![海南省海南師范大附屬中學(xué)2023年中考數(shù)學(xué)考前最后一卷含解析_第1頁(yè)](http://file4.renrendoc.com/view/2276de0e61f4c8dfae9ed2c5337c5860/2276de0e61f4c8dfae9ed2c5337c58601.gif)
![海南省海南師范大附屬中學(xué)2023年中考數(shù)學(xué)考前最后一卷含解析_第2頁(yè)](http://file4.renrendoc.com/view/2276de0e61f4c8dfae9ed2c5337c5860/2276de0e61f4c8dfae9ed2c5337c58602.gif)
![海南省海南師范大附屬中學(xué)2023年中考數(shù)學(xué)考前最后一卷含解析_第3頁(yè)](http://file4.renrendoc.com/view/2276de0e61f4c8dfae9ed2c5337c5860/2276de0e61f4c8dfae9ed2c5337c58603.gif)
![海南省海南師范大附屬中學(xué)2023年中考數(shù)學(xué)考前最后一卷含解析_第4頁(yè)](http://file4.renrendoc.com/view/2276de0e61f4c8dfae9ed2c5337c5860/2276de0e61f4c8dfae9ed2c5337c58604.gif)
![海南省海南師范大附屬中學(xué)2023年中考數(shù)學(xué)考前最后一卷含解析_第5頁(yè)](http://file4.renrendoc.com/view/2276de0e61f4c8dfae9ed2c5337c5860/2276de0e61f4c8dfae9ed2c5337c58605.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年中考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,線段AB兩個(gè)端點(diǎn)的坐標(biāo)分別為A(2,2)、B(3,1),以原點(diǎn)O為位似中心,在第一象限內(nèi)將線段AB擴(kuò)大為原來的2倍后得到線段CD,則端點(diǎn)C的坐標(biāo)分別為()A.(4,4) B.(3,3) C.(3,1) D.(4,1)2.如圖,a∥b,點(diǎn)B在直線b上,且AB⊥BC,∠1=40°,那么∠2的度數(shù)()A.40° B.50° C.60° D.90°3.拋物線的頂點(diǎn)坐標(biāo)是()A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)4.某車間需加工一批零件,車間20名工人每天加工零件數(shù)如表所示:每天加工零件數(shù)45678人數(shù)36542每天加工零件數(shù)的中位數(shù)和眾數(shù)為()A.6,5 B.6,6 C.5,5 D.5,65.如圖,△ABC的面積為12,AC=3,現(xiàn)將△ABC沿AB所在直線翻折,使點(diǎn)C落在直線AD上的C處,P為直線AD上的一點(diǎn),則線段BP的長(zhǎng)可能是()A.3 B.5 C.6 D.106.一個(gè)幾何體的三視圖如圖所示,該幾何體是A.直三棱柱 B.長(zhǎng)方體 C.圓錐 D.立方體7.如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為30海里的A處,輪船沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東30°方向上的B處,則此時(shí)輪船所在位置B與燈塔P之間的距離為()A.60海里 B.45海里 C.20海里 D.30海里8.一元二次方程2x2﹣3x+1=0的根的情況是()A.有兩個(gè)相等的實(shí)數(shù)根 B.有兩個(gè)不相等的實(shí)數(shù)根C.只有一個(gè)實(shí)數(shù)根 D.