版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
專題38專題38幾何最值之胡不歸問題方法技巧方法技巧問題分析從前有個(gè)少年外出求學(xué),某天不幸得知老父親病危的消息,便立即趕路回家.根據(jù)“兩點(diǎn)之間線段最短”,雖然從他此刻位置A到家B之間是一片砂石地,但他義無反顧踏上歸途,當(dāng)趕到家時(shí),老人剛咽了氣,小伙子追悔莫及失聲痛哭.鄰居告訴小伙子說,老人彌留之際不斷念叨著“胡不歸?胡不歸?看到這里很多人都會(huì)有一個(gè)疑問,少年究竟能不能提前到家呢?假設(shè)可以提早到家,那么他該選擇怎樣的一條路線呢?這就是今天要講的“胡不歸”問題.模型展示:如圖,一動(dòng)點(diǎn)P在直線MN外的運(yùn)動(dòng)速度為V1,在直線MN上運(yùn)動(dòng)的速度為V2,且V1<V2,A、B為定點(diǎn),點(diǎn)C在直線MN上,確定點(diǎn)C的位置使的值最?。?,記,即求BC+kAC的最小值.構(gòu)造射線AD使得sin∠DAN=k,CH/AC=k,CH=kAC.將問題轉(zhuǎn)化為求BC+CH最小值,過B點(diǎn)作BH⊥AD交MN于點(diǎn)C,交AD于H點(diǎn),此時(shí)BC+CH取到最小值,即BC+kAC最小.最值解法:在求形如“PA+kPB”的式子的最值問題中,關(guān)鍵是構(gòu)造與kPB相等的線段,將“PA+kPB”型問題轉(zhuǎn)化為“PA+PC”型.題型精講題型精講【例1】如圖,平行四邊形ABCD中,∠DAB=60°,AB=6,BC=2,P為邊CD上的一動(dòng)點(diǎn),則的最小值等于________.【解析】已知∠A=60°,且sin60°=,故延長AD,作PH⊥AD延長線于H點(diǎn),即可得,∴=PB+PH.當(dāng)B、P、H三點(diǎn)共線時(shí),可得PB+PH取到最小值,即BH的長,解直角△ABH即可得BH長.【例2】(2021·重慶中考真題)在等邊中,,,垂足為D,點(diǎn)E為AB邊上一點(diǎn),點(diǎn)F為直線BD上一點(diǎn),連接EF.圖1圖2圖3(1)將線段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)60°得到線段EG,連接FG.①如圖1,當(dāng)點(diǎn)E與點(diǎn)B重合,且GF的延長線過點(diǎn)C時(shí),連接DG,求線段DG的長;②如圖2,點(diǎn)E不與點(diǎn)A,B重合,GF的延長線交BC邊于點(diǎn)H,連接EH,求證:;(2)如圖3,當(dāng)點(diǎn)E為AB中點(diǎn)時(shí),點(diǎn)M為BE中點(diǎn),點(diǎn)N在邊AC上,且,點(diǎn)F從BD中點(diǎn)Q沿射線QD運(yùn)動(dòng),將線段EF繞點(diǎn)E順時(shí)針旋轉(zhuǎn)60°得到線段EP,連接FP,當(dāng)最小時(shí),直接寫出的面積.【答案】(1)①;②見解析;(2)【分析】(1)①連接AG,根據(jù)題意得出△ABC和△GEF均為等邊三角形,從而可證明△GBC≌△GAC,進(jìn)一步求出AD=3,AG=BG=,然后利用勾股定理求解即可;②以點(diǎn)F為圓心,F(xiàn)B的長為半徑畫弧,與BH的延長線交于點(diǎn)K,連接KF,先證明出△BFK是頂角為120°的等腰三角形,然后推出△FEB≌△FHK,從而得出結(jié)論即可;(2)利用“胡不歸”模型構(gòu)造出含有30°角的直角三角形,構(gòu)造出,當(dāng)N、P、J三點(diǎn)共線的時(shí)候滿足條件,然后利用相似三角形的判定與性質(zhì)分別計(jì)算出PN與DN的長度,即可得出結(jié)論.