歡喜”,暗示著農(nóng)村的新氣象。B.小說中“一路拱著腰身”等動作描寫,以及“真是日日清,月月結(jié)”等語言描寫,為下文表妹承包洗衣服這件事做了鋪墊。C.表姐兩次提到鄉(xiāng)下空氣“新鮮”,第一次是出于客套,第二次提到時,表姐對農(nóng)村的好已有了更多體會。D.表妹說的“不要打算懶懶散散混日子”,既表達了自己對生活的態(tài)度,也流露出對自己得不到休息的些許不滿。13.請簡要分析表姐這一人物形象。(6分)14.小說刻畫了兩個人物,作者以“表妹”為題,表達了哪些思想感情?(6分)六、現(xiàn)代文閱讀(二)(12分)閱讀下面的作品,完成15~17題。書家和善書者沈尹默“古之善書者,往往不知筆法。”前人是這樣說過。就寫字的初期來說,這句話,是可以理解的,正同音韻一樣,四聲清濁,是不能為晉宋以前的文人所熟悉的,他們作文,只求口吻調(diào)利而已。筆法不是某一個人憑空創(chuàng)造出來的,而是由寫字的人們逐漸地在寫字的點畫過程中,發(fā)現(xiàn)了它,因而很好地去認真利用它,彼此傳授,成為一定必守的規(guī)律。由此可知,書家和非書家的區(qū)別,在初期是不會有的。寫字發(fā)展到相當興盛之后(尤其到唐代),愛好寫字的人們,一天比一天多了起來,就產(chǎn)生出一批好奇立異、相信自己、不大愿意守法的人,各人使用各人的手法,各人創(chuàng)立各人所愿意的規(guī)則。凡是人為的規(guī)則,它本身與實際必然不能十分相切合,因而它是空洞的、缺少生命力的,因而也就不會具有普遍的、永久的活動性,因而也就不可能使人人都滿意地沿用著它而發(fā)生效力。在這里,自然而然地便有書家和非書家的分別了。有天分、有休養(yǎng)的人們,往往依他自己的手法,也可能寫出一筆可看的字,但是詳細監(jiān)察一下它的點畫,有時與筆法偶然暗合,有時則不然,尤其是不能各種皆工。既是這樣,我們自然無法以書家看待他們,至多只能稱之為善書者。講到書家,那就得精通八法,無論是端楷,或者是行草,他的點畫使轉(zhuǎn),處處皆須合法,不能四號茍且從事,你只要看一看二王、歐、虞、褚、顏諸家遺留下來的成績,就可以明白的。如果拿書和畫來相比著看,書家的書,就好比精通六法的畫師的畫;善書者的書,就好比文人的寫意畫,也有它的風致可愛處,但不能學,只能參觀,以博其趣。其實這也是寫字發(fā)展過程中,不可避免的現(xiàn)象。六朝及唐人寫經(jīng),風格雖不甚高,但是點畫不失法度,它自成為一種經(jīng)生體,比之后代善書者的字體,要嚴謹?shù)枚唷K未奶K東坡,大家都承認他是個書家,但他因天分過高,放任不羈,執(zhí)筆單鉤,已為當時所非議。他自己曾經(jīng)說過:“我書意造本無法?!秉S山谷也嘗說他“往往有意到筆不到處”。就這一點來看,他又是一個道地的不拘拘于法度的善書的典型人物,因而成為后來學書人不須要講究筆法的借口。我們要知道,沒有過人的天分,就想從東坡的意造入手,那是毫無成就可期的。我嘗看見東坡畫的枯樹竹石橫幅,十分外行,但極有天趣,米元章在后邊題了一首詩,頗有相互發(fā)揮之妙。這為文人大開了一個方便之門,也因此把守法度的好習慣破壞無遺。自元以來,書畫都江河日下,到了明清兩代,可看的書畫就越來越少了。一個人一味地從心所欲做事,本來是一事無成的。但是若能做到從心所欲不逾矩(自然不是意造的矩)的程度,那卻是最高的進境。寫字的人,也需要做到這樣。(有刪改)15.根據(jù)原文內(nèi)容,下列說法不正確的一項是(3分)A.