沒有實(shí)數(shù)根9.把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜邊AB=4,CD=1.把三角板DCE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)11°得到△D1CE1(如圖2),此時(shí)AB與CD1交于點(diǎn)O,則線段AD1的長(zhǎng)度為()A. B. C. D.410.義安區(qū)某中學(xué)九年級(jí)人數(shù)相等的甲、乙兩班學(xué)生參加同一次數(shù)學(xué)測(cè)試,兩班平均分和方差分別為甲=89分,乙=89分,S甲2=195,S乙2=1.那么成績(jī)較為整齊的是()A.甲班 B.乙班 C.兩班一樣 D.無法確定二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.計(jì)算a10÷a5=_______.12.如圖,已知正方形邊長(zhǎng)為4,以A為圓心,AB為半徑作弧BD,M是BC的中點(diǎn),過點(diǎn)M作EM⊥BC交弧BD于點(diǎn)E,則弧BE的長(zhǎng)為_____.13.如圖,點(diǎn)A為函數(shù)y=(x>0)圖象上一點(diǎn),連接OA,交函數(shù)y=(x>0)的圖象于點(diǎn)B,點(diǎn)C是x軸上一點(diǎn),且AO=AC,則△ABC的面積為______.14.如圖,在△ABC中,∠C=90°,AC=8,BC=6,點(diǎn)D是AB的中點(diǎn),點(diǎn)E在邊AC上,將△ADE沿DE翻折,使點(diǎn)A落在點(diǎn)A′處,當(dāng)A′E⊥AC時(shí),A′B=____.15.有五張背面完全相同的卡片,其正面分別畫有等腰三角形、平行四邊形、矩形、正方形、菱形,將這五張卡片背面朝上洗勻,從中隨機(jī)抽取一張,卡片上的圖形是中心對(duì)稱圖形的概率是_____.16.某航空公司規(guī)定,乘客所攜帶行李的重量x(kg)與運(yùn)費(fèi)y(元)滿足如圖所示的函數(shù)圖象,那么每位乘客最多可免費(fèi)攜帶____kg的行李.三、解答題(共8題,共72分)17.(8分)對(duì)于某一函數(shù)給出如下定義:若存在實(shí)數(shù)p,當(dāng)其自變量的值為p時(shí),其函數(shù)值等于p,則稱p為這個(gè)函數(shù)的不變值.在函數(shù)存在不變值時(shí),該函數(shù)的最大不變值與最小不變值之差q稱為這個(gè)函數(shù)的不變長(zhǎng)度.特別地,當(dāng)函數(shù)只有一個(gè)不變值時(shí),其不變長(zhǎng)度q為零.例如:下圖中的函數(shù)有0,1兩個(gè)不變值,其不變長(zhǎng)度q等于1.(1)分別判斷函數(shù)y=x-1,y=x-1,y=x2有沒有不變值?如果有,直接寫出其不變長(zhǎng)度;(2)函數(shù)y=2x2-bx.①若其不變長(zhǎng)度為零,求b的值;②若1≤b≤3,求其不變長(zhǎng)度q的取值范圍;(3)記函數(shù)y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G2,函數(shù)G的圖象由G1和G2兩部分組成,若其不變長(zhǎng)度q滿足0≤q≤3,則m的取值范圍為.18.(8分)如圖,直角△ABC內(nèi)接于⊙O,點(diǎn)D是直角△ABC斜邊AB上的一點(diǎn),過點(diǎn)D作AB的垂線交AC于E,過點(diǎn)C作∠ECP=∠AED,CP交DE的延長(zhǎng)線于點(diǎn)P,連結(jié)PO交⊙O于點(diǎn)F.(1)求證:PC是⊙O的切線;(2)若PC=3,PF=1,求AB的長(zhǎng).19.(8分)如圖,點(diǎn)O為Rt△ABC斜邊AB上的一點(diǎn),以O(shè)A為半徑的⊙O與BC切于點(diǎn)D,與AC交于點(diǎn)E,連接AD.