基于深度自編碼神經(jīng)網(wǎng)絡(luò)的滾動(dòng)軸承故障診斷方法研究_第1頁(yè)
基于深度自編碼神經(jīng)網(wǎng)絡(luò)的滾動(dòng)軸承故障診斷方法研究_第2頁(yè)
基于深度自編碼神經(jīng)網(wǎng)絡(luò)的滾動(dòng)軸承故障診斷方法研究_第3頁(yè)
基于深度自編碼神經(jīng)網(wǎng)絡(luò)的滾動(dòng)軸承故障診斷方法研究_第4頁(yè)
基于深度自編碼神經(jīng)網(wǎng)絡(luò)的滾動(dòng)軸承故障診斷方法研究_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

基于深度自編碼神經(jīng)網(wǎng)絡(luò)的滾動(dòng)軸承故障診斷方法研究摘要

隨著現(xiàn)代工業(yè)領(lǐng)域的高速發(fā)展,機(jī)械裝置的可靠性和運(yùn)行效率已成為工業(yè)生產(chǎn)的關(guān)鍵問(wèn)題。滾動(dòng)軸承故障是導(dǎo)致機(jī)械設(shè)備失效的主要原因之一,因此軸承故障的預(yù)測(cè)和診斷技術(shù)日漸受到關(guān)注。本文提出了一種基于深度自編碼神經(jīng)網(wǎng)絡(luò)的滾動(dòng)軸承故障診斷方法,以實(shí)現(xiàn)對(duì)滾動(dòng)軸承故障狀態(tài)的實(shí)時(shí)診斷。

首先,本文介紹了智能故障診斷系統(tǒng)的基本結(jié)構(gòu)和方法流程,并分析了滾動(dòng)軸承故障診斷的基本原理和方法。接著,結(jié)合實(shí)際工程案例,本文選擇了振動(dòng)信號(hào)作為輸入數(shù)據(jù),使用小波變換對(duì)信號(hào)進(jìn)行特征提取,構(gòu)建了基于深度自編碼神經(jīng)網(wǎng)絡(luò)的故障診斷模型。進(jìn)一步,本文使用歸一化和降維技術(shù)進(jìn)行數(shù)據(jù)預(yù)處理以提高模型訓(xùn)練效果。最后,本文通過(guò)對(duì)實(shí)驗(yàn)結(jié)果的分析,驗(yàn)證了本文所提出的基于深度自編碼神經(jīng)網(wǎng)絡(luò)的滾動(dòng)軸承故障診斷方法的有效性和優(yōu)越性。

關(guān)鍵詞:滾動(dòng)軸承;故障診斷;深度自編碼神經(jīng)網(wǎng)絡(luò);小波變換;特征提取

Abstract

Withtherapiddevelopmentofmodernindustrialfield,thereliabilityandoperationefficiencyofmachinerydeviceshavebecomekeyissuesofindustrialproduction.Rollingbearingfailureisoneofthemaincausesofmechanicalequipmentfailure,sothepredictionanddiagnosistechnologyofbearingfaultsisgraduallyreceivingattention.Inthispaper,arollingbearingfaultdiagnosismethodbasedondeepautoencoderneuralnetworkisproposedtoachievereal-timediagnosisofrollingbearingfaultstate.

Firstly,thebasicstructureandmethodflowofintelligentfaultdiagnosissystemwereintroduced,andthebasicprinciplesandmethodsofrollingbearingfaultdiagnosiswereanalyzed.Then,combinedwithpracticalengineeringcases,thevibrationsignalwasselectedastheinputdata,andwavelettransformwasusedforfeatureextractionofthesignaltoconstructthefaultdiagnosismodelbasedondeepautoencoderneuralnetwork.Furthermore,datapreprocessingusingnormalizationanddimensionalityreductiontechniqueswasperformedtoimprovethemodeltrainingefficiency.Finally,throughtheanalysisoftheexperimentalresults,theeffectivenessandsuperiorityoftherollingbearingfaultdiagnosismethodbasedondeepautoencoderneuralnetworkproposedinthispaperwereverified.

Keywords:rollingbearing;faultdiagnosis;deepautoencoderneuralnetwork;wavelettransform;featureextractionRollingbearingsarekeycomponentsinmanymechanicalsystems,andtheirhealthconditiondirectlyaffectstheoverallperformanceandreliabilityofthesystem.Faultdiagnosisofrollingbearingsisthereforeofgreatimportanceforensuringthesafeandefficientoperationofmechanicalsystems.Inrecentyears,manyresearchstudieshavebeenconductedtodevelopeffectiveandreliablemethodsforrollingbearingfaultdiagnosis.

Inthispaper,anewmethodforrollingbearingfaultdiagnosisbasedondeepautoencoderneuralnetworkwasproposed.Themethoduseswavelettransformforsignalpreprocessingandfeatureextraction,andadeepautoencoderneuralnetworkforfaultdiagnosis.Thedeepautoencoderneuralnetworkisatypeofartificialneuralnetworkthatconsistsofmultiplelayersofhiddenunits,andisabletolearncompactandhierarchicalrepresentationsofinputdata.

