2023屆山東省費(fèi)縣數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2023屆山東省費(fèi)縣數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2023屆山東省費(fèi)縣數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2023屆山東省費(fèi)縣數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2023屆山東省費(fèi)縣數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.函數(shù)圖象的一個(gè)對(duì)稱中心和一條對(duì)稱軸可以是()A., B.,C., D.,2.三棱錐則二面角的大小為()A. B. C. D.3.在中,已知角的對(duì)邊分別為,若,,,,且,則的最小角的正切值為()A. B. C. D.4.已知,若將它的圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則函數(shù)的圖象的一條對(duì)稱軸的方程為()A. B. C. D.5.函數(shù)的圖象沿軸向左平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象的一個(gè)對(duì)稱中心是()A. B. C. D.6.已知直線和,若,則實(shí)數(shù)的值為A.1或 B.或 C.2或 D.或7.化簡(jiǎn)的結(jié)果是()A. B. C. D.8.已知的三邊滿足,則的內(nèi)角C為()A. B. C. D.9.已知,為直線,,為平面,下列命題正確的是()A.若,,則B.若,,則與為異面直線C.若,,,則D.若,,,則10.某校統(tǒng)計(jì)了1000名學(xué)生的數(shù)學(xué)期末考試成績(jī),已知這1000名學(xué)生的成績(jī)均在50分到150分之間,其頻率分布直方圖如圖所示,則這1000名學(xué)生中成績(jī)?cè)?30分以上的人數(shù)為()A.10 B.20 C.40 D.60二、填空題:本大題共6小題,每小題5分,共30分。11.若直線l1:ax+3y+1=0與l2:2x+(a+1)y+1=0互相平行,則a的值為________.12.若滿足約束條件則的最大值為__________.13.已知,若直線與直線垂直,則的最小值為_____14.已知關(guān)于兩個(gè)隨機(jī)變量的一組數(shù)據(jù)如下表所示,且成線性相關(guān),其回歸直線方程為,則當(dāng)變量時(shí),變量的預(yù)測(cè)值應(yīng)該是_________.23456467101315.隨機(jī)抽取100名年齡在[10,20),[20,30),…,[50,60)年齡段的市民進(jìn)行問卷調(diào)查,由此得到樣本的頻率分布直方圖如圖所示.從不小于40歲的人中按年齡段分層抽樣的方法隨機(jī)抽取12人,則在[50,60)年齡段抽取的人數(shù)為______.16.在平面直角坐標(biāo)系xOy中,已知直角中,直角頂點(diǎn)A在直線上,頂點(diǎn)B,C在圓上,則點(diǎn)A橫坐標(biāo)的取值范圍是__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在中,點(diǎn)在邊上,,,.(1)求邊的長(zhǎng);(2)若的面積是,求的值.18.已知正項(xiàng)等比數(shù)列中,,,等差數(shù)列中,,且.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.19.如圖,是平行四邊形,平面,,,,.(1)求證:平面;(2)求直線與平面所成角的正弦值.20.如圖,在四邊形中,,,,.(1)若,求;(2)求四邊形面積的最大值.21.設(shè)平面三點(diǎn)、、.(1)試求向量的模;(2)若向量與的夾角為,求;(3)求向量在上的投影.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

直接利用余弦型函數(shù)的性質(zhì)求出函數(shù)的對(duì)稱軸和對(duì)稱中心,即可得到答案.【詳解】由題意,函數(shù)的性質(zhì),令,解得,當(dāng)時(shí),,即函數(shù)的一條對(duì)稱軸的方程為,令,解得,當(dāng)時(shí),,即函數(shù)的一個(gè)對(duì)稱中心為,故選B.【點(diǎn)睛】本題主要考查了余弦型函數(shù)的性質(zhì)對(duì)稱軸和對(duì)稱中心的應(yīng)用,著重考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.2、B【解析】

P在底面的射影是斜邊的中點(diǎn),設(shè)AB中點(diǎn)為D過D作DE垂直AC,垂足為E,則∠PED即為二面角P﹣AC﹣B的平面角,在直角三角形PED中求出此角即可.【詳解】因?yàn)锳B=10,BC=8,CA=6所以底面為直角三角形又因?yàn)镻A=PB=PC所以P在底面的射影為直角三角形ABC的外心,為AB中點(diǎn).設(shè)AB中點(diǎn)為D過D作DE垂直AC,垂足為E,所以DE平行BC,且DEBC=4,所以∠PED即為二面角P﹣AC﹣B的平面角.因?yàn)镻D為三角形PAB的中線,所以可算出PD=4所以tan∠PED所以∠PED=60°即二面角P﹣AC﹣B的大小為60°故答案為60°.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是二面角的平面角及求法,確定出二面角的平面角是解答本題的關(guān)鍵.3、D【解析】