求證:AD平分∠BAC;若∠BAC=60°,OA=4,求陰影部分的面積(結(jié)果保留π).20.(8分)如圖,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,點(diǎn)M為邊BC上一動(dòng)點(diǎn),聯(lián)結(jié)AM并延長(zhǎng)交射線DC于點(diǎn)F,作∠FAE=45°交射線BC于點(diǎn)E、交邊DCN于點(diǎn)N,聯(lián)結(jié)EF.(1)當(dāng)CM:CB=1:4時(shí),求CF的長(zhǎng).(2)設(shè)CM=x,CE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域.(3)當(dāng)△ABM∽△EFN時(shí),求CM的長(zhǎng).21.(8分)如圖所示,某小組同學(xué)為了測(cè)量對(duì)面樓AB的高度,分工合作,有的組員測(cè)得兩樓間距離為40米,有的組員在教室窗戶處測(cè)得樓頂端A的仰角為30°,底端B的俯角為10°,請(qǐng)你根據(jù)以上數(shù)據(jù),求出樓AB的高度.(精確到0.1米)(參考數(shù)據(jù):sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,≈1.41,≈1.73)22.(10分)為了解某校學(xué)生的課余興趣愛好情況,某調(diào)查小組設(shè)計(jì)了“閱讀”、“打球”、“書法”和“舞蹈”四個(gè)選項(xiàng),用隨機(jī)抽樣的方法調(diào)查了該校部分學(xué)生的課余興趣愛好情況(每個(gè)學(xué)生必須選一項(xiàng)且只能選一項(xiàng)),并根據(jù)調(diào)查結(jié)果繪制了如圖統(tǒng)計(jì)圖:根據(jù)統(tǒng)計(jì)圖所提供的倍息,解答下列問題:(1)本次抽樣調(diào)查中的學(xué)生人數(shù)是多少人;(2)補(bǔ)全條形統(tǒng)計(jì)圖;(3)若該校共有2000名學(xué)生,請(qǐng)根據(jù)統(tǒng)計(jì)結(jié)果估計(jì)該校課余興趣愛好為“打球”的學(xué)生人數(shù);(4)現(xiàn)有愛好舞蹈的兩名男生兩名女生想?yún)⒓游璧干?,但只能選兩名學(xué)生,請(qǐng)你用列表或畫樹狀圖的方法,求出正好選到一男一女的概率.23.(12分)為落實(shí)黨中央“長(zhǎng)江大保護(hù)”新發(fā)展理念,我市持續(xù)推進(jìn)長(zhǎng)江岸線保護(hù),還洞庭湖和長(zhǎng)江水清岸綠的自然生態(tài)原貌.某工程隊(duì)負(fù)責(zé)對(duì)一面積為33000平方米的非法砂石碼頭進(jìn)行拆除,回填土方和復(fù)綠施工,為了縮短工期,該工程隊(duì)增加了人力和設(shè)備,實(shí)際工作效率比原計(jì)劃每天提高了20%,結(jié)果提前11天完成任務(wù),求實(shí)際平均每天施工多少平方米?24.如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與坐標(biāo)軸交于A,B,C三點(diǎn),其中點(diǎn)B的坐標(biāo)為(1,0),點(diǎn)C的坐標(biāo)為(0,4);點(diǎn)D的坐標(biāo)為(0,2),點(diǎn)P為二次函數(shù)圖象上的動(dòng)點(diǎn).(1)求二次函數(shù)的表達(dá)式;(2)當(dāng)點(diǎn)P位于第二象限內(nèi)二次函數(shù)的圖象上時(shí),連接AD,AP,以AD,AP為鄰邊作平行四邊形APED,設(shè)平行四邊形APED的面積為S,求S的最大值;(3)在y軸上是否存在點(diǎn)F,使∠PDF與∠ADO互余?若存在,直接寫出點(diǎn)P的橫坐標(biāo);若不存在,請(qǐng)說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
