陜西省安康市第二中學(xué)2023年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第1頁
陜西省安康市第二中學(xué)2023年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第2頁
陜西省安康市第二中學(xué)2023年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第3頁
陜西省安康市第二中學(xué)2023年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第4頁
陜西省安康市第二中學(xué)2023年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.袋中裝有紅球3個、白球2個、黑球1個,從中任取2個,則互斥而不對立的兩個事件是A.至少有一個白球;都是白球 B.至少有一個白球;至少有一個紅球C.至少有一個白球;紅、黑球各一個 D.恰有一個白球;一個白球一個黑球2.函數(shù)的部分圖像如圖所示,則的值為()A.1 B.4 C.6 D.73.已知分別是的內(nèi)角的的對邊,若,則的形狀為()A.鈍角三角形 B.直角三角形 C.銳角三角形 D.等邊三角形4.已知是偶函數(shù),且時.若時,的最大值為,最小值為,則()A.2 B.1 C.3 D.5.若樣本的平均數(shù)為10,其方差為2,則對于樣本的下列結(jié)論正確的是A.平均數(shù)為20,方差為8 B.平均數(shù)為20,方差為10C.平均數(shù)為21,方差為8 D.平均數(shù)為21,方差為106.已知,其中,則()A. B. C. D.7.圓x-12+y-3A.1 B.2 C.2 D.38.某產(chǎn)品的廣告費用(單位:萬元)與銷售額(單位:萬元)的統(tǒng)計數(shù)據(jù)如下表:根據(jù)上表可得回歸方程中的為9.4,據(jù)此模型預(yù)報廣告費用為6萬元時銷售為()A.63.6萬元 B.65.5萬元C.67.7萬元 D.72.0萬元9.已知變量與負(fù)相關(guān),且由觀測數(shù)據(jù)算得樣本平均數(shù),則由該觀測數(shù)據(jù)算得的線性回歸方程可能是A. B.C. D.10.某小組有3名男生和2名女生,從中任選2名同學(xué)去參加演講比賽,事件“至少1名女生”與事件“全是男生”()A.是互斥事件,不是對立事件B.是對立事件,不是互斥事件C.既是互斥事件,也是對立事件D.既不是互斥事件也不是對立事件二、填空題:本大題共6小題,每小題5分,共30分。11.七位評委為某跳水運動員打出的分?jǐn)?shù)的莖葉圖如圖,其中位數(shù)為_______.12.函數(shù)()的值域是__________.13.函數(shù)的圖像可由函數(shù)的圖像至少向右平移________個單位長度得到.14.已知為等差數(shù)列,為其前項和,若,則,則______.15.?dāng)?shù)列中,,以后各項由公式給出,則等于_____.16.一組數(shù)據(jù)2,4,5,,7,9的眾數(shù)是2,則這組數(shù)據(jù)的中位數(shù)是_________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)當(dāng)時,證明不等式:.18.一汽車廠生產(chǎn),,三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號,某月的產(chǎn)量如下表(單位:輛):按類用分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有類轎車10輛.轎車轎車轎車舒適型100150標(biāo)準(zhǔn)型300450600(1)求的值;(2)用分層抽樣的方法在類轎車中抽取一個容量為5的樣本.將該樣本看成一個總體,從中任取2輛,求至少有1輛舒適型轎車的概率;(3)用隨機抽樣的方法從類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2把這8輛轎車的得分看作一個總體,從中任取一個得分?jǐn)?shù),