根據(jù)大角對(duì)大邊判斷最小角為,利用正弦定理得到,代入余弦定理計(jì)算得到,最后得到.【詳解】根據(jù)大角對(duì)大邊判斷最小角為根據(jù)正弦定理知:根據(jù)余弦定理:化簡(jiǎn)得:故答案選D【點(diǎn)睛】本題考查了正弦定理,余弦定理,意在考查學(xué)生的計(jì)算能力.4、B【解析】分析:由左加右減,得出解析式,因?yàn)榻馕鍪綖檎液瘮?shù),所以令,解出,對(duì)k進(jìn)行賦值,得出對(duì)稱軸.詳解:由左加右減可得,解析式為正弦函數(shù),則令,解得:,令,則,故選B.點(diǎn)睛:三角函數(shù)圖像左右平移時(shí),需注意要把x放到括號(hào)內(nèi)加減,求三角函數(shù)的對(duì)稱軸,則令等于正弦或余弦函數(shù)的對(duì)稱軸公式,求出x解析式,即為對(duì)稱軸方程.5、B【解析】

先求出變換后的函數(shù)的解析式,求出所得函數(shù)的對(duì)稱中心坐標(biāo),可得出正確選項(xiàng).【詳解】函數(shù)的圖象沿軸向左平移個(gè)單位長(zhǎng)度后得到函數(shù)的解析式為,令,得,因此,所得函數(shù)的圖象的一個(gè)對(duì)稱中心是,故選B.【點(diǎn)睛】本題考查圖象的變換以及三角函數(shù)的對(duì)稱中心,解題的關(guān)鍵就是求出變換后的三角函數(shù)解析式,考查分析問題和解決問題的能力,屬于中等題.6、C【解析】

利用直線與直線垂直的性質(zhì)直接求解.【詳解】∵直線和,若,∴,得,解得或,∴實(shí)數(shù)的值為或.故選:C.【點(diǎn)睛】本題考查直線與直線垂直的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.7、A【解析】

根據(jù)平面向量加法及數(shù)乘的幾何意義,即可求解,得到答案.【詳解】根據(jù)平面向量加法及數(shù)乘的幾何意義,可得,故選A.【點(diǎn)睛】本題主要考查了平面向量的加法法則的應(yīng)用,其中解答中熟記平面向量的加法法則是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.8、C【解析】原式可化為,又,則C=,故選C.9、D【解析】

利用空間中線線、線面、面面間的位置關(guān)系對(duì)選項(xiàng)逐一判斷即可.【詳解】由,為直線,,為平面,知:在A中,若,,則與相交、平行或異面,故A錯(cuò)誤;在B中,若,,則與相交、平行或異面,故B錯(cuò)誤;在C中,若,,,則與相交、平行或異面,故C錯(cuò)誤;在D中,若,,,則由線面垂直、面面平行的性質(zhì)定理得,故D正確.故選:D.【點(diǎn)睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),屬于基礎(chǔ)題.10、C【解析】

由頻率分布直方圖求出這1000名學(xué)生中成績(jī)?cè)?30分以上的頻率,由此能求出這1000名學(xué)生中成績(jī)?cè)?30分以上的人數(shù).【詳解】由頻率分布直方圖得這1000名學(xué)生中成績(jī)?cè)?30分以上的頻率為:,則這1000名學(xué)生中成績(jī)?cè)?30分以上的人數(shù)為人.故選:.【點(diǎn)睛】本題考查頻數(shù)的求法,考查頻率分布直方圖的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、-3【解析】試題分析:由兩直線平行可得:,經(jīng)檢驗(yàn)可知時(shí)兩直線重合,所以.考點(diǎn):直線平行的判定.12、【解析】

作出可行域,根據(jù)目標(biāo)函數(shù)的幾何意義可知當(dāng)時(shí),.【詳解】不等式組表示的可行域是以為頂點(diǎn)的三角形區(qū)域,如下圖所示,目標(biāo)函數(shù)的最大值必在頂點(diǎn)處取得,易知當(dāng)時(shí),.【點(diǎn)睛】線性規(guī)劃問題是高考中??伎键c(diǎn),主要以選擇及填空的形式出現(xiàn),基本題型為給出約束條件求目標(biāo)函數(shù)的最值,主要結(jié)合方式有:截距型、斜率型、距離型等.13、8【解析】

兩直線斜率存在且互相垂直,由斜率乘積為-1求得等式,把目標(biāo)式子化成,運(yùn)用基本不等式求得最小值.【詳解】設(shè)直線的斜率為,,直線的斜率為,,兩條直線垂直,,整理得:,,等號(hào)成立當(dāng)且僅當(dāng),的最小值為.【點(diǎn)睛】利用“1”的代換,轉(zhuǎn)化成可用基本不等式求最值,考查轉(zhuǎn)化與化歸的思想.14、21.2【解析】