利用位似圖形的性質(zhì)結(jié)合對(duì)應(yīng)點(diǎn)坐標(biāo)與位似比的關(guān)系得出C點(diǎn)坐標(biāo).【詳解】∵以原點(diǎn)O為位似中心,在第一象限內(nèi)將線段AB擴(kuò)大為原來的2倍后得到線段CD,∴A點(diǎn)與C點(diǎn)是對(duì)應(yīng)點(diǎn),∵C點(diǎn)的對(duì)應(yīng)點(diǎn)A的坐標(biāo)為(2,2),位似比為1:2,∴點(diǎn)C的坐標(biāo)為:(4,4)故選A.【點(diǎn)睛】本題考查了位似變換,正確把握位似比與對(duì)應(yīng)點(diǎn)坐標(biāo)的關(guān)系是解題關(guān)鍵.2、B【解析】分析:根據(jù)“平行線的性質(zhì)、平角的定義和垂直的定義”進(jìn)行分析計(jì)算即可.詳解:∵AB⊥BC,∴∠ABC=90°,∵點(diǎn)B在直線b上,∴∠1+∠ABC+∠3=180°,∴∠3=180°-∠1-90°=50°,∵a∥b,∴∠2=∠3=50°.故選B.點(diǎn)睛:熟悉“平行線的性質(zhì)、平角的定義和垂直的定義”是正確解答本題的關(guān)鍵.3、A【解析】
已知解析式為頂點(diǎn)式,可直接根據(jù)頂點(diǎn)式的坐標(biāo)特點(diǎn),求頂點(diǎn)坐標(biāo).【詳解】解:y=(x-2)2+3是拋物線的頂點(diǎn)式方程,根據(jù)頂點(diǎn)式的坐標(biāo)特點(diǎn)可知,頂點(diǎn)坐標(biāo)為(2,3).故選A.【點(diǎn)睛】此題主要考查了二次函數(shù)的性質(zhì),關(guān)鍵是熟記:頂點(diǎn)式y(tǒng)=a(x-h)2+k,頂點(diǎn)坐標(biāo)是(h,k),對(duì)稱軸是x=h.4、A【解析】
根據(jù)眾數(shù)、中位數(shù)的定義分別進(jìn)行解答即可.【詳解】由表知數(shù)據(jù)5出現(xiàn)了6次,次數(shù)最多,所以眾數(shù)為5;因?yàn)楣灿?0個(gè)數(shù)據(jù),所以中位數(shù)為第10、11個(gè)數(shù)據(jù)的平均數(shù),即中位數(shù)為=6,故選A.【點(diǎn)睛】本題考查了眾數(shù)和中位數(shù)的定義.用到的知識(shí)點(diǎn):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù).將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).5、D【解析】
過B作BN⊥AC于N,BM⊥AD于M,根據(jù)折疊得出∠C′AB=∠CAB,根據(jù)角平分線性質(zhì)得出BN=BM,根據(jù)三角形的面積求出BN,即可得出點(diǎn)B到AD的最短距離是8,得出選項(xiàng)即可.【詳解】解:如圖:
過B作BN⊥AC于N,BM⊥AD于M,
∵將△ABC沿AB所在直線翻折,使點(diǎn)C落在直線AD上的C′處,
∴∠C′AB=∠CAB,
∴BN=BM,
∵△ABC的面積等于12,邊AC=3,
∴×AC×BN=12,
∴BN=8,
∴BM=8,
即點(diǎn)B到AD的最短距離是8,
∴BP的長(zhǎng)不小于8,
即只有選項(xiàng)D符合,
故選D.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是折疊的性質(zhì),三角形的面積,角平分線性質(zhì)的應(yīng)用,解題關(guān)鍵是求出B到AD的最短距離,注意:角平分線上的點(diǎn)到角的兩邊的距離相等.6、A【解析】
根據(jù)三視圖的形狀可判斷幾何體的形狀.【詳解】觀察三視圖可知,該幾何體是直三棱柱.故選A.本題考查了幾何體的三視圖和結(jié)構(gòu)特征,根據(jù)三視圖的形狀可判斷幾何體的形狀是關(guān)鍵.7、D【解析】
