下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
高考數(shù)學(xué)考前必備3——易錯提醒易錯易錯1集合、常用邏輯用語、不等式1.描述法表示集合時,一定要理解好集合的含義——抓住集合的代表元素.如{x|y=lgx}——函數(shù)的定義域;{y|y=lgx}——函數(shù)的值域;{(x,y)|y=lgx}——函數(shù)圖象上的點集.2.集合的元素具有確定性、無序性和互異性,在解決有關(guān)集合的問題時,尤其要注意元素的互異性.3.空集是任何集合的子集.解題時勿漏?的情況.4.判斷命題的真假要先明確命題的構(gòu)成.由命題的真假求某個參數(shù)的取值范圍,還可以從集合的角度來思考,將問題轉(zhuǎn)化為集合間的運(yùn)算.5.解形如ax2+bx+c>0(a≠0)的一元二次不等式時,易忽視對系數(shù)a的討論導(dǎo)致漏解或錯解,要注意分a>0,a<0進(jìn)行討論.6.求解分式不等式時應(yīng)正確進(jìn)行同解變形,不能把eq\f(fx,gx)≤0直接轉(zhuǎn)化為f(x)·g(x)≤0,而忽視g(x)≠0.7.容易忽視使用基本不等式求最值的條件,即“一正、二定、三相等”導(dǎo)致錯解,如求函數(shù)f(x)=eq\r(x2+2)+eq\f(1,\r(x2+2))的最值,就不能利用基本不等式求最值;求解函數(shù)y=x+eq\f(3,x)(x<0)的最值時應(yīng)先轉(zhuǎn)化為正數(shù)再求解.易錯易錯2復(fù)數(shù)、平面向量1.復(fù)數(shù)z為純虛數(shù)的充要條件是a=0且b≠0(z=a+bi,a,b∈R).還要注意巧妙運(yùn)用參數(shù)問題和合理消參的技巧.2.復(fù)數(shù)的運(yùn)算與多項式運(yùn)算類似,要注意利用i2=-1化簡合并同類項.3.若(λ∈(0,+∞)),則點P的軌跡過△ABC的內(nèi)心.4.找向量的夾角時,需把向量平移到同一個起點,共起點容易忽視.易錯易錯3三角函數(shù)、三角恒等變換與解三角形1.利用同角三角函數(shù)的平方關(guān)系式求值時,不要忽視角的范圍,要先判斷函數(shù)值的符號.2.在求三角函數(shù)的值域(或最值)時,不要忽略x的取值范圍.3.求函數(shù)f(x)=Asin(ωx+φ)的單調(diào)區(qū)間時,要注意A與ω的符號,當(dāng)ω<0時,需把ω的符號化為正值后求解.4.三角函數(shù)圖象變換中,注意由y=sinωx的圖象變換得到y(tǒng)=sin(ωx+φ)的圖象時,平移量為,而不是φ.5.在已知兩邊和其中一邊的對角利用正弦定理求解時,要注意檢驗解是否滿足“大邊對大角”,避免增解.易錯易錯4數(shù)列1.已知數(shù)列的前n項和求an,易忽視n=1的情形,直接用Sn-Sn-1表示.作答時,應(yīng)驗證a1是否滿足an=Sn-Sn-1,若是,則an=Sn-Sn-1;否則2.易混淆幾何平均數(shù)與等比中項,正數(shù)a,b的等比中項是±eq\r(ab).3.易忽視等比數(shù)列中公比q≠0導(dǎo)致增解,易忽視等比數(shù)列的奇數(shù)項或偶數(shù)項符號相同造成增解.4.運(yùn)用等比數(shù)列的前n項和公式時,易忘記分類討論.一定分q=1和q≠1兩種情況進(jìn)行討論.5.利用錯位相減法求和時,要注意尋找規(guī)律,不要漏掉第一項和最后一項.易錯易錯5立體幾何與空間向量1.混淆“點A在直線a上”與“直線a在平面α內(nèi)”的數(shù)學(xué)符號關(guān)系,應(yīng)表示為A∈a,a?α.2.易混淆幾何體的表面積與側(cè)面積的區(qū)別,幾何體的表面積是幾何體的側(cè)面積與所有底面面積之和,易漏掉幾何體的底面積;求錐體體積時,易漏掉體積公式中的系數(shù)eq\f(1,3).3.