版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)且,則下列不等式成立的是()A. B. C. D.2.不等式>0的解集是()A.(-,0)(1,+) B.(-,0)C.(1,+) D.(0,1)3.已知是圓上的三點,()A. B. C. D.4.已知向量,的夾角為,且,,則與的夾角等于A. B. C. D.5.一支田徑隊有男運(yùn)動員560人,女運(yùn)動員420人,為了解運(yùn)動員的健康情況,從男運(yùn)動員中任意抽取16人,從女生中任意抽取12人進(jìn)行調(diào)查.這種抽樣方法是()A.簡單隨機(jī)抽樣法 B.抽簽法C.隨機(jī)數(shù)表法 D.分層抽樣法6.已知正四面體ABCD中,E是AB的中點,則異面直線CE與BD所成角的余弦值為()A. B. C. D.7.若、為異面直線,直線,則與的位置關(guān)系是()A.相交 B.異面 C.平行 D.異面或相交8.一游客在處望見在正北方向有一塔,在北偏西方向的處有一寺廟,此游客騎車向西行后到達(dá)處,這時塔和寺廟分別在北偏東和北偏西,則塔與寺廟的距離為()A. B. C. D.9.某班現(xiàn)有60名學(xué)生,隨機(jī)編號為0,1,2,…,59.依編號順序平均分成10組,組號依次為1,2,3,…,10.現(xiàn)用系統(tǒng)抽樣的方法抽取一個容量為10的樣本,若在第1組中隨機(jī)抽取的號碼為5,則在第7組中隨機(jī)抽取的號碼為()A.41 B.42 C.43 D.4410.在正方體中,異面直線與所成的角為()A.30° B.45° C.60° D.90°二、填空題:本大題共6小題,每小題5分,共30分。11.若直線:與直線的交點位于第一象限,則直線的傾斜角的取值范圍是___________.12.若,則=.13.已知數(shù)列的前項和為,,,則__________.14.的值為___________.15.若函數(shù)有兩個不同的零點,則實數(shù)的取值范圍是______.16.抽樣調(diào)查某地區(qū)名教師的年齡和學(xué)歷狀況,情況如下餅圖:則估計該地區(qū)歲以下具有研究生學(xué)歷的教師百分比為_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足,,.(1)求證數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;(2)設(shè),數(shù)列的前項和,求證:18.現(xiàn)需要設(shè)計一個倉庫,它由上下兩部分組成,上部分的形狀是正四棱錐,下部分的形狀是正四棱柱(如圖所示),并要求正四棱柱的高是正四棱錐的高的4倍.(1)若則倉庫的容積是多少?(2)若正四棱錐的側(cè)棱長為,則當(dāng)為多少時,倉庫的容積最大?19.已知向量且,(1)求向量與的夾角;(2)求的值.20.求函數(shù)的單調(diào)遞增區(qū)間.21.在平面直角坐標(biāo)系中,已知射線與射線,過點作直線l分別交兩射線于點A、B(不同于原點O).(1)當(dāng)取得最小值時,直線l的方程;(2)求的最小值;
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】項,由得到,則,故項正確;項,當(dāng)時,該不等式不成立,故項錯誤;項,當(dāng),時,,即不等式不成立,故項錯誤;項,當(dāng),時,,即不等式不成立,故項錯誤.綜上所述,故選.2、A【解析】
由題意可得,,求解即可.【詳解】,解得或,故解集為(-,0)(1,+),故選A.【點睛】本題考查了分式不等式的解法,考查了計算能力,屬于基礎(chǔ)題.3、C【解析】
先由等式,得出,并計算出,以及與的夾角為,然后利用平面向量數(shù)量積的定義可計算出的值.【詳解】由于是圓上的三點,,則,,故選C.【點睛】本題考查平面向量的數(shù)量積的計算,解題的關(guān)鍵就是要確定向量的模和夾角,考查計算能力,屬于中等題.4、C【解析】
根據(jù)條件即可求出,從而可求出,,,然后可設(shè)與的夾角為,從而可求出,根據(jù)向量夾角的范圍即可求出夾角.【詳解】,;,,;設(shè)與的夾角為,則;又,,故選.【點睛】本題主要考查向量數(shù)量積的定義運(yùn)用,向量的模的求法,以及利用數(shù)量積求向量夾角.5、D【解析】