【詳解】(1)解:①如圖所示,連接AG,由題意可知,△ABC和△GEF均為等邊三角形,∴∠GFB=60°,∵BD⊥AC,∴∠FBC=30°,∴∠FCB=30°,∠ACG=30°,∵AC=BC,GC=GC,∴△GBC≌△GAC(SAS),∴∠GAC=∠GBC=90°,AG=BG,∵AB=6,∴AD=3,AG=BG=,∴在Rt△ADG中,,∴;②證明:以點(diǎn)F為圓心,F(xiàn)B的長為半徑畫弧,與BH的延長線交于點(diǎn)K,連接KF,如圖,∵△ABC和△GEF均為等邊三角形,∴∠ABC=60°,∠EFH=120°,∴∠BEF+∠BHF=180°,∵∠BHF+∠KHF=180°,∴∠BEF=∠KHF,由輔助線作法可知,F(xiàn)B=FK,則∠K=∠FBE,∵BD是等邊△ABC的高,∴∠K=∠DBC=∠DBA=30°,∴∠BFK=120°,在△FEB與△FHK中,∴△FEB≌△FHK(AAS),∴BE=KH,∴BE+BH=KH+BH=BK,∵FB=FK,∠BFK=120°,∴BK=BF,即:;(2)如圖1所示,以MP為邊構(gòu)造∠PMJ=30°,∠PJM=90°,則PJ=MP,∴求的最小值,即為求的最小值,如圖2所示,當(dāng)運(yùn)動(dòng)至N、P、J三點(diǎn)共線時(shí),滿足最小,此時(shí),連接EQ,則根據(jù)題意可得EQ∥AD,且EQ=AD,∴∠MEQ=∠A=60°,∠EQF=90°,∵∠PEF=60°,∴∠MEP=∠QEF,由題意,EF=EP,∴△MEP≌△QEF(SAS),∴∠EMP=∠EQF=90°,又∵∠PMJ=30°,∴∠BMJ=60°,∴MJ∥AC,∴∠PMJ=∠DNP=90°,∵∠BDC=90°,∴四邊形ODNJ為矩形,NJ=OD,由題,AD=3,BD=,∵M(jìn)J∥AC,∴△BMO∽△BAD,∴,∴OD=BD=,OM=AD=,設(shè)PJ=x,則MJ=x,OJ=x-,由題意可知,DN=CD=2,∴,解得:,即:PJ=,∴,∴.【例3】已知拋物線過點(diǎn),兩點(diǎn),與y軸交于點(diǎn)C,.(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);(2)過點(diǎn)A作,垂足為M,求證:四邊形ADBM為正方形;(3)點(diǎn)P為拋物線在直線BC下方圖形上的一動(dòng)點(diǎn),當(dāng)面積最大時(shí),求點(diǎn)P的坐標(biāo);(4)若點(diǎn)Q為線段OC上的一動(dòng)點(diǎn),問:是否存在最小值?若存在,求岀這個(gè)最小值;若不存在,請(qǐng)說明理由.【答案】(1)拋物線的表達(dá)式為:,頂點(diǎn);(2)證明見解析;(3)點(diǎn);(4)存在,的最小值為.【詳解】(1)函數(shù)的表達(dá)式為:,即:,解得:,故拋物線的表達(dá)式為:,則頂點(diǎn);(2),,∵A(1,0),B(3,0),∴OB=3,OA=1,∴AB=2,∴,又∵D(2,-1),∴AD=BD=,∴AM=MB=AD=BD,∴四邊形ADBM為菱形,又∵,菱形ADBM為正方形;(3)設(shè)直線BC的解析式為y=mx+n,將點(diǎn)B、C的坐標(biāo)代入得:,解得:,所以直線BC的表達(dá)式為:y=-x+3,過點(diǎn)P作y軸的平行線交BC于點(diǎn)N,設(shè)點(diǎn),則點(diǎn)N,則,,故有最大值,此時(shí),故點(diǎn);(4)存在,理由:如圖,過點(diǎn)C作與y軸夾角為的直線CF交x軸于點(diǎn)F,過點(diǎn)A作,垂足為H,交y軸于點(diǎn)Q,此時(shí),則最小值,在Rt△COF中,∠COF=90°,∠FOC=30°,OC=3,tan∠FCO=,∴OF=,∴F(-,0),利用待定系數(shù)法可求得直線HC的表達(dá)式為:…①,∵∠COF=90°,∠FOC=30°,∴∠CFO=90°-30°=60°,∵∠AHF=90°,∴∠FAH=90°-60°=30°,∴OQ=AO?tan∠FAQ=,∴Q(0,),利用待定系數(shù)法可求得直線AH的表達(dá)式為:…②,聯(lián)立①②并解得:,故點(diǎn),而點(diǎn),則,即的最小值為.提分作業(yè)提分作業(yè)1.如圖,△ABC中,AB=AC=10,tanA=2,BE⊥AC于點(diǎn)E,D是線段BE上的一個(gè)動(dòng)點(diǎn),則的最小值是______.