Theproposedmethodwasevaluatedusingreal-worlddatafromarollingbearingtestrig.Theexperimentalresultsdemonstratedthattheproposedmethodachievedhighaccuracyinrollingbearingfaultdiagnosis,andoutperformedseveralstate-of-the-artmethods.Thisindicatesthatthedeepautoencoderneuralnetworkisapowerfultoolforrollingbearingfaultdiagnosis,andhasthepotentialtobeappliedinvariousindustrialapplications.

Inaddition,severalpreprocessingtechniqueswereappliedtotherawdatatoimprovethetrainingefficiencyofthemodel.Normalizationwasusedtoscaletheinputdatatoacommonrange,anddimensionalityreductiontechniquessuchasprincipalcomponentanalysiswereusedtoreducethedimensionalityofthefeaturespace.Thesetechniqueshelpedtoreducethecomputationalcomplexityofthemodel,andimproveitsgeneralizationability.

Inconclusion,theproposedrollingbearingfaultdiagnosismethodbasedondeepautoencoderneuralnetworkisapromisingapproachforimprovingthereliabilityandefficiencyofmechanicalsystems.Themethodhasseveraladvantagesovertraditionalmethods,includinghighaccuracy,robustness,andscalability.FutureworkwillfocusonfurtherrefiningthemethodandapplyingittoothertypesofmechanicalsystemsFurthermore,theproposedmethodcanbeenhancedbycombiningitwithothermachinelearningtechniques,suchassupportvectormachinesordecisiontrees,tofurtherimprovetheaccuracyofthediagnosis.Additionally,themethodcanbeextendedtohandlemultiplefaultsanddetectearlysignsofwearandtearinmechanicalsystems.Thiscouldgreatlyincreasethereliabilityandlifespanofthesesystems,leadingtoimprovedperformanceandreducedmaintenancecosts.

Anotheravenueforfutureresearchistoinvestigatetheuseoftransferlearningforfaultdiagnosis.Transferlearningisatechniquewhereapre-trainedmachinelearningmodelisusedasastartingpointfortraininganewmodelforadifferenttask.Thisapproachcanbeparticularlyusefulinscenarioswherelimitedlabeleddataisavailablefortrainingthemodel.Byusingpre-trainedmodels,themodelcanlearntorecognizefeaturesthatarerelevanttothenewtaskmorequicklyandaccurately.

Overall,theproposedmethodhasthepotentialtorevolutionizethewaymechanicalsystemsarediagnosedandmaintained.Itoffersamoreefficientandaccurateapproachtofaultdiagnosis,whichcanleadtoimprovedsystemreliability,reducedmaintenancecosts,andincreaseduptime.Withfurtherresearchanddevelopment,thismethodcouldbeappliedtoawiderangeofmechanicalsystems,includingthoseusedinindustrial,transportation,andenergyapplicationsInadditiontothebenefitsoutlinedabove,theproposedmethodcouldalsocontributetomoresustainablepracticesinvariousindustries.Bydetectingfaultsandaddressingthembeforetheyescalateintomoreseriousissues,mechanicalsystemscanoperatemoreefficientlyandconsumelessenergy.Thisisparticularlyimportantinindustriesthatrelyheavilyonmechanicalsystems,suchasmanufacturing,transportation,andenergyproduction,whereenergyconsumptionhasasignificantimpactontheenvironment.

Moreover,theproposedmethodcouldalsoleadtoimprovementsinthedesignanddevelopmentofmechanicalsystems.Byanalyzingthedatacollectedduringthediagnosisprocess,engineerscangaininsightsintotheperformanceofthesystemandidentifyareasforimprovement.Thiscouldresultinmoreeffectiveandreliablemechanicalsystemsthatcanoperateathigherefficienciesandwithlowermaintenancerequirements.

Anotherpotentialapplicationoftheproposedmethodisinthefieldofpredictivemaintenance.Bycontinuouslymonitoringmechanicalsystemsandanalyzingthedatacollected,itmaybepossibletopredictwhenafaultislikelytooccurandtakepreventativeactionbeforeithappens.Thiscouldfurtherreducedowntimeandmaintenancecostswhileimprovingsystemreliability.

However,therearealsosomechallengesthatneedtobeaddressedinorderfortheproposedmethodtobewidelyadopted.Onepotentialchallengeisthecostofimplementingthenecessarysensorsanddataprocessingsystems.Additionally,thereisaneedforspecializedexpertisetointerpretthedataanddiagnosefaultsaccurately.Therefore,theremaybeaneedforinvestmentintrainingandeducationtodeveloptheseskillsandcapabilities.

Inconclusion,theproposedmethodhasthepotentialtotransformthewaymechanicalsystemsarediagnosed,ma

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論