若總體由差異明顯的幾部分組成時,經(jīng)常采用分層抽樣的方法進(jìn)行抽樣【詳解】總體由男生和女生組成,比例為560:420=4:1,所抽取的比例也是16:12=4:1.故選D.【點睛】本小題主要考查抽樣方法,當(dāng)總體由差異明顯的幾部分組成時,經(jīng)常采用分層抽樣的方法進(jìn)行抽樣,屬基本題.6、B【解析】試題分析:如圖,取中點,連接,因為是中點,則,或其補(bǔ)角就是異面直線所成的角,設(shè)正四面體棱長為1,則,,.故選B.考點:異面直線所成的角.【名師點睛】求異面直線所成的角的關(guān)鍵是通過平移使其變?yōu)橄嘟恢本€所成角,但平移哪一條直線、平移到什么位置,則依賴于特殊的點的選取,選取特殊點時要盡可能地使它與題設(shè)的所有相減條件和解題目標(biāo)緊密地聯(lián)系起來.如已知直線上的某一點,特別是線段的中點,幾何體的特殊線段.7、D【解析】解:因為為異面直線,直線,則與的位置關(guān)系是異面或相交,選D8、C【解析】
先根據(jù)題干描述,畫出ABCD的相對位置,再解三角形.【詳解】如圖先求出,的長,然后在中利用余弦定理可求解.在中,,可得.在中,,,,∴,∴.在中,,∴.故選C.【點睛】本題考查正余弦定理解決實際問題中的距離問題,正確畫出其相對位置是關(guān)鍵,屬于中檔題.9、A【解析】
由系統(tǒng)抽樣.先確定分組間隔,然后編號成等差數(shù)列來求所抽取號碼.【詳解】由題知分組間隔為以,又第1組中抽取的號碼為5,所以第7組中抽取的號碼為.故選:A.【點睛】本題考查系統(tǒng)抽樣,掌握系統(tǒng)抽樣的概念與方法是解題基礎(chǔ).10、C【解析】
首先由可得是異面直線和所成角,再由為正三角形即可求解.【詳解】連接.因為為正方體,所以,則是異面直線和所成角.又,可得為等邊三角形,則,所以異面直線與所成角為,故選:C【點睛】本題考查異面直線所成的角,利用平行構(gòu)造三角形或平行四邊形是關(guān)鍵,考查了空間想象能力和推理能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】若直線與直線的交點位于第一象限,如圖所示:則兩直線的交點應(yīng)在線段上(不包含點),當(dāng)交點為時,直線的傾斜角為,當(dāng)交點為時,斜率,直線的傾斜角為∴直線的傾斜角的取值范圍是.故答案為12、【解析】.13、【解析】
先利用時,求出的值,再令,由得出,兩式相減可求出數(shù)列的通項公式,再將的表達(dá)式代入,可得出.【詳解】當(dāng)時,則有,;當(dāng)時,由得出,上述兩式相減得,,得且,所以,數(shù)列是以為首項,以為公比的等比數(shù)列,則,,那么,因此,,故答案為.【點睛】本題考查等比數(shù)列前項和與通項之間的關(guān)系,同時也考查了等比數(shù)列求和,一般在涉及與的遞推關(guān)系求通項時,常用作差法來求解,考查計算能力,屬于中等題.14、【解析】
=15、【解析】
令,可得,從而將問題轉(zhuǎn)化為和的圖象有兩個不同交點,作出圖形,可求出答案.【詳解】由題意,令,則,則和的圖象有兩個不同交點,作出的圖象,如下圖,是過點的直線,當(dāng)直線斜率時,和的圖象有兩個交點.故答案為:.【點睛】本題考查函數(shù)零點問題,考查函數(shù)圖象的應(yīng)用,考查學(xué)生的計算求解能力,屬于中檔題.16、【解析】
根據(jù)餅狀圖中的歲以下本科學(xué)歷人數(shù)和占比可求得歲以下教師總?cè)藬?shù),從而可得其中的具有研究生學(xué)歷的教師人數(shù),進(jìn)而得到所求的百分比.【詳解】由歲以下本科學(xué)歷人數(shù)和占比可知,歲以下教師總?cè)藬?shù)為:人歲以下有研究生學(xué)歷的教師人數(shù)為:人歲以下有研究生學(xué)歷的教師的百分比為:本題正確結(jié)果:【點睛】本題考查利用餅狀圖計算總體中的數(shù)據(jù)分布和頻率分布的問題,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,;(2)見解析.【解析】
(1)根據(jù)遞推關(guān)系式可整理出,從而可證得結(jié)論;利用等比數(shù)列通項公式首先求解出,再整理出;(2)根據(jù)可求得,從而得到的通項公式,利用裂項相消法求得,從而使問題得證.【詳解】(1)由得:即,且數(shù)列是以為首項,為公比的等比數(shù)列數(shù)列的通項公式為:(2)由(1)得:又即:【點睛】本題考查利用遞推關(guān)系式證明等比數(shù)列、求解等比數(shù)列通項公式、裂項相消法求解數(shù)列前項和的問題,屬于常規(guī)題型.18、(1)312(2)【解析】試題分析:(1)明確柱體與錐體積公式的區(qū)別,分別代入對應(yīng)公式求解;(2)先根據(jù)體積關(guān)系建立函數(shù)解析式,,然后利用導(dǎo)數(shù)求其最值.試題解析:解:(1)由PO1=2知OO1=4PO1=8.