版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若程序框圖如圖所示,則該程序運行后輸出k的值是()A.5 B.6 C.7 D.82.“”是“、、”成等比數(shù)列的()條件A.充分非必要 B.必要非充分 C.充要 D.既非充分又非必要3.設(shè)向量,滿足,,則()A.1 B.2 C.3 D.54.已知的定義域為,若對于,,,,,分別為某個三角形的三邊長,則稱為“三角形函數(shù)”,下例四個函數(shù)為“三角形函數(shù)”的是()A.; B.;C.; D.5.設(shè)為實數(shù),且,則下列不等式成立的是()A. B. C. D.6.函數(shù)的最大值為()A. B. C. D.7.等差數(shù)列中,,則().A.110 B.120 C.130 D.1408.平行四邊形中,M為的中點,若.則=()A. B.2 C. D.9.根據(jù)頻數(shù)分布表,可以估計在這堆蘋果中,質(zhì)量大于130克的蘋果數(shù)約占蘋果總數(shù)的()分組頻數(shù)13462A. B. C. D.10.在明朝程大位《算法統(tǒng)宗》中,有這樣一首歌謠,叫浮屠增級歌:遠看巍巍塔七層,紅光點點倍加增;共燈三百八十一,請問層三幾盞燈.這首古詩描述的浮屠,現(xiàn)稱寶塔.本浮屠增級歌意思是:有一座7層寶塔,每層懸掛的紅燈數(shù)是上一層的2倍,寶塔中共有燈381盞,問這個寶塔第3層燈的盞數(shù)有()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.對任意的θ∈0,π2,不等式112.在平面直角坐標系中,經(jīng)過三點(0,0),(1,1),(2,0)的圓的方程為__________.13.已知向量,,若,則______;若,則______.14.在中,.以為圓心,2為半徑作圓,線段為該圓的一條直徑,則的最小值為_________.15.如圖,在正方體中,點是棱上的一個動點,平面交棱于點.下列命題正確的為_______________.①存在點,使得//平面;②對于任意的點,平面平面;③存在點,使得平面;④對于任意的點,四棱錐的體積均不變.16.齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機選一匹進行一場比賽,則田忌的馬獲勝的概率為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,,,,求的值.18.在中,內(nèi)角的對邊分別為,且.(1)求角;(2)若,,求的值.19.某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此做了四次試驗,得到的數(shù)據(jù)如表所示:零件的個數(shù)個2345加工的時間2.5344.51求出y關(guān)于x的線性回歸方程;2試預(yù)測加工10個零件需要多少時間?20.平面內(nèi)給定三個向量=(3,2),=(-1,2),=(4,1).(1)求滿足的實數(shù)m,n;(2)若,求實數(shù)k;21.已知等差數(shù)列滿足,.(1)求的通項公式;(2)設(shè)等比數(shù)列滿足.若,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】試題分析:第一次循環(huán)運算:;第二次:;第三次:;第四次:;第五次:,這時符合條件輸出,故選A.考點:算法初步.2、B【解析】
利用充分必要條件直接推理即可【詳解】若“、、”成等比數(shù)列,則;成立反之,若“”,如果a=b=G=0則、、”不成等比數(shù)列,故選B.【點睛】本題考查充分必要條件的判定,熟記等比數(shù)列的性質(zhì)是關(guān)鍵,是基礎(chǔ)題3、A【解析】
將等式進行平方,相加即可得到結(jié)論.【詳解】∵||,||,∴分別平方得2?10,2?6,兩式相減得4?10﹣6=4,即?1,故選A.【點睛】本題主要考查向量的基本運算,利用平方進行相加是解決本題的關(guān)鍵,比較基礎(chǔ).4、B【解析】由三角形的三邊關(guān)系,可得“三角形函數(shù)”的最大值小于最小值的二倍,因為單調(diào)遞增,無最大值和最小值,故排除A,,符合“三角形函數(shù)”的條件,即B正確,單調(diào)遞增,最大值為4,最小值為1,故排除C,單調(diào)遞增,最小值為1,最大值為,故排除D.故選B.點睛:本題以新定義為載體考查函數(shù)的單調(diào)性和最值;解決本題的關(guān)鍵在于正確理解“三角形函數(shù)”的含義,正確將問題轉(zhuǎn)化為“判定函數(shù)的最大值和最小值間的關(guān)系”進行處理,充分體現(xiàn)轉(zhuǎn)化思想的應(yīng)用.5、C【解析】