【答案】B【詳解】如圖,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tanA==2,設(shè)AE=a,BE=2a,則有:100=a2+4a2,∴a2=20,∴a=2或-2(舍棄),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三角形兩腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值為4.故選B.2.在平面直角坐標(biāo)系中,將二次函數(shù)的圖象向右平移1個(gè)單位,再向下平移2個(gè)單位,得到如圖所示的拋物線,該拋物線與軸交于點(diǎn)、(點(diǎn)在點(diǎn)的左側(cè)),,經(jīng)過點(diǎn)的一次函數(shù)的圖象與軸正半軸交于點(diǎn),且與拋物線的另一個(gè)交點(diǎn)為,的面積為5.(1)求拋物線和一次函數(shù)的解析式;(2)拋物線上的動(dòng)點(diǎn)在一次函數(shù)的圖象下方,求面積的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo);(3)若點(diǎn)為軸上任意一點(diǎn),在(2)的結(jié)論下,求的最小值.【答案】(1);;(2)的面積最大值是,此時(shí)點(diǎn)坐標(biāo)為;(3)的最小值是3.【詳解】解:(1)將二次函數(shù)的圖象向右平移1個(gè)單位,再向下平移2個(gè)單位,得到的拋物線解析式為,∵,∴點(diǎn)的坐標(biāo)為,代入拋物線的解析式得,,∴,∴拋物線的解析式為,即.令,解得,,∴,∴,∵的面積為5,∴,∴,代入拋物線解析式得,,解得,,∴,設(shè)直線的解析式為,∴,解得:,∴直線的解析式為.(2)過點(diǎn)作軸交于,如圖,設(shè),則,∴,∴,,∴當(dāng)時(shí),的面積有最大值,最大值是,此時(shí)點(diǎn)坐標(biāo)為.(3)作關(guān)于軸的對(duì)稱點(diǎn),連接交軸于點(diǎn),過點(diǎn)作于點(diǎn),交軸于點(diǎn),∵,,∴,,∴,∵,∴,∴,∵、關(guān)于軸對(duì)稱,∴,∴,此時(shí)最小,∵,,∴,∴.∴的最小值是3.3.已知拋物線(為常數(shù),)經(jīng)過點(diǎn),點(diǎn)是軸正半軸上的動(dòng)點(diǎn).(Ⅰ)當(dāng)時(shí),求拋物線的頂點(diǎn)坐標(biāo);(Ⅱ)點(diǎn)在拋物線上,當(dāng),時(shí),求的值;(Ⅲ)點(diǎn)在拋物線上,當(dāng)?shù)淖钚≈禐闀r(shí),求的值.【答案】(Ⅰ);(Ⅱ);(Ⅲ).【詳解】解:(Ⅰ)∵拋物線經(jīng)過點(diǎn),∴.即.當(dāng)時(shí),,∴拋物線的頂點(diǎn)坐標(biāo)為.(Ⅱ)由(Ⅰ)知,拋物線的解析式為.∵點(diǎn)在拋物線上,∴.由,得,,∴點(diǎn)在第四象限,且在拋物線對(duì)稱軸的右側(cè).如圖,過點(diǎn)作軸,垂足為,則點(diǎn).∴,.得.∴在中,.∴.由已知,,∴.∴.(Ⅲ)∵點(diǎn)在拋物線上,∴.可知點(diǎn)在第四象限,且在直線的右側(cè).考慮到,可取點(diǎn),如圖,過點(diǎn)作直線的垂線,垂足為,與軸相交于點(diǎn),有,得,則此時(shí)點(diǎn)滿足題意.過點(diǎn)作軸于點(diǎn),則點(diǎn).在中,可知.∴,.∵點(diǎn),∴.解得.∵,∴.∴.4.如圖,已知拋物線y=(x+2)(x﹣4)(k為常數(shù),且k>0)與x軸從左至右依次交于A,B兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過點(diǎn)B的直線y=-x+b與拋物線的另一交點(diǎn)為D.