版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知在中,,那么的值為()A. B. C. D.2.供電部門對某社區(qū)1000位居民2019年4月份人均用電情況進行統(tǒng)計后,按人均用電量分為[0,10),[10,20),[20,30),[40,50]五組,整理得到如下的頻率分布直方圖,則下列說法錯誤的是()A.4月份人均用電量人數(shù)最多的一組有400人B.4月份人均用電量不低于20度的有500人C.4月份人均用電量為25度D.在這1000位居民中任選1位協(xié)助收費,選到的居民用電量在[30,40)一組的概率為13.已知集合,,,則()A. B. C. D.4.南北朝數(shù)學(xué)家祖暅在推導(dǎo)球的體積公式時構(gòu)造了一個中間空心的幾何體,經(jīng)后繼學(xué)者改進后這個中間空心的幾何體其三視圖如圖所示,下列那個值最接近該幾何體的體積()A.8 B.12 C.16 D.245.如圖是函數(shù)一個周期的圖象,則的值等于A. B. C. D.6.已知銳角三角形的邊長分別為1,3,,則的取值范圍是()A. B. C. D.7.給出下列命題:(1)存在實數(shù)使.(2)直線是函數(shù)圖象的一條對稱軸.(3)的值域是.(4)若都是第一象限角,且,則.其中正確命題的題號為()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)8.已知是定義在上不恒為的函數(shù),且對任意,有成立,,令,則有()A.為等差數(shù)列 B.為等比數(shù)列C.為等差數(shù)列 D.為等比數(shù)列9.向正方形ABCD內(nèi)任投一點P,則“的面積大于正方形ABCD面積的”的概率是()A. B. C. D.10.已知四面體中,,分別是,的中點,若,,與所成角的度數(shù)為30°,則與所成角的度數(shù)為()A.90° B.45° C.60° D.30°二、填空題:本大題共6小題,每小題5分,共30分。11.若復(fù)數(shù)滿足(為虛數(shù)單位),則__________.12.已知,則____________________________.13.已知向量(1,2),(x,4),且∥,則_____.14.在中,.以為圓心,2為半徑作圓,線段為該圓的一條直徑,則的最小值為_________.15.已知、的取值如表所示:01342.24.34.86.7從散點圖分析,與線性相關(guān),且,則______.16.設(shè)向量是兩個不共線的向量,若與共線,則_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知.(1)當(dāng)時,解不等式;(2)若,解關(guān)于x的不等式.18.已知點,,均在圓上.(1)求圓的方程;(2)若直線與圓相交于,兩點,求的長;(3)設(shè)過點的直線與圓相交于、兩點,試問:是否存在直線,使得恰好平分的外接圓?若存在,求出直線的方程;若不存在,請說明理由.19.從高三學(xué)生中抽出50名學(xué)生參加數(shù)學(xué)競賽,由成績得到如圖所示的頻率分布直方圖.利用頻率分布直方圖求:(1)這50名學(xué)生成績的眾數(shù)與中位數(shù);(2)這50名學(xué)生的平均成績.(答案精確到0.1)20.等差數(shù)列中,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和.21.已知.(1)當(dāng)時,解不等式;(2)若不等式的解集為,求實數(shù)的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
,不妨設(shè),,則,選A.2、C【解析】
根據(jù)頻率分布直方圖逐一計算分析.【詳解】A:用電量最多的一組有:0.04×10×1000=400人,故正確;B:不低于20度的有:(0.01+0.05)×10×1000=500人,故正確;C:人均用電量:(5×0.01+15×0.04+25×0.03+35×0.01+45×0.01)×10=22,故錯誤;D:用電量在[30,40)的有:0.01×10×1000=100人,所以P=100故選C.【點睛】本題考查利用頻率分布直方圖求解相關(guān)量,難度較易.頻率分布直方圖中平均數(shù)的求法:每一段的組中值×頻率3、C【解析】由題意得,因為,所以,所以,故,故選C.4、C【解析】
由三視圖確定此幾何體的結(jié)構(gòu),圓柱的體積減去同底同高的圓錐的體積即為所求.【詳解】該幾何體是一個圓柱挖掉一個同底同高的圓錐,圓柱底為2,高為2,所求體積為,所以C選項最接近該幾何體的體積.故選:C【點睛】本題考查由三視圖確定幾何體的結(jié)構(gòu)及求其體積,屬于基礎(chǔ)題.5、A【解析】