記這8輛轎車的得分的平均數(shù)為,定義事件,且函數(shù)沒有零點,求事件發(fā)生的概率.19.某科研小組對冬季晝夜溫差大小與某反季節(jié)作物種子發(fā)芽多少之間的關(guān)系進(jìn)行分析,分別記錄了每天晝夜溫差和每100顆種子的發(fā)芽數(shù),其中5天的數(shù)據(jù)如下,該小組的研究方案是:先從這5組數(shù)據(jù)中選取3組求線性回歸方程,再用方程對其余的2組數(shù)據(jù)進(jìn)行檢驗.日期第1天第2天第3天第4天第5天溫度(℃)101113128發(fā)芽數(shù)(顆)2326322616(1)求余下的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;(2)若選取的是第2、3、4天的數(shù)據(jù),求關(guān)于的線性回歸方程;(3)若由線性回歸方程得到的估計數(shù)據(jù)與2組檢驗數(shù)據(jù)的誤差均不超過1顆,則認(rèn)為得到的線性回歸方程是可靠的,請問(2)中所得的線性回歸方程是否可靠?(參考公式;線性回歸方程中系數(shù)計算公式:,,其中、表示樣本的平均值)20.如圖,在直棱柱中,,,,分別是棱,上的點,且平面.(1)證明://;(2)求證:.21.(1)若關(guān)于x的不等式m2x2﹣2mx>﹣x2﹣x﹣1恒成立,求實數(shù)m的取值范圍.(2)解關(guān)于x的不等式(x﹣1)(ax﹣1)>0,其中a<1.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

由題意逐一考查所給的事件是否互斥、對立即可求得最終結(jié)果.【詳解】袋中裝有紅球3個、白球2個、黑球1個,從中任取2個,逐一分析所給的選項:在A中,至少有一個白球和都是白球兩個事件能同時發(fā)生,不是互斥事件,故A不成立.在B中,至少有一個白球和至少有一個紅球兩個事件能同時發(fā)生,不是互斥事件,故B不成立;在C中,至少有一個白球和紅、黑球各一個兩個事件不能同時發(fā)生但能同時不發(fā)生,是互斥而不對立的兩個事件,故C成立;在D中,恰有一個白球和一個白球一個黑球兩個事件能同時發(fā)生,不是互斥事件,故D不成立;本題選擇C選項.【點睛】“互斥事件”與“對立事件”的區(qū)別:對立事件是互斥事件,是互斥中的特殊情況,但互斥事件不一定是對立事件,“互斥”是“對立”的必要不充分條件.2、C【解析】

根據(jù)是零點以及的縱坐標(biāo)值,求解出的坐標(biāo)值,然后進(jìn)行數(shù)量積計算.【詳解】令,且是第一個零點,則;令,是軸右側(cè)第一個周期內(nèi)的點,所以,則;則,,則.選C.【點睛】本題考查正切型函數(shù)以及坐標(biāo)形式下向量數(shù)量積的計算,難度較易.當(dāng)已知,則有.3、A【解析】

由已知結(jié)合正弦定理可得利用三角形的內(nèi)角和及誘導(dǎo)公式可得,整理可得從而有結(jié)合三角形的性質(zhì)可求【詳解】解:是的一個內(nèi)角,,由正弦定理可得,又,,即為鈍角,故選A.【點睛】本題主要考查了正弦定理,三角形的內(nèi)角和及誘導(dǎo)公式,兩角和的正弦公式,屬于基礎(chǔ)試題.4、B【解析】

根據(jù)函數(shù)的對稱性得到原題轉(zhuǎn)化為直接求的最大和最小值即可.【詳解】因為函數(shù)是偶函數(shù),函數(shù)圖像關(guān)于y軸對稱,故得到時,的最大值和最小值,與時的最大值和最小值是相同的,故直接求的最大和最小值即可;根據(jù)對勾函數(shù)的單調(diào)性得到函數(shù)的最小值為,,故最大值為,此時故答案為:B.【點睛】這個題目考查了函數(shù)的奇偶性和單調(diào)性的應(yīng)用,屬于基礎(chǔ)題。對于函數(shù)的奇偶性,主要是體現(xiàn)函數(shù)的對稱性,這樣可以根據(jù)對稱性得到函數(shù)在對稱區(qū)間上的函數(shù)值的關(guān)系,使得問題簡化.5、A【解析】

利用和差積的平均數(shù)和方差公式解答.【詳解】由題得樣本的平均數(shù)為,方差為.故選A【點睛】本題主要考查平均數(shù)和方差的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.6、D【解析】

先根據(jù)同角三角函數(shù)關(guān)系求得,再根據(jù)二倍角正切公式得結(jié)果.【詳解】因為,且,所以,因為,所以,因此,從而,,選D.【點睛】本題考查同角三角函數(shù)關(guān)系以及二倍角正切公式,考查基本分析求解能力,屬基礎(chǔ)題.7、C【解析】