善書而不知筆法,這一現(xiàn)象出現(xiàn)在寫字初期,當時筆法還未被充分發(fā)現(xiàn)和利用。B.唐代愛好寫字的人漸多,有一批人好奇立異,自創(chuàng)規(guī)則,經(jīng)生體就是這么產(chǎn)生的。C.二王、歐、虞、褚、顏諸家都是嚴格遵守筆法的典型,他們都屬于書家的行列。D.元明清三代,書畫創(chuàng)作每況愈下,優(yōu)秀作品越來越少,與守法度的習慣被破壞有關。16.下列關于原文內(nèi)容的理解和分析,不正確的一項是(3分)A.在寫字過程中,那些與實際不能完全切合的人為的規(guī)則,不具有普遍的永久的活動性,因而不能稱之為筆法。B.書與畫相似,書家之書正如畫師之畫,謹嚴而不失法度,而善書者之書正如文人的寫意,別有風致。C.蘇東坡天分高,修養(yǎng)深,意造的書畫自有天然之趣,但率先破法,放任不羈,成為后世不守法度的借口。D.一味從心所欲做事是不可取的,但寫字的人如能做到“從心所欲不逾矩”,卻能達到最高的境界。17.書家和善書者的區(qū)別體現(xiàn)在哪些方面?請簡要概括。(6分)七、現(xiàn)代文閱讀(三)(12分)閱讀下面的作品,完成18~20題。天津的開合橋茅以升開合橋就是可開可合的橋,合時橋上走車,開時橋下行船,一開一合,水陸兩便,是一種很經(jīng)濟的橋梁結(jié)構(gòu)。但在我國,這種橋造得很少,直到現(xiàn)在,幾乎全國的開合橋都集中在天津,這不能不算是天津的一種“特產(chǎn)”。南運河上有金華橋,于牙河上有西河橋,海河上有全鋼橋、全湯橋、解放橋。這些都是開合橋。為什么天津有這樣多的開合橋呢?對陸上交通說,過河有橋,當然是再好沒有了。但是河上要行船,有了橋,不但航道受限制,而且船有一定高度,如果橋的高度不變,水漲船高,就可能過不了橋。要保證船能過橋,就要在橋下預留一個最小限度的空間高度,雖在大水時期,仍然能讓最高的船通行無阻。這個最小限度的空間高度,名為“凈空”,要等于河上航行的船的可能最大高度。根據(jù)河流在洪水時期的水位,加上凈空,就定出橋面高出兩岸的高度。如果河水漲落差距特別大,如同天津的河流一樣,那么,這橋面的高度就很驚人了。橋面一高,就要在橋面和地面之間造一座有坡度的“引橋”,引橋不僅增加了橋梁的造價,而且對兩旁的房屋建筑非常不利。這在城市規(guī)劃上成了不易解決的問題。這便是水陸文通之同的一個矛盾。為了陸上交通,就要有正橋過河,而正橋就妨礙了水上交通;為了水上交通,就要有兩岸的引橋,而引橋又妨礙了陸上交通,因為上引橋的車輛有的是要繞道而行的,而引橋兩旁的房屋也是不易相互往來的。在都市里,除非長度有限,影響不大的以外,引橋總是一種障礙物,應當設法消除。開合橋就是消除引橋的一種橋梁結(jié)構(gòu)。天津開河橋多,就是這個原因。開合橋的種類很多,一種是“平旋橋”,把兩孔橋聯(lián)在一起,在兩孔之間的橋墩上,安裝機器,使這兩孔橋圍繞這橋墩在水面上旋轉(zhuǎn)九十度,與橋的原來位置垂直,讓出兩孔航道,上下無阻地好過船。一種“升降橋”,在一孔橋的兩邊橋墩上,各立塔架,安裝機器,使這一孔橋能在塔架間升降,就像電梯一樣,橋孔升高時,下面就可以過船了。一種是“吊旋橋”,把一孔橋分為兩葉,每葉以橋墩支座為中心,用機器轉(zhuǎn)動,使其臨空一頭,逐漸吊起,高離水面,這樣兩葉同時展開,就可讓出中間通道,以便行船。一是“推移橋”把一孔橋用機器沿著水平面拖動,好像拉抽屜是一樣,以使讓出河道行船。開合橋橋面不必高出地面,不用引橋,但開時不能走車,合時不能通船,水陸交通不可同時進行。