利用圖象得到振幅,周期,所以,再由圖象關(guān)于成中心對稱,把原式等價于求的值.【詳解】由圖象得:振幅,周期,所以,所以,因為圖象關(guān)于成中心對稱,所以,,所以原式,故選A.【點睛】本題考查三角函數(shù)的周期性、對稱性等性質(zhì),如果算出每個值再相加,會浪費較多時間,且容易出錯,采用對稱性求解,能使問題的求解過程變得更簡潔.6、B【解析】
根據(jù)大邊對大角定理知邊長為所對的角不是最大角,只需對其他兩條邊所對的利用余弦定理,即這兩角的余弦值為正,可求出的取值范圍.【詳解】由題意知,邊長為所對的角不是最大角,則邊長為或所對的角為最大角,只需這兩個角為銳角即可,則這兩個角的余弦值為正數(shù),于此得到,由于,解得,故選C.【點睛】本題考查余弦定理的應(yīng)用,在考查三角形是銳角三角形、直角三角形還是鈍角三角形,一般由最大角來決定,并利用余弦定理結(jié)合余弦值的符號來進行轉(zhuǎn)化,其關(guān)系如下:為銳角;為直角;為鈍角.7、C【解析】
(1)化簡求值域進行判斷;(2)根據(jù)函數(shù)的對稱性可判斷;(3)根據(jù)余弦函數(shù)的圖像性質(zhì)可判斷;(4)利用三角函數(shù)線可進行判斷.【詳解】解:(1),(1)錯誤;(2)是函數(shù)圖象的一個對稱中心,(2)錯誤;(3)根據(jù)余弦函數(shù)的性質(zhì)可得的最大值為,,其值域是,(3)正確;(4)若都是第一象限角,且,利用三角函數(shù)線有,(4)正確.故選.【點睛】本題考查正弦函數(shù)與余弦函數(shù)、正切函數(shù)的性質(zhì),以及三角函數(shù)線定義,著重考查學(xué)生綜合運用三角函數(shù)的性質(zhì)分析問題、解決問題的能力,屬于中檔題.8、C【解析】令,得到得到,.,說明為等差數(shù)列,故C正確,根據(jù)選項,排除A,D.∵.顯然既不是等差也不是等比數(shù)列.故選C.9、C【解析】
由題意,求出滿足題意的點所在區(qū)域的面積,利用面積比求概率.【詳解】由題意,設(shè)正方形的邊長為1,則正方形的面積為1,要使的面積大于正方形面積的,需要到的距離大于,即點所在區(qū)域面積為,由幾何概型得,的面積大于正方形面積的的概率為.故選:C.【點睛】本題考查幾何概型的概率求法,解題的關(guān)鍵是明確概率模型,屬于基礎(chǔ)題.10、A【解析】
取的中點,利用三角形中位線定理,可以得到,與所成角為,運用三角形中位線定理和正弦定理,可以求出的大小,也就能求出與所成角的度數(shù).【詳解】取的中點連接,如下圖所示:因為,分別是,的中點,所以有,因為與所成角的度數(shù)為30°,所以,與所成角的大小等于的度數(shù).在中,,故本題選A.【點睛】本題考查了異面直線所成角的求法,考查了正弦定理,取中點利用三角形中位線定理是解題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】分析:由復(fù)數(shù)的除法運算可得解.詳解:由,得.故答案為:.點睛:本題考查了復(fù)數(shù)的除法運算,屬于基礎(chǔ)題.12、【解析】
分子、分母同除以,將代入化簡即可.【詳解】因為,所以,故答案為.【點睛】本題主要考查同角三角函數(shù)之間的關(guān)系的應(yīng)用,屬于基礎(chǔ)題.同角三角函數(shù)之間的關(guān)系包含平方關(guān)系與商的關(guān)系,平方關(guān)系是正弦與余弦值之間的轉(zhuǎn)換,商的關(guān)系是正余弦與正切之間的轉(zhuǎn)換.13、.【解析】
根據(jù)求得,從而可得,再求得的坐標(biāo),利用向量模的公式,即可求解.【詳解】由題意,向量,則,解得,所以,則,所以.【點睛】本題主要考查了向量平行關(guān)系的應(yīng)用,以及向量的減法和向量的模的計算,其中解答中熟記向量的平行關(guān)系,以及向量的坐標(biāo)運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.14、-10【解析】
向量變形為,化簡得,轉(zhuǎn)化為討論夾角問題求解.【詳解】由題線段為該圓的一條直徑,設(shè)夾角為,可得:,當(dāng)夾角為時取得最小值-10.故答案為:-10【點睛】此題考查求平面向量數(shù)量積的最小值,關(guān)鍵在于根據(jù)平面向量的運算法則進行變形,結(jié)合線性運算化簡求得,此題也可建立直角坐標(biāo)系,三角換元設(shè)坐標(biāo)利用函數(shù)關(guān)系求最值.15、【解析】