先計算圓心到y(tǒng)軸的距離,再利用勾股定理得到弦長.【詳解】x-12+y-32=2圓心到y(tǒng)軸的距離d=1弦長l=2r故答案選C【點睛】本題考查了圓的弦長公式,意在考查學(xué)生的計算能力.8、B【解析】

試題分析:,回歸直線必過點,即.將其代入可得解得,所以回歸方程為.當(dāng)時,所以預(yù)報廣告費用為6萬元時銷售額為65.5萬元考點:回歸方程9、D【解析】

由于變量與負(fù)相關(guān),得回歸直線的斜率為負(fù)數(shù),再由回歸直線經(jīng)過樣本點的中心,得到可能的回歸直線方程.【詳解】由于變量與負(fù)相關(guān),排除A,B,把代入直線得:成立,所以在直線上,故選D.【點睛】本題考查回歸直線斜率的正負(fù)、回歸直線過樣本點中心,考查基本數(shù)據(jù)處理能力.10、C【解析】至少1名女生的對立事件就是全是男生.因此事件“至少1名女生”與事件“全是男生”既是互斥事件,也是對立事件二、填空題:本大題共6小題,每小題5分,共30分。11、85【解析】

按照莖葉圖,將這組數(shù)據(jù)按照從小到大的順序排列,找出中間的一個數(shù)即可.【詳解】按照莖葉圖,這組數(shù)據(jù)是79,83,84,85,87,92,93.把這組數(shù)據(jù)按照從小到大的順序排列,最中間一個是85.所以中位數(shù)為85.故答案為:85【點睛】本題考查對莖葉圖的認(rèn)識.考查中位數(shù),屬于基礎(chǔ)題.12、【解析】

由,根據(jù)基本不等式即可得出,然后根據(jù)對數(shù)函數(shù)的單調(diào)性即可得出,即求出原函數(shù)的值域.【詳解】解:,當(dāng)且僅當(dāng),時取等號,;原函數(shù)的值域是.故答案為:.【點睛】考查函數(shù)的值域的定義及求法,基本不等式的應(yīng)用,以及對數(shù)函數(shù)的單調(diào)性,增函數(shù)的定義.13、【解析】試題分析:因為,所以函數(shù)的的圖像可由函數(shù)的圖像至少向右平移個單位長度得到.【考點】三角函數(shù)圖像的平移變換、兩角差的正弦公式【誤區(qū)警示】在進(jìn)行三角函數(shù)圖像變換時,提倡“先平移,后伸縮”,但“先伸縮,后平移”也經(jīng)常出現(xiàn)在題目中,所以也必須熟練掌握,無論是哪種變形,切記每一個變換總是對字母而言,即圖像變換要看“變量”變化多少,而不是“角”變化多少.14、【解析】

利用等差中項的性質(zhì)求出的值,再利用等差中項的性質(zhì)求出的值.【詳解】由等差中項的性質(zhì)可得,得,由等差中項的性質(zhì)得,.故答案為:.【點睛】本題考查等差數(shù)列中項的計算,充分利用等差中項的性質(zhì)進(jìn)行計算是解題的關(guān)鍵,考查計算能力,屬于基礎(chǔ)題.15、【解析】

可以利用前項的積與前項的積的關(guān)系,分別求得第三項和第五項,即可求解,得到答案.【詳解】由題意知,數(shù)列中,,且,則當(dāng)時,;當(dāng)時,,則,當(dāng)時,;當(dāng)時,,則,所以.【點睛】本題主要考查了數(shù)列的遞推關(guān)系式的應(yīng)用,其中解答中熟練的應(yīng)用遞推關(guān)系式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.16、【解析】

根據(jù)眾數(shù)的定義求出的值,再根據(jù)中位數(shù)的定義進(jìn)行求解即可.【詳解】因為一組數(shù)據(jù)2,4,5,,7,9的眾數(shù)是2,所以,這一組數(shù)據(jù)從小到大排列為:2,2,4,5,7,9,因此這一組數(shù)據(jù)的中位數(shù)為:.故答案為:【點睛】本題考查了眾數(shù)和中位數(shù)的定義,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】