不清楚空間線面平行與垂直關(guān)系中的判定定理和性質(zhì)定理,忽視判定定理和性質(zhì)定理中的條件,導(dǎo)致判斷出錯.如由α⊥β,α∩β=l,m⊥l,易誤得出m⊥β的結(jié)論,就是因為忽視面面垂直的性質(zhì)定理中m?α的限制條件.4.注意圖形的翻折與展開前后變與不變的量以及位置關(guān)系.對照前后圖形,弄清楚變與不變的元素后,再立足于不變的元素的位置關(guān)系與數(shù)量關(guān)系去探求變化后的元素在空間中的位置關(guān)系與數(shù)量關(guān)系.5.幾種角的范圍兩條異面直線所成的角:0°<θ≤90°;直線與平面所成的角:0°≤θ≤90°;平面與平面夾角:0°≤θ≤90°.6.用空間向量求角時易忽視向量的夾角與所求角之間的關(guān)系,如求直線與平面所成的角時,易把直線的方向向量與平面的法向量所成角的余弦值當(dāng)成線面角的余弦值,導(dǎo)致出錯.易錯易錯6概率與統(tǒng)計1.關(guān)于兩個計數(shù)原理應(yīng)用的注意事項分類加法計數(shù)原理和分步乘法計數(shù)原理,都是關(guān)于做一件事的不同方法的種數(shù)的問題,區(qū)別在于:分類加法計數(shù)原理針對“分類”問題,其中各種方法相互獨(dú)立,用其中任何一種方法都可以完成這件事;分步乘法計數(shù)原理針對“分步”問題,各個步驟相互依存,只有各個步驟都完成了才算完成這件事.2.排列、組合問題的求解方法與技巧(1)特殊元素或特殊位置優(yōu)先安排.(2)合理分類與準(zhǔn)確分步.(3)排列、組合混合問題先選后排.(4)相鄰問題捆綁處理.(5)不相鄰問題插空處理.(6)定序問題排除法處理.(7)正難則反,等價條件.3.二項式定理應(yīng)用時的注意事項(1)注意區(qū)別“項的系數(shù)”與“二項式系數(shù)”,審題時要仔細(xì).項的系數(shù)與a,b有關(guān),可正可負(fù),二項式系數(shù)只與n有關(guān),恒為正.(2)賦值法求展開式中的系數(shù)和或部分系數(shù)和,常賦的值為0,±1.4.應(yīng)用互斥事件的概率加法公式時,一定要先確定各事件是否彼此互斥,然后求出各事件分別發(fā)生的概率,再求和.5.正確區(qū)別互斥事件與對立事件的關(guān)系:對立事件是互斥事件,是互斥中的特殊情況,但互斥事件不一定是對立事件,“互斥”是“對立”的必要不充分條件.6.易混淆頻率分布條形圖和頻率分布直方圖,誤把頻率分布直方圖縱軸的幾何意義當(dāng)成頻率,導(dǎo)致樣本數(shù)據(jù)的頻率求錯.7.要注意概率P(A|B)與P(AB)的區(qū)別(1)在P(A|B)中,事件A,B發(fā)生有時間上的差異,B先A后;在P(AB)中,事件A,B同時發(fā)生.(2)樣本空間不同,在P(A|B)中,事件B成為樣本空間;在P(AB)中,樣本空間仍為Ω,因而有P(A|B)≥P(AB).8.(1)易忘判定隨機(jī)變量是否服從二項分布,盲目使用二項分布的均值和方差公式計算致誤.(2)涉及求分布列時,要注意區(qū)分是二項分布還是超幾何分布.易錯易錯7解析幾何1.不能準(zhǔn)確區(qū)分直線傾斜角的取值范圍以及斜率與傾斜角的關(guān)系,導(dǎo)致由斜率的取值范圍確定傾斜角的范圍時出錯.2.易忽視直線方程的幾種形式的限制條件,如根據(jù)直線在兩軸上的截距相等設(shè)方程時,忽視截距為0的情況,直接設(shè)為eq\f(x,a)+eq\f(y,a)=1;再如,過定點P(x0,y0)的直線往往忽視斜率不存在的情況直接設(shè)為y-y0=k(x-x0)等.3.討論兩條直線的位置關(guān)系時,易忽視系數(shù)等于零時的討論導(dǎo)致漏解,如兩條直線垂直時,一條直線的斜率不存在,另一條直線的斜率為0.