根據(jù)數(shù)據(jù)表求解出,代入回歸直線,求得的值.【詳解】根據(jù)表中數(shù)據(jù)得:,又由回歸方程知回歸方程的斜率為截距本題正確結(jié)果:【點睛】本題考查利用回歸直線求實際數(shù)據(jù),關(guān)鍵在于明確回歸直線恒過,從而可構(gòu)造出關(guān)于的方程.16、【解析】試題分析:∵向量,是兩個不共線的向量,不妨以,為基底,則,又∵共線,.考點:平面向量與關(guān)系向量三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2)答案不唯一,具體見解析【解析】
(1)將代入,解對應(yīng)的二次不等式可得答案;
(2)對值進行分類討論,可得不同情況下不等式的解集.【詳解】解:(1)當(dāng)時,有不等式,,∴不等式的解集為或(2)∵不等式又當(dāng)時,有,∴不等式的解集為;當(dāng)時,有,∴不等式的解集為;當(dāng)時,不等式的解集為.【點睛】本題考查的知識點是二次函數(shù)的性質(zhì),解二次不等式,難度中檔.18、(1);(2);(3)存在,和.【解析】
(1)根據(jù)圓心在,的中垂線上,設(shè)圓心的坐標(biāo)為,根據(jù)求出的值,從而可得結(jié)果;(2)利用點到直線的距離公式以及勾股定理可得結(jié)果;(3)首先驗證直線的斜率不存在時符合題意,然后斜率存在時,設(shè)出直線方程,與圓的方程聯(lián)立,利用韋達(dá)定理,根據(jù)列方程求解即可.【詳解】解:(1)由題意可得:圓心在直線上,設(shè)圓心的坐標(biāo)為,則,解得,即圓心,所以半徑,所以圓的方程為;(2)圓心到直線的距離為:,;(3)設(shè),由題意可得:,且的斜率均存在,即,當(dāng)直線的斜率不存在時,,則,滿足,故直線滿足題意,當(dāng)直線的斜率存在時,設(shè)直線的方程為,由,消去得,則,由得,即,即,解得:,所以直線的方程為,綜上所述,存在滿足條件的直線和.【點睛】本題考查直線和圓的位置關(guān)系,注意對于直線要研究其斜率是否存在,另外利用韋達(dá)定理可以達(dá)到設(shè)而不求的目的,本題是中檔題.19、(1)眾數(shù)為75分,中位數(shù)為分;(2)76.2分【解析】
(1)由眾數(shù)的概念及頻率分布直方圖可求得眾數(shù),根據(jù)中位數(shù)的概念可求得中位數(shù);.(2)由平均數(shù)的概念和頻率直方圖可求得平均數(shù).【詳解】(1)由眾數(shù)的概念及頻率分布直方圖可知,這50名學(xué)生成績的眾數(shù)為75分.因為數(shù)學(xué)競賽成績在的頻率為,數(shù)學(xué)競賽成績在的頻率為.所以中位數(shù)為.(2)這50名學(xué)生的平均成績?yōu)?【點睛】本題考查根據(jù)頻率直方圖求得數(shù)字特征,關(guān)鍵在于理解各數(shù)字特征的含義,屬于基礎(chǔ)題.20、(1);(2).【解析】
(1)根據(jù)等差數(shù)列公式得到方程組,計算得到答案.(2)先求出,再利用裂項求和求得.【詳解】(1)等差數(shù)列中,,解得:(2)數(shù)列的前n項和.【點睛】本題考查了數(shù)列的通項公式,裂項求和,意在考查學(xué)生對于數(shù)列
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023勞動者就業(yè)協(xié)議書內(nèi)容七篇
- 2023雙方保密協(xié)議書七篇
- 協(xié)議書范本汽車
- 2023房子裝修雙方協(xié)議書七篇
- 新疆維吾爾自治區(qū)喀什地區(qū)疏勒縣實驗學(xué)校教育集團2023-2024學(xué)年七年級11月月考道德與法治試題(原卷版)-A4
- 2024秋新滬科版物理8年級上冊教學(xué)課件 第6章 熟悉而陌生的力 第3節(jié) 來自地球的力
- 2023年藥品包裝機械項目融資計劃書
- 2023年聚氨酯涂料項目融資計劃書
- 烹飪原料知識習(xí)題+參考答案
- 黑龍江省佳木斯市富錦市2024屆九年級上學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 《高延性混凝土加固技術(shù)規(guī)程》DB64-T1746-2020
- 師德師風(fēng)建設(shè)有內(nèi)容
- 詩經(jīng)導(dǎo)讀省公開課金獎全國賽課一等獎微課獲獎?wù)n件
- MOOC 攝影藝術(shù)創(chuàng)作-中國傳媒大學(xué) 中國大學(xué)慕課答案
- (正式版)SHT 3120-2024 石油化工噴射式混合器技術(shù)規(guī)范
- 智慧樹中國傳統(tǒng)繪畫賞析(廈門理工學(xué)院)章節(jié)測驗答案
- 【音樂】古琴與中國傳統(tǒng)文化
- 【生態(tài)攝影】揭示攝影在記錄生態(tài)與環(huán)境的價值與作用
- 北京市市屬醫(yī)院建筑合理用能指南
- 水產(chǎn)養(yǎng)殖投資計劃書
- 風(fēng)電投資融資模式創(chuàng)新研究
評論
0/150
提交評論