本題首先可根據(jù)判斷出項錯誤,然后令可判斷出項和項錯誤,即可得出結(jié)果?!驹斀狻恳驗?,所以,故錯;當時,,故錯;當時,,故錯,故選C。【點睛】本題考查不等式的基本性質(zhì),主要考查通過不等式性質(zhì)與比較法來比較實數(shù)的大小,可借助取特殊值的方法來進行判斷,是簡單題。6、D【解析】
函數(shù)可以化為,設(shè),由,則,即轉(zhuǎn)化為求二次函數(shù)在上的最大值.【詳解】由設(shè),由,則.即求二次函數(shù)在上的最大值所以當,即時,函數(shù)取得最大值.故選:D【點睛】本題考查的二次型函數(shù)的最值,屬于中檔題.7、B【解析】
直接運用等差數(shù)列的下標關(guān)系即可求出的值.【詳解】因為數(shù)列是等差數(shù)列,所以,因此,故本題選B.【點睛】本題考查了等差數(shù)列下標性質(zhì),考查了數(shù)學(xué)運算能力.8、A【解析】
先求出,再根據(jù)得到解方程組即得解.【詳解】由題意得,又因為,所以,由題意得,所以解得所以,故選A.【點睛】本題主要考查平面向量的運算法則,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.9、C【解析】
根據(jù)頻數(shù)分布表計算出質(zhì)量大于130克的蘋果的頻率,由此得出正確選項.【詳解】根據(jù)頻數(shù)分布表可知,所以質(zhì)量大于克的蘋果數(shù)約占蘋果總數(shù)的.故選:C【點睛】本小題主要考查頻數(shù)分析表的閱讀與應(yīng)用,屬于基礎(chǔ)題.10、C【解析】
先根據(jù)等比數(shù)列的求和公式求出首項,再根據(jù)通項公式求解.【詳解】從第1層到塔頂?shù)?層,每層的燈數(shù)構(gòu)成一個等比數(shù)列,公比為,前7項的和為381,則,得第一層,則第三層,故選【點睛】本題考查等比數(shù)列的應(yīng)用,關(guān)鍵在于理解題意.二、填空題:本大題共6小題,每小題5分,共30分。11、-4,5【解析】1sin2θ+4cos2點睛:在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應(yīng)用,否則會出現(xiàn)錯誤.12、【解析】分析:由題意利用待定系數(shù)法求解圓的方程即可.詳解:設(shè)圓的方程為,圓經(jīng)過三點(0,0),(1,1),(2,0),則:,解得:,則圓的方程為.點睛:求圓的方程,主要有兩種方法:(1)幾何法:具體過程中要用到初中有關(guān)圓的一些常用性質(zhì)和定理.如:①圓心在過切點且與切線垂直的直線上;②圓心在任意弦的中垂線上;③兩圓相切時,切點與兩圓心三點共線.(2)待定系數(shù)法:根據(jù)條件設(shè)出圓的方程,再由題目給出的條件,列出等式,求出相關(guān)量.一般地,與圓心和半徑有關(guān),選擇標準式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數(shù),所以應(yīng)該有三個獨立等式.13、6【解析】
由向量平行與垂直的性質(zhì),列出式子計算即可.【詳解】若,可得,解得;若,則,解得.故答案為:6;.【點睛】本題考查平面向量平行、垂直的性質(zhì),考查平面向量的坐標運算,考查學(xué)生的計算能力,屬于基礎(chǔ)題.14、-10【解析】
向量變形為,化簡得,轉(zhuǎn)化為討論夾角問題求解.【詳解】由題線段為該圓的一條直徑,設(shè)夾角為,可得:,當夾角為時取得最小值-10.故答案為:-10【點睛】此題考查求平面向量數(shù)量積的最小值,關(guān)鍵在于根據(jù)平面向量的運算法則進行變形,結(jié)合線性運算化簡求得,此題也可建立直角坐標系,三角換元設(shè)坐標利用函數(shù)關(guān)系求最值.15、①②④【解析】