根據(jù)題意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的長(zhǎng),求出答案.【詳解】解:由題意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),
則此時(shí)輪船所在位置B處與燈塔P之間的距離為:BP=(海里)故選:D.【點(diǎn)睛】此題主要考查了勾股定理的應(yīng)用以及方向角,正確應(yīng)用勾股定理是解題關(guān)鍵.8、B【解析】試題分析:對(duì)于一元二次方程ax2+bx+c=0(a≠0),當(dāng)△=9、A【解析】試題分析:由題意易知:∠CAB=41°,∠ACD=30°.若旋轉(zhuǎn)角度為11°,則∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,則AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=.故選A.考點(diǎn):1.旋轉(zhuǎn);2.勾股定理.10、B【解析】
根據(jù)方差的意義,方差反映了一組數(shù)據(jù)的波動(dòng)大小,故可由兩人的方差得到結(jié)論.【詳解】∵S甲2>S乙2,∴成績(jī)較為穩(wěn)定的是乙班。故選:B.【點(diǎn)睛】本題考查了方差,解題的關(guān)鍵是掌握方差的概念進(jìn)行解答.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、a1.【解析】試題分析:根據(jù)同底數(shù)冪的除法底數(shù)不變指數(shù)相減,可得答案.原式=a10-1=a1,故答案為a1.考點(diǎn):同底數(shù)冪的除法.12、【解析】
延長(zhǎng)ME交AD于F,由M是BC的中點(diǎn),MF⊥AD,得到F點(diǎn)為AD的中點(diǎn),即AF=AD,則∠AEF=30°,得到∠BAE=30°,再利用弧長(zhǎng)公式計(jì)算出弧BE的長(zhǎng).【詳解】延長(zhǎng)ME交AD于F,如圖,∵M(jìn)是BC的中點(diǎn),MF⊥AD,∴F點(diǎn)為AD的中點(diǎn),即AF=AD.又∵AE=AD,∴AE=2AF,∴∠AEF=30°,∴∠BAE=30°,∴弧BE的長(zhǎng)==.故答案為.【點(diǎn)睛】本題考查了弧長(zhǎng)公式:l=.也考查了在直角三角形中,一直角邊是斜邊的一半,這條直角邊所對(duì)的角為30度.13、6.【解析】
作輔助線,根據(jù)反比例函數(shù)關(guān)系式得:S△AOD=,S△BOE=,再證明△BOE∽△AOD,由性質(zhì)得OB與OA的比,由同高兩三角形面積的比等于對(duì)應(yīng)底邊的比可以得出結(jié)論.【詳解】如圖,分別作BE⊥x軸,AD⊥x軸,垂足分別為點(diǎn)E、D,∴BE∥AD,
∴△BOE∽△AOD,
∴,
∵OA=AC,
∴OD=DC,
∴S△AOD=S△ADC=S△AOC,
∵點(diǎn)A為函數(shù)y=(x>0)的圖象上一點(diǎn),
∴S△AOD=,
同理得:S△BOE=,
∴,
∴,
∴,
∴,
∴,
故答案為6.14、或7【解析】
分兩種情況:①如圖1,作輔助線,構(gòu)建矩形,先由勾股定理求斜邊AB=10,由中點(diǎn)的定義求出AD和BD的長(zhǎng),證明四邊形HFGB是矩形,根據(jù)同角的三角函數(shù)列式可以求DG和DF的長(zhǎng),并由翻折的性質(zhì)得:∠DA'E=∠A,A'D=AD=5,由矩形性質(zhì)和勾股定理可以得出結(jié)論:A'B=;②如圖2,作輔助線,構(gòu)建矩形A'MNF,同理可以求出A'B的長(zhǎng).