特別是,橋在開合的過程中,既非全開,又非全合,于是在這一段時間里,水陸都不能通行,這在運輸繁忙的都市,如何能容許呢?因此,在橋梁史上,開合橋雖曾風行一時,但在近數(shù)十年來,就日益減少了。那么,開合橋怎樣才能更好地服務呢?應當說,有幾種改進的可能:一是將橋身減輕,改用新材料,使它容易開動;二是強化橋上的機器,提高效率,大大縮減開橋合橋的時間;三是利用電子儀器,使橋的開合自動化,以期達到每次開橋時間不超過3分鐘,如同十字道口的錯車時間一樣。這些都不是幻想,也許在不久的將來就會實現(xiàn)。(有刪改)18.下列對文中“引橋”的理解,不正確的一項(3分)A.引橋是建造在河的兩岸有一定坡度的橋,其作用是引導車輛駛上正橋。B.在設計引橋時,需要綜合考慮空間高度、橋梁造價、城市規(guī)劃等因素。C.引橋方便了水上交通,但會妨礙陸上交通,因為上引橋的車輛必須繞道。D.在都市里,長度過長、影響太大的引橋是一種障礙物,應該設法消除。19.下列對原文內(nèi)容的概括和分析,不正確的一項是(3分)A.開合橋成為天津的“特產(chǎn)”,與天津河流水位漲落差距特別大密切相關。B.建橋時,正橋橋面高出兩岸的高度等于河流平時的水位加上橋的凈空。C.除平旋橋之外,升降橋、吊旋橋、推移橋這三種都屬于一孔橋。D.改進開合橋的關鍵是盡可能縮減橋的開合時間,提高通行效率。20.請結(jié)合全文,概括開合橋的優(yōu)缺點。(6分)八、作文(70分)21.根據(jù)以下材料,選取角度,自擬題目,寫一篇不少于800字的文章;除詩歌外,文體自選。物各有性,水至淡,鹽得味。水加水還是水,鹽加鹽還是鹽。酸甜苦辣咸,五味調(diào)和,共存相生,百味紛呈。物如此,事猶是,人亦然。語文Ⅱ(附加題)一、閱讀材料,完成22~24題。(10分)題自書杜拾遺詩后徐渭余讀書臥龍山之巔,每于風雨晦暝時,輒呼杜甫。嗟乎,唐以詩賦取士,如李杜者不得舉進士;元以曲取士,而迄今嘖嘖于人口如王實甫者,終不得進士之
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高溫火災下的安全逃生指南
- 2023三年級英語下冊 Module 1 Using my five senses Unit 2 Tastes第2課時說課稿 牛津滬教版(三起)
- 基于2025年度財政預算的政府購買服務合同5篇
- 2025年中國自卸貨車行業(yè)發(fā)展前景及投資戰(zhàn)略規(guī)劃研究報告
- 2023三年級數(shù)學上冊 6 多位數(shù)乘一位數(shù) 2筆算乘法第1課時 不進位乘法配套說課稿 新人教版
- 2025年鈮鐵項目安全風險評價報告
- 2025年綠化苗木種植與生態(tài)環(huán)境治理合同4篇
- 4我們的公共生活(說課稿)-部編版道德與法治五年級下冊
- 2025年度新能源汽車買賣合同之純電動車型交易協(xié)議4篇
- 2025年度個人房屋買賣合同糾紛解決機制協(xié)議4篇
- 火災安全教育觀后感
- 農(nóng)村自建房屋安全協(xié)議書
- 快速康復在骨科護理中的應用
- 國民經(jīng)濟行業(yè)分類和代碼表(電子版)
- ICU患者外出檢查的護理
- 公司收購設備合同范例
- 廣東省潮州市2023-2024學年高二上學期語文期末考試試卷(含答案)
- 2024年光伏發(fā)電項目EPC總包合同
- 子女放棄房產(chǎn)繼承協(xié)議書
- 氧化還原反應配平專項訓練
- 試卷(完整版)python考試復習題庫復習知識點試卷試題
評論
0/150
提交評論