計(jì)算出,,可知回歸方程經(jīng)過樣本中心點(diǎn),從而求得,代入可得答案.【詳解】由表中數(shù)據(jù)知,,,線性回歸直線必過點(diǎn),所以將,代入回歸直線方程中,得,所以當(dāng)時(shí),.【點(diǎn)睛】本題主要考查回歸方程的相關(guān)計(jì)算,難度很小.15、3【解析】

根據(jù)頻率分布直方圖,求得不小于40歲的人的頻率及人數(shù),再利用分層抽樣的方法,即可求解,得到答案.【詳解】根據(jù)頻率分布直方圖,得樣本中不小于40歲的人的頻率是0.015×10+0.005×10=0.2,所以不小于40歲的人的頻數(shù)是100×0.2=20;從不小于40歲的人中按年齡段分層抽樣的方法隨機(jī)抽取12人,在[50,60)年齡段抽取的人數(shù)為.【點(diǎn)睛】本題主要考查了頻率分布直方圖的應(yīng)用,其中解答中熟記頻率分布直方圖的性質(zhì),以及頻率分布直方圖中概率的計(jì)算方法是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.16、【解析】

由題意畫出圖形,寫出以原點(diǎn)為圓心,以為半徑的圓的方程,與直線方程聯(lián)立求得值,則答案可求.【詳解】如圖所示,當(dāng)點(diǎn)往直線兩邊運(yùn)動(dòng)時(shí),不斷變小,當(dāng)點(diǎn)為直線上的定點(diǎn)時(shí),直線與圓相切時(shí),最大,∴當(dāng)為正方形,則,則以為圓心,以為半徑的圓的方程為.聯(lián)立,得.解得或.點(diǎn)橫坐標(biāo)的取值范圍是.故答案為:.【點(diǎn)睛】本題考查直線與圓位置關(guān)系的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意坐標(biāo)法的應(yīng)用.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)2;(2)【解析】

(1)設(shè),利用余弦定理列方程可得:,解方程即可(2)利用(1)中結(jié)果即可判斷為等邊三角形,即可求得中邊上的高為,再利用的面積是即可求得:,結(jié)合余弦定理可得:,再利用正弦定理可得:,問題得解【詳解】(1)在中,設(shè),則,由余弦定理得:即:解之得:,即邊的長(zhǎng)為2.(2)由(1)得為等邊三角形,作于,則∴,故在中,由余弦定理得:∴在中,由正弦定理得:,即:∴∴【點(diǎn)睛】本題主要考查了利用正、余弦定理解三角形,還考查了三角形面積公式的應(yīng)用及計(jì)算能力,屬于中檔題18、(1);(2).【解析】

(1)設(shè)正項(xiàng)等比數(shù)列的公比為q(q>0),由已知列式求得公比,則等比數(shù)列的通項(xiàng)公式可求;(2)由,求解等差數(shù)列的公差,則數(shù)列的前n項(xiàng)和可求.【詳解】(1)設(shè)正項(xiàng)等比數(shù)列的公比為q(q>0),由,得,則q=3.;(2)設(shè)等差數(shù)列的公差為d,由,得,∴d=3.∴數(shù)列的前n項(xiàng)和【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式與求和公式,考查了等比數(shù)列的通項(xiàng)公式,意在考查綜合應(yīng)用所學(xué)知識(shí)解答問題的能力,屬于中檔題.19、(1)見解析;(2).【解析】

(1)證明平面平面,然后利用平面與平面平行的性質(zhì)得出平面;(2)作于點(diǎn),連接,證明出平面,可得出直線與平面所成的角為,并計(jì)算出三邊邊長(zhǎng),并利用銳角三角函數(shù)計(jì)算出的正弦值,即可得出答案.【詳解】(1)證明:,平面,平面,平面.同理可證平面.,平面平面.平面,平面;(2)作于點(diǎn),連接,平面,平面,.又,,平面.則為與平面所成角,在中,,,,,,,,,,因此,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查直線與平面平行的證明,同時(shí)也考查了直線與平面所成角的計(jì)算,在計(jì)算空間角時(shí)要遵循“一作、二證、三計(jì)算”的原則來求解,考查邏輯推理能力,屬于中等題.20、(1);(2).【解析】

(1)直接利用余弦定理,即可得到本題答案;(2)由四邊形ABCD的面積=,得四邊形ABCD的面積,求S的最大值即可得到本題答案.【詳解】(1)當(dāng)時(shí),在中,由余弦定理得,設(shè)(),則,即,解得,所以;(2)的面積為,在中,由余弦定理得,所以,的面積為,所以,四邊形的面積為,因?yàn)?所以當(dāng)時(shí),四邊形的面積最大,最大值為.【點(diǎn)睛】本題主要考查利用余弦定理、面積公式及三角函數(shù)的性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論