當(dāng)兩條直線的斜率相等時,兩直線平行或重合,易忽視重合.4.求解兩條平行線之間的距離時,易忽視兩直線系數(shù)不相等,而直接代入公式,導(dǎo)致錯解.5.利用橢圓、雙曲線的定義解題時,要注意兩種曲線的定義形式及其限制條件.如在雙曲線的定義中,有兩點是缺一不可的:其一,絕對值;其二,2a<|F1F2|.如果不滿足第一個條件,動點到兩定點的距離之差為常數(shù),而不是差的絕對值為常數(shù),那么其軌跡只能是雙曲線的一支.6.易混淆橢圓的標(biāo)準(zhǔn)方程與雙曲線的標(biāo)準(zhǔn)方程,尤其是方程中a,b,c三者之間的關(guān)系,導(dǎo)致計算錯誤.7.已知雙曲線的漸近線方程求雙曲線的離心率時,易忽視討論焦點所在坐標(biāo)軸導(dǎo)致漏解.8.直線與圓錐曲線相交的必要條件是它們構(gòu)成的方程組有實數(shù)解,消元后得到的方程中要注意:二次項的系數(shù)是否為零,判別式Δ≥0的限制.尤其是在應(yīng)用根與系數(shù)的關(guān)系解決問題時,必須先有“判別式Δ≥0”;在求交點、弦長、中點、斜率、對稱或存在性問題時都應(yīng)在“Δ>0”下進(jìn)行.易錯易錯8函數(shù)與導(dǎo)數(shù)1.解決函數(shù)問題時要注意函數(shù)的定義域,要樹立定義域優(yōu)先原則.2.解決分段函數(shù)問題時,要注意與解析式對應(yīng)的自變量的取值范圍.3.求函數(shù)單調(diào)區(qū)間時,多個單調(diào)區(qū)間之間不能用符號“∪”和“或”連接,可用“和”連接或用“,”隔開.單調(diào)區(qū)間必須是“區(qū)間”,而不能用集合或不等式代替.4.判斷函數(shù)的奇偶性,要注意定義域必須關(guān)于原點對稱,有時還要對函數(shù)式化簡整理,但必須注意使定義域不受影響.5.準(zhǔn)確理解基本初等函數(shù)的定義和性質(zhì).如函數(shù)y=ax(a>0,a≠1)的單調(diào)性容易忽視對a的取值進(jìn)行討論;對數(shù)函數(shù)y=logax(a>0,a≠1)容易忽視真數(shù)與底數(shù)的限制條件.6.易混淆函數(shù)的零點和函數(shù)圖象與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版保健食品電商平臺數(shù)據(jù)分析與用戶畫像合同2篇
- 二零二五版電影后期特效制作贊助合同3篇
- 二零二五年度建筑節(jié)能玻璃檢測與綠色建筑認(rèn)證合同3篇
- 二零二五年技術(shù)服務(wù)合同服務(wù)內(nèi)容和技術(shù)要求2篇
- 二零二五版存量房買賣合同家庭定制版2篇
- 二零二五版智能公廁建設(shè)與運(yùn)營管理合同3篇
- 二零二五版體育用品促銷員賽事贊助合同3篇
- 二零二五版鐘點工家政服務(wù)合同-含家政員行為規(guī)范3篇
- 二零二五版國際汽車運(yùn)輸與品牌合作推廣合同3篇
- 二零二五版能源節(jié)約型產(chǎn)品采購合同規(guī)范范本2篇
- 銷售禮盒營銷方案
- 領(lǐng)導(dǎo)溝通的藝術(shù)
- 發(fā)生用藥錯誤應(yīng)急預(yù)案
- 南潯至臨安公路(南潯至練市段)公路工程環(huán)境影響報告
- 綠色貸款培訓(xùn)課件
- 大學(xué)生預(yù)征對象登記表(樣表)
- 主管部門審核意見三篇
- 初中數(shù)學(xué)校本教材(完整版)
- 父母教育方式對幼兒社會性發(fā)展影響的研究
- 新課標(biāo)人教版數(shù)學(xué)三年級上冊第八單元《分?jǐn)?shù)的初步認(rèn)識》教材解讀
- (人教版2019)數(shù)學(xué)必修第一冊 第三章 函數(shù)的概念與性質(zhì) 復(fù)習(xí)課件
評論
0/150
提交評論