【詳解】解:分兩種情況:如圖1,過D作DG⊥BC與G,交A'E與F,過B作BH⊥A'E與H,D為AB的中點(diǎn),BD=AB=AD,∠C=,AC=8,BC=6,AB=10,BD=AD=5,sin∠ABC=,DG=4,由翻折得:∠DA'E=∠A,A'D=AD=5,sin∠DA'E=sin∠A=.DF=3,FG=4-3=1,A'E⊥AC,BC⊥AC,A'E//BC,∠HFG+∠DGB=,∠DGB=,∠HFG=,∠EHB=,四邊形HFGB是矩形,BH=FG=1,同理得:A'E=AE=8-1=7,A'H=A'E-EH=7-6=1,在Rt△AHB中,由勾股定理得:A'B=.如圖2,過D作MN//AC,交BC與于N,過A'作A'F//AC,交BC的延長(zhǎng)線于F,延長(zhǎng)A'E交直線DN于M,A'E⊥AC,A'M⊥MN,A'E⊥A'F,∠M=∠MA'F=,∠ACB=,∠F=∠ACB=,四邊形MA'FN県矩形,MN=A'F,FN=A'M,由翻折得:A'D=AD=5,Rt△A'MD中,DM=3,A'M=4,FN=A'M=4,Rt△BDN中,BD=5,DN=4,BN=3,A'F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A'B=;綜上所述,A'B的長(zhǎng)為或.故答案為:或.【點(diǎn)睛】本題主要考查三角形翻轉(zhuǎn)后的性質(zhì),注意不同的情況需分情況討論.15、【解析】分析:直接利用中心對(duì)稱圖形的性質(zhì)結(jié)合概率求法直接得出答案.詳解:∵等腰三角形、平行四邊形、矩形、正方形、菱形中,平行四邊形、矩形、正方形、菱形都是中心對(duì)稱圖形,∴從中隨機(jī)抽取一張,卡片上的圖形是中心對(duì)稱圖形的概率是:.故答案為.點(diǎn)睛:此題主要考查了中心對(duì)稱圖形的性質(zhì)和概率求法,正確把握中心對(duì)稱圖形的定義是解題關(guān)鍵.16、2【解析】
設(shè)乘客所攜帶行李的重量x(kg)與運(yùn)費(fèi)y(元)之間的函數(shù)關(guān)系式為y=kx+b,由待定系數(shù)法求出其解即可.【詳解】解:設(shè)乘客所攜帶行李的重量x(kg)與運(yùn)費(fèi)y(元)之間的函數(shù)關(guān)系式為y=kx+b,由題意,得,解得,,則y=30x-1.
當(dāng)y=0時(shí),
30x-1=0,
解得:x=2.
故答案為:2.【點(diǎn)睛】本題考查了運(yùn)用待定系數(shù)法求一次函數(shù)的解析式的運(yùn)用,由函數(shù)值求自變量的值的運(yùn)用,解答時(shí)求出函數(shù)的解析式是關(guān)鍵.三、解答題(共8題,共72分)17、詳見解析.【解析】試題分析:(1)根據(jù)定義分別求解即可求得答案;(1)①首先由函數(shù)y=1x1﹣bx=x,求得x(1x﹣b﹣1)=2,然后由其不變長(zhǎng)度為零,求得答案;②由①,利用1≤b≤3,可求得其不變長(zhǎng)度q的取值范圍;(3)由記函數(shù)y=x1﹣1x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G1,可得函數(shù)G的圖象關(guān)于x=m對(duì)稱,然后根據(jù)定義分別求得函數(shù)的不變值,再分類討論即可求得答案.試題解析:解:(1)∵函數(shù)y=x﹣1,令y=x,則x﹣1=x,無解;∴函數(shù)y=x﹣1沒有不變值;∵y=x-1=,令y=x,則,解得:x=±1,∴函數(shù)的不變值為±1,q=1﹣(﹣1)=1.∵函數(shù)y=x1,令y=x,則x=x1,解得:x1=2,x1=1,∴函數(shù)y=x1的不變值為:2或1,q=1﹣2=1;(1)①函數(shù)y=1x1﹣bx,令y=x,則x=1x1﹣bx,整理得:x(1x﹣b﹣1)=2.∵q=2,∴x=2且1x﹣b﹣1=2,解得:b=﹣1;②由①知:x(1x﹣b﹣1)=2,∴x=2或1x﹣b﹣1=2,解得:x1=2,x1=.∵1≤b≤3,∴1≤x1≤1,∴1﹣2≤q≤1﹣2,∴1≤q≤1;(3)∵記函數(shù)y=x1﹣1x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G1,∴函數(shù)G的圖象關(guān)于x=m對(duì)稱,∴G:y=.