因為A1B1=AB=6,所以正四棱錐P-A1B1C1D1的體積正四棱柱ABCD-A1B1C1D1的體積所以倉庫的容積V=V錐+V柱=24+288=312(m3).(2)設(shè)A1B1=a(m),PO1=h(m),則0<h<6,OO1=4h.連結(jié)O1B1.因為在中,所以,即于是倉庫的容積,從而.令,得或(舍).當(dāng)時,,V是單調(diào)增函數(shù);當(dāng)時,,V是單調(diào)減函數(shù).故時,V取得極大值,也是最大值.因此,當(dāng)m時,倉庫的容積最大.【考點】函數(shù)的概念、導(dǎo)數(shù)的應(yīng)用、棱柱和棱錐的體積【名師點睛】對應(yīng)用題的訓(xùn)練,一般從讀題、審題、剖析題目、尋找切入點等方面進(jìn)行強(qiáng)化,注重培養(yǎng)將文字語言轉(zhuǎn)化為數(shù)學(xué)語言的能力,強(qiáng)化構(gòu)建數(shù)學(xué)模型的幾種方法.而江蘇高考的應(yīng)用題往往需結(jié)合導(dǎo)數(shù)知識解決相應(yīng)的最值問題,因此掌握利用導(dǎo)數(shù)求最值方法是一項基本要求,需熟練掌握.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用平面向量的數(shù)量積的運(yùn)算法則化簡,進(jìn)而求出向量與的夾角;(Ⅱ)利用,對其化簡,代入數(shù)值,即可求出結(jié)果.【詳解】解:(Ⅰ)由得因向量與的夾角為(Ⅱ)【點睛】本題考查平面向量的數(shù)量積的應(yīng)用,以及平面向量的夾角以及平面向量的模的求法,考查計算能力.20、()【解析】
先化簡函數(shù)得到,再利用復(fù)合函數(shù)單調(diào)性原則結(jié)合整體法求單調(diào)區(qū)間即可.【詳解】,令,則,因為是的一次函數(shù),且在定義域上單調(diào)遞增,所以要求的單調(diào)遞增區(qū)間,即求的單調(diào)遞減區(qū)間,即(),∴(),即(),∴函數(shù)的單調(diào)遞增區(qū)間為().【點睛】本題考查求復(fù)合型三角函數(shù)的單調(diào)區(qū)間,答題時注意,復(fù)合函數(shù)的單調(diào)性遵循“同增異減”法則.21、(1);(2)6.【解析】
(1)設(shè),,利用三點共線可得的關(guān)系,計算出后由基本不等式求得最小值.從而得直線方程;(2)由(1)中所設(shè)坐標(biāo)計算出,利用基
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 附件:1.1521項擬繼續(xù)有效行業(yè)標(biāo)準(zhǔn)復(fù)審結(jié)論-表(征求意見稿)
- 石河子大學(xué)《藥物波譜解析》2022-2023學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《食品包裝學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《計算機(jī)網(wǎng)絡(luò)基礎(chǔ)》2022-2023學(xué)年期末試卷
- 沈陽理工大學(xué)《弱信號檢測技術(shù)》2021-2022學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《建筑節(jié)能》2023-2024學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《過程控制系統(tǒng)與儀表》2021-2022學(xué)年期末試卷
- 沈陽理工大學(xué)《電鍍工藝》2022-2023學(xué)年期末試卷
- 沈陽理工大學(xué)《環(huán)境工程概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 合同產(chǎn)值申報
- 建筑工程項目管理咨詢招標(biāo)(范本)
- 三位數(shù)除兩位數(shù)的除法練習(xí)題
- 慢性胃炎的中醫(yī)治療培訓(xùn)課件
- Python程序設(shè)計課件第7章面向?qū)ο蟪绦蛟O(shè)計
- 最新爆破安全規(guī)程
- 主題班會課防盜
- 幼兒園課件《撓撓小怪物》
- 教師教案檢查八大評分標(biāo)準(zhǔn)教案的評分標(biāo)準(zhǔn)
- 政府會計基礎(chǔ)知識講義
- 幼兒園整合式主題活動設(shè)計案例《溫馨家園》
- 荒漠區(qū)生態(tài)治理(麥草沙障、植物固沙)施工方案
評論
0/150
提交評論