(1)分和兩種情況討論,利用,可得出數(shù)列的通項公式;(2)由得,從而可得,即可證明出結(jié)論.【詳解】(1),,.①當(dāng)時,數(shù)列是各項均為的常數(shù)列,則;②當(dāng)時,數(shù)列是以為首項,以為公比的等比數(shù)列,,.當(dāng)時,也適合.綜上所述,;(2)由,得,,,,因此,.【點睛】本題考查數(shù)列的通項,考查不等式的證明,考查學(xué)生分析解決問題的能力,屬于中檔題.18、(1)400;(2);(3)【解析】

(1)由分層抽樣按比例可得;(2)把5個樣本編號,用列舉法列出任取2輛的所有基本事件,得出至少有1輛舒適型轎車的基本事件,計數(shù)后可得概率.(3)求出,確定事件所含的個數(shù)后可得概率.【詳解】(1)由題意,解得;(2)C類產(chǎn)品中舒適型和標(biāo)準(zhǔn)型產(chǎn)品數(shù)量比為,因此5人樣品中舒適型抽取了2輛,標(biāo)準(zhǔn)型抽取了3輛,編號為,任取2輛的基本事件有:共10個,其中至少有1輛舒適型轎車的基本事件有共7個,所求概率為.(3)由題意,滿足的有共6個,函數(shù)沒有零點,則,解得,再去掉,還有4個,∴所求概率為.【點睛】本題考查分層抽樣,考查古典概型,解題關(guān)鍵是用列舉法寫出所有的基本事件.19、(1);(2);(3)線性回歸方程是可靠的.【解析】

(1)用列舉法求出基本事件數(shù),計算所求的概率值;(2)由已知數(shù)據(jù)求得與,則線性回歸方程可求;(3)利用回歸方程計算與8時的值,再由已知數(shù)據(jù)作差取絕對值,與1比較大小得結(jié)論.【詳解】解:(1)設(shè)“余下的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)為事件”,從5組數(shù)據(jù)中選取3組數(shù)據(jù),余下的2組數(shù)據(jù)共10種情況:,,,,,,,,,.其中事件的有6種,;(2)由數(shù)據(jù)求得,,且,.代入公式得:,.線性回歸方程為:;(3)當(dāng)時,,,當(dāng)時,,.故得到的線性回歸方程是可靠的.【點睛】本題考查了線性回歸方程的求法與應(yīng)用問題,考查古典概型的概率計算問題,屬于中檔題.20、(1)證明見解析;(2)證明見解析.【解析】

(1)利用線面平行的性質(zhì)定理可得,從而得到.(2)連接,可證平面,從而得到.【詳解】(1)因為平面,平面,平面平面,所以.又在直棱柱中,有,所以.(2)連接,因為棱柱為直棱柱,所以平面,又平面,所以.又因為,平面,平面,,所以平面.又平面,所以.在直棱柱中,有四邊形為平行四邊形.又因為,所以四邊形為菱形,所以.又,平面,平面,所以平面,又平面,所以.【點睛】線線平行的證明,有如下途徑:(1)利用平面幾何的知識,如三角形的中位線、梯形的中位線等;(2)線面平行的性質(zhì)定理;(3)面面平行的性質(zhì)定理;(4)線面垂直的性質(zhì)定理(同垂直一個平面的兩條直線平行).而線線垂直的證明,有如下途徑:(1)利用平面幾何的知識,如勾股定理等;(2)異面直線所成的角為;(3)線面垂直的性質(zhì)定理;21、(1)m;(2)見解析【解析】

(1)利用△<0列不等式求出實數(shù)m的取值范圍;(2)討論0<a<1、a=0和a<0,分別求出對應(yīng)不等式的解集.【詳解】(1)不等式m2x2﹣2mx>﹣x2﹣x﹣1化為(m2+1)x2﹣(2m﹣1)x+1>0,由m2+1>0知,△=(2m﹣1)2﹣4(m2+1)<0,化簡得﹣4m﹣3<0,解得m,所以實數(shù)m的取值范

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論