∵當(dāng)x1﹣1x=x時(shí),x3=2,x4=3;當(dāng)(1m﹣x)1﹣1(1m﹣x)=x時(shí),△=1+8m,當(dāng)△<2,即m<﹣時(shí),q=x4﹣x3=3;當(dāng)△≥2,即m≥﹣時(shí),x5=,x6=.①當(dāng)﹣≤m≤2時(shí),x3=2,x4=3,∴x6<2,∴x4﹣x6>3(不符合題意,舍去);②∵當(dāng)x5=x4時(shí),m=1,當(dāng)x6=x3時(shí),m=3;當(dāng)2<m<1時(shí),x3=2(舍去),x4=3,此時(shí)2<x5<x4,x6<2,q=x4﹣x6>3(舍去);當(dāng)1≤m≤3時(shí),x3=2(舍去),x4=3,此時(shí)2<x5<x4,x6>2,q=x4﹣x6<3;當(dāng)m>3時(shí),x3=2(舍去),x4=3(舍去),此時(shí)x5>3,x6<2,q=x5﹣x6>3(舍去);綜上所述:m的取值范圍為1≤m≤3或m<﹣.點(diǎn)睛:本題屬于二次函數(shù)的綜合題,考查了二次函數(shù)、反比例函數(shù)、一次函數(shù)的性質(zhì)以及函數(shù)的對(duì)稱性.注意掌握分類討論思想的應(yīng)用是解答此題的關(guān)鍵.18、(1)證明見解析;(2)1.【解析】試題分析:(1)連接OC,欲證明PC是⊙O的切線,只要證明PC⊥OC即可;(2)延長(zhǎng)PO交圓于G點(diǎn),由切割線定理求出PG即可解決問題.試題解析:(1)如圖,連接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切線;(2)延長(zhǎng)PO交圓于G點(diǎn),∵PF×PG=PC考點(diǎn):切線的判定;切割線定理.19、(1)見解析;(2)【解析】試題分析:(1)連接OD,則由已知易證OD∥AC,從而可得∠CAD=∠ODA,結(jié)合∠ODA=∠OAD,即可得到∠CAD=∠OAD,從而得到AD平分∠BAC;(2)連接OE、DE,由已知易證△AOE是等邊三角形,由此可得∠ADE=∠AOE=30°,由AD平分∠BAC可得∠OAD=30°,從而可得∠ADE=∠OAD,由此可得DE∥AO,從而可得S陰影=S扇形ODE,這樣只需根據(jù)已知條件求出扇形ODE的面積即可.試題解析:(1)連接OD.∵BC是⊙O的切線,D為切點(diǎn),∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC.(2)連接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE為等邊三角形,∴∠AOE=60°,∴∠ADE=30°.又∵,∴∠ADE=∠OAD,∴ED∥AO,∴S△AED=S△OED,∴陰影部分的面積=S扇形ODE=.20、(1)CF=1;(2)y=,0≤x≤1;(3)CM=2﹣.【解析】
(1)如圖1中,作AH⊥BC于H.首先證明四邊形AHCD是正方形,求出BC、MC的長(zhǎng),利用平行線分線段成比例定理即可解決問題;(2)在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,由△EAM∽△EBA,可得,推出AE2=EM?EB,由此構(gòu)建函數(shù)關(guān)系式即可解決問題;(3)如圖2中,作AH⊥BC于H,連接MN,在HB上取一點(diǎn)G,使得HG=DN,連接AG.想辦法證明CM=CN,MN=DN+HM即可解決問題;【詳解】解:(1)如圖1中,作AH⊥BC于H.∵CD⊥BC,AD∥BC,∴∠BCD=∠D=∠AHC=90°,∴四邊形AHCD是矩形,∵AD=DC=1,∴四邊形AHCD是正方形,∴AH=CH=CD=1,∵∠B=45°,∴AH=BH=1,BC=2,∵CM=BC=,CM∥AD,∴=,∴=,∴CF=1.