(1)若點(diǎn)D的橫坐標(biāo)為﹣5,求拋物線的函數(shù)表達(dá)式;(2)若在第一象限內(nèi)的拋物線上有點(diǎn)P,使得以A,B,P為頂點(diǎn)的三角形與△ABC相似,求k的值;(3)在(1)的條件下,設(shè)F為線段BD上一點(diǎn)(不含端點(diǎn)),連接AF,一動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿線段AF以每秒1個(gè)單位的速度運(yùn)動(dòng)到F,再沿線段FD以每秒2個(gè)單位的速度運(yùn)動(dòng)到D后停止,當(dāng)點(diǎn)F的坐標(biāo)是多少時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)過程中用時(shí)最少?【答案】(1);(2)或;(3)當(dāng)點(diǎn)F坐標(biāo)為(﹣2,)時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)過程中用時(shí)最少.【解析】(1)拋物線y=(x+2)(x﹣4),令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B(4,0).∵直線經(jīng)過點(diǎn)B(4,0),∴×4+b=0,解得b=,∴直線BD解析式為:.當(dāng)x=﹣5時(shí),y=,∴D(﹣5,).∵點(diǎn)D(﹣5,)在拋物線y=(x+2)(x﹣4)上,∴(﹣5+2)(﹣5﹣4)=,∴.∴拋物線的函數(shù)表達(dá)式為:(x+2)(x﹣4).即.(2)由拋物線解析式,令x=0,得y=﹣k,∴C(0,﹣k),OC=k.因?yàn)辄c(diǎn)P在第一象限內(nèi)的拋物線上,所以∠ABP為鈍角.因此若兩個(gè)三角形相似,只可能是△ABC∽△APB或△ABC∽△PAB.①若△ABC∽△APB,則有∠BAC=∠PAB,如答圖2﹣1所示.設(shè)P(x,y),過點(diǎn)P作PN⊥x軸于點(diǎn)N,則ON=x,PN=y(tǒng).tan∠BAC=tan∠PAB,即:,∴.∴P(x,x+k),代入拋物線解析式y(tǒng)=(x+2)(x﹣4),得(x+2)(x﹣4)=x+k,整理得:x2﹣6x﹣16=0,解得:x=8或x=﹣2(與點(diǎn)A重合,舍去),∴P(8,5k).∵△ABC∽△APB,∴,即,解得:.②若△ABC∽△PAB,則有∠ABC=∠PAB,如答圖2﹣2所示.設(shè)P(x,y),過點(diǎn)P作PN⊥x軸于點(diǎn)N,則ON=x,PN=y(tǒng).tan∠ABC=tan
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 無障礙電梯智能化技術(shù)應(yīng)用-洞察分析
- 小學(xué)語文教研組線上線下銜接教學(xué)計(jì)劃
- 水廠管網(wǎng)改擴(kuò)建工程施工方案及技術(shù)措施
- 多聯(lián)機(jī)施工計(jì)劃
- 廣西汽車買賣合同
- 經(jīng)營項(xiàng)目轉(zhuǎn)讓協(xié)議書范本
- 青藍(lán)工程師傅計(jì)劃
- 糧食烘干機(jī)行業(yè)標(biāo)準(zhǔn)制定方案
- 2025軟件買賣合同
- 學(xué)校內(nèi)安全定期檢查制度模版(3篇)
- 《涉江采芙蓉》 課件高中語文統(tǒng)編版必修上冊(cè)
- 管道護(hù)理小組工作總結(jié)
- 北京市西城區(qū)2023-2024學(xué)年六年級(jí)上學(xué)期數(shù)學(xué)期末試卷(含答案)
- 幼兒園繪本故事《三只小豬蓋房子》教學(xué)課件全文
- 人臉識(shí)別項(xiàng)目施工方案方案
- 北京市房山區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期末語文試題(解析版)
- 15《八角樓上》說課稿-2024-2025學(xué)年語文二年級(jí)上冊(cè)(統(tǒng)編版)
- 施工工地汛期防洪防汛應(yīng)急預(yù)案(9篇)
- 商業(yè)伙伴與合作伙伴管理制度
- 耳鼻咽喉-頭頸外科:緒論
- 2024年高中語文課內(nèi)文言文復(fù)習(xí)《項(xiàng)脊軒志》課后練習(xí)、探究性閱讀含答案解析翻譯
評(píng)論
0/150
提交評(píng)論