根據(jù)線面平行和線面垂直的判定定理,以及面面垂直的判定定理和性質(zhì)分別進行判斷即可.【詳解】①當為棱上的一中點時,此時也為棱上的一個中點,此時//,滿足//平面,故①正確;②連結(jié),則平面,因為平面,所以平面平面,故②正確;③平面,不可能存在點,使得平面,故③錯誤;④四棱錐的體積等于,設(shè)正方體的棱長為1.∵無論、在何點,三角形的面積為為定值,三棱錐的高,保持不變,三角形的面積為為定值,三棱錐的高為,保持不變.∴四棱錐的體積為定值,故④正確.故答案為①②④.【點睛】本題主要考查空間直線和平面平行或垂直的位置關(guān)系的判斷,解答本題的關(guān)鍵正確利用分割法求空間幾何體的體積的方法,綜合性較強,難度較大.16、.【解析】分析:由題意結(jié)合古典概型計算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對齊王的下等馬,田忌的上等馬對齊王的下等馬,田忌的上等馬對齊王的中等馬,結(jié)合古典概型公式可得,田忌的馬獲勝的概率為.點睛:有關(guān)古典概型的概率問題,關(guān)鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時,用列舉法把所有基本事件一一列出時,要做到不重復(fù)、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計數(shù)原理的正確使用.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】
根據(jù)角的范圍結(jié)合條件可求出,的值,然后求出的值,再由二倍角公式可求解.【詳解】由,,得.又,則.由,,得.所以又所以【點睛】本題考查兩角和與差的三角函數(shù)公式和同角三角函數(shù)關(guān)系以及二倍角公式,考察角變換的應(yīng)用,屬于中檔題.18、(1)(2),【解析】
(1)由正弦定理可得,求得,即可解得角;(2)由余弦定理,列出方程,即可求解.【詳解】(1)由題意知,由正弦定理可得,因為,則,所以,即,又由,所以.(2)由(1)知和,,由余弦定理,即,即,解得,所以.【點睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,其中解答中熟記三角形的正弦、余弦定理,準確計算是解答的掛念,著重考查了推理與計算能力,屬于基礎(chǔ)題.19、(1);(2)小時【解析】
(1)由已知數(shù)據(jù)求得與的值,則線性回歸方程可求;(2)在(1)中求得的回歸方程中,取求得值即可.【詳解】(1)由表中數(shù)據(jù)得:,,,,,,.(2)將代入回歸直線方程,(小時).預(yù)測加工10個零件需要小時.【點睛】本題考查了回歸分析,解答此類問題的關(guān)鍵是利用公式計算,計算要細心.20、(1);(2).【解析】
(1)由及已知得,由此列方程組能求出實數(shù);(2)由,可得,由此能求出的值.【詳解】(1)由題意得(3,2)=m(-1,2)+n(4,1),所以,解得;(2)∵a+kc=(3+4k,2+k),2b-a=(-5,2),∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 附件:1.1521項擬繼續(xù)有效行業(yè)標準復(fù)審結(jié)論-表(征求意見稿)
- 石河子大學(xué)《藥物波譜解析》2022-2023學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《食品包裝學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《計算機網(wǎng)絡(luò)基礎(chǔ)》2022-2023學(xué)年期末試卷
- 沈陽理工大學(xué)《弱信號檢測技術(shù)》2021-2022學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《建筑節(jié)能》2023-2024學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《過程控制系統(tǒng)與儀表》2021-2022學(xué)年期末試卷
- 沈陽理工大學(xué)《電鍍工藝》2022-2023學(xué)年期末試卷
- 沈陽理工大學(xué)《環(huán)境工程概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 合同產(chǎn)值申報
- 建筑工程項目管理咨詢招標(范本)
- 三位數(shù)除兩位數(shù)的除法練習(xí)題
- 慢性胃炎的中醫(yī)治療培訓(xùn)課件
- Python程序設(shè)計課件第7章面向?qū)ο蟪绦蛟O(shè)計
- 最新爆破安全規(guī)程
- 主題班會課防盜
- 幼兒園課件《撓撓小怪物》
- 教師教案檢查八大評分標準教案的評分標準
- 政府會計基礎(chǔ)知識講義
- 幼兒園整合式主題活動設(shè)計案例《溫馨家園》
- 荒漠區(qū)生態(tài)治理(麥草沙障、植物固沙)施工方案
評論
0/150
提交評論