(2)如圖1中,在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,∵∠AEM=∠AEB,∠EAM=∠B,∴△EAM∽△EBA,∴=,∴AE2=EM?EB,∴1+(1+y)2=(x+y)(y+2),∴y=,∵2﹣2x≥0,∴0≤x≤1.(3)如圖2中,作AH⊥BC于H,連接MN,在HB上取一點(diǎn)G,使得HG=DN,連接AG.則△ADN≌△AHG,△MAN≌△MAG,∴MN=MG=HM+GH=HM+DN,∵△ABM∽△EFN,∴∠EFN=∠B=45°,∴CF=CE,∵四邊形AHCD是正方形,∴CH=CD=AH=AD,EH=DF,∠AHE=∠D=90°,∴△AHE≌△ADF,∴∠AEH=∠AFD,∵∠AEH=∠DAN,∠AFD=∠HAM,∴∠HAM=∠DAN,∴△ADN≌△AHM,∴DN=HM,設(shè)DN=HM=x,則MN=2x,CN=CM=x,∴x+x=1,∴x=﹣1,∴CM=2﹣.【點(diǎn)睛】本題考查了正方形的判定與性質(zhì),平行線分線段成比例定理,勾股定理,相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì).熟練運(yùn)用平行線分線段成比例定理是解(1)的關(guān)鍵;證明△EAM∽△EBA是解(2)的關(guān)鍵;綜合運(yùn)用全等三角形的判定與性質(zhì)是解(3)的關(guān)鍵.21、30.3米.【解析】試題分析:過點(diǎn)D作DE⊥AB于點(diǎn)E,在Rt△ADE中,求出AE的長(zhǎng),在Rt△DEB中,求出BE的長(zhǎng)即可得.試題解析:過點(diǎn)D作DE⊥AB于點(diǎn)E,在Rt△ADE中,∠AED=90°,tan∠1=,∠1=30°,∴AE=DE×tan∠1=40×tan30°=40×≈40×1.73×≈23.1在Rt△DEB中,∠DEB=90°,tan∠2=,∠2=10°,∴BE=DE×tan∠2=40×tan10°≈40×0.18=7.2∴AB=AE+BE≈23.1+7.2=30.3米.22、(1)本次抽樣調(diào)查中的學(xué)生人數(shù)為100人;(2)補(bǔ)全條形統(tǒng)計(jì)圖見解析;(3)估計(jì)該校課余興趣愛好為“打球”的學(xué)生人數(shù)為800人;(4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年學(xué)校食堂廚師崗位聘任協(xié)議
- 2025年度辦公樓租賃合同全新版
- 2025年度體育場(chǎng)館清潔工勞動(dòng)合同范本(含設(shè)施清潔與保養(yǎng))
- 2025年度租賃型公寓退房協(xié)議
- 二零二五年度電商企業(yè)客服外包智能服務(wù)系統(tǒng)合作協(xié)議
- 交通監(jiān)控設(shè)施安裝合同書樣本
- 二手房交易合同定金協(xié)議范本
- 二手房按揭貸款購(gòu)房合同
- 二手車輛買賣合同范本
- 個(gè)人股權(quán)轉(zhuǎn)讓合同范本標(biāo)準(zhǔn)
- 2024屆清華大學(xué)強(qiáng)基計(jì)劃數(shù)學(xué)學(xué)科筆試試題(附答案)
- 骨科手術(shù)的術(shù)后飲食和營(yíng)養(yǎng)指導(dǎo)
- 旅游定制師入行培訓(xùn)方案
- 奧數(shù)培訓(xùn)班課件
- 2024年中國(guó)南方航空股份有限公司招聘筆試參考題庫(kù)含答案解析
- 六年級(jí)上冊(cè)數(shù)學(xué)應(yīng)用題100題
- 個(gè)人代賣協(xié)議
- 賞析小說語(yǔ)言(二)
- 【立高食品公司的償債能力現(xiàn)狀及問題分析(論文9000字)】
- 10.《運(yùn)動(dòng)技能學(xué)習(xí)與控制》李強(qiáng)
- 冀教版數(shù)學(xué)七年級(jí)下冊(cè)綜合訓(xùn)練100題含答案
評(píng)論
0/150
提交評(píng)論