下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
高中數(shù)學(xué)必修3知識點高中數(shù)學(xué)必修3知識點PAGE1/PAGE1高中數(shù)學(xué)必修3知識點高中數(shù)學(xué)必修3知識點1.3.1輾轉(zhuǎn)相除法與更相減損術(shù)1、輾轉(zhuǎn)相除法。用較大的數(shù)除以較小的數(shù)所得的余數(shù)和較小的數(shù)構(gòu)成新的一對數(shù),繼續(xù)做上面的除法,直到大數(shù)被小數(shù)除盡,這個較小的數(shù)就是最大公約數(shù)。2、更相減損術(shù)。以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)(等數(shù))就是所求的最大公約數(shù)。1.3.2秦九韶算法與排序1、秦九韶算法概念:f(x)=anxn+an-1xn-1+….+a1x+a0求值問題f(x)=anxn+an-1xn-1+….+a1x+a0=(anxn-1+an-1xn-2+….+a1)x+a0=((anxn-2+an-1xn-3+….+a2)x+a1)x+a0==(...(anx+an-1)x+an-2)x+...+a1)x+a0求多項式的值時,首先計算最內(nèi)層括號內(nèi)依次多項式的值,即v1=anx+an-1然后由內(nèi)向外逐層計算一次多項式的值,即v2=v1x+an-2v3=v2x+an-3vn=vn-1x+a0這樣,把n次多項式的求值問題轉(zhuǎn)化成求n個一次多項式的值的問題。1.3.3進(jìn)位制(1)以k為基數(shù)的k進(jìn)制換算為十進(jìn)制:(2)十進(jìn)制換算為k進(jìn)制:除以k取余,倒序排列第二章統(tǒng)計2.1.1簡單隨機(jī)抽樣1.總體和樣本,個體,樣本容量2.簡單隨機(jī)抽樣:從元素個數(shù)為N的總體中不放回地抽取容量為n樣本,如果每一次抽取時總體中的各個個體有相同的的可能性被抽到。3.簡單隨機(jī)抽樣常用的方法:(1)抽簽法;⑵隨機(jī)數(shù)表法;2.1.2系統(tǒng)抽樣1.系統(tǒng)抽樣(等距抽樣或機(jī)械抽樣):當(dāng)總體元素個數(shù)很大時,可將總體分成均衡的若干部分,然后按照預(yù)先制定的規(guī)則,從每一部分抽取一個個體,得到所需要的樣本。2.1.3分層抽樣1.分層抽樣:當(dāng)總體由明顯差異的幾部分組成時,將總體中各個個體按某種特征分層,在各層中按層在總體中所占比例進(jìn)行簡單隨機(jī)抽樣或系統(tǒng)抽樣。三種抽樣方法的區(qū)別和聯(lián)系:類別共同點各自特點相互聯(lián)系適用范圍簡單隨機(jī)抽樣抽樣過程中每個個體被抽到的機(jī)會相等從總體中逐個抽取最基本的抽樣方法總體容量較小時系統(tǒng)抽樣將總體分成均衡的幾部分,按事先制定的規(guī)則在各部分抽取在起始部分抽樣時,采用簡單隨機(jī)抽樣總體容量較大時分層抽樣將總體按某種特征分成幾層,分層進(jìn)行抽取各層抽樣時可采用簡單隨機(jī)抽樣或系統(tǒng)抽樣總體由差異明顯的幾部分組成時2.2.1用樣本的頻率分布估計總體的分布1、列頻率分布表,畫頻率分布直方圖:(1)計算極差(2)決定組數(shù)和組距(3)決定分點(4)列頻率分布表(5)畫頻率分布直方圖2、莖葉圖2.2.2用樣本的數(shù)字特征估計總體的數(shù)字特征1、平均值:2、.樣本標(biāo)準(zhǔn)差:3、(1)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個共同的常數(shù),標(biāo)準(zhǔn)差不變(2)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)乘以一個共同的常數(shù)k,標(biāo)準(zhǔn)差變?yōu)樵瓉淼膋倍2.3.2兩個變量的線性相關(guān)1、概念:(1)回歸直線方程:(2)回歸系數(shù):,2.應(yīng)用直線回歸的注意事項:回歸分析前,最好先作出散點圖;第三章概率3.1.1—3.1.2隨機(jī)事件的概率及概率的意義1、基本概念:(1)必然事件(2)不可能事件(3)確定事件(4)隨機(jī)事件(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的頻率:對于給定的隨機(jī)事件A,在n次重復(fù)進(jìn)行的實驗中,時間A發(fā)生的頻率,當(dāng)n很大時,總是在某個常數(shù)附近擺動,隨著n的增加,擺動幅度越來越小,這時就把這個常數(shù)叫做事件A的概率(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗總次數(shù)n的比值,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗的前提下可以近似地作為這個事件的概率3.1.3概率的基本性質(zhì)1、基本概念:(2)若A∩B為不可能事件,即A∩B=ф,即不可能同時發(fā)生的兩個事件,那么稱事件A與事件B互斥;(3)若A∩B為不可能事件,A∪B為必然事件,即不能同時發(fā)生且必有一個發(fā)生的兩個事件,那么稱事件A與事件B互為對立事件;概率加法公式:當(dāng)事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)2、概率的基本性質(zhì):1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;2)當(dāng)事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);4)互斥事件與對立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗中不會同時發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時不發(fā)生,而對立事件是指事件A 與事件B有且僅有一個發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形。3.2.1—3.2.2古典概型及隨機(jī)數(shù)的產(chǎn)生1、(1)古典概型的使用條件:試驗結(jié)果的有限性和所有結(jié)果的等可能性。(2)古典概型的解題步驟;①求出總的基本事件數(shù);②求出事件A所包含的基本事件數(shù),然后利用公式P(A)=3.3.1—3.3.2幾何概型基本概念:(1)幾何概率
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)校藥品器材安全警示標(biāo)識
- 實驗室事故報告流程
- 電子產(chǎn)品生產(chǎn)資產(chǎn)管理指南
- 2024年藝人演藝事業(yè)發(fā)展規(guī)劃3篇
- 油氣開采挖機(jī)設(shè)備租賃合同
- 高鐵工程預(yù)應(yīng)力施工協(xié)議
- 軌道車物料成本優(yōu)化
- 鐵路建設(shè)臨時用電服務(wù)合同
- 保險服務(wù)合同管理細(xì)則
- 體育場館車輛管理規(guī)定
- 2024版帶貨主播電商平臺合作服務(wù)合同范本3篇
- 2024-2030年中國鋁汽車緊固件行業(yè)銷售規(guī)模與盈利前景預(yù)測報告
- 城市建設(shè)苗木吊裝安全方案
- 中醫(yī)院醫(yī)生作風(fēng)建設(shè)工作方案(6篇)
- DIY手工坊創(chuàng)業(yè)項目計劃書
- (高清版)DB21∕T 1795-2021 污水源熱泵系統(tǒng)工程技術(shù)規(guī)程
- 【MOOC】犯罪心理學(xué)-中南財經(jīng)政法大學(xué) 中國大學(xué)慕課MOOC答案
- 《外盤期貨常識》課件
- 【MOOC】土力學(xué)-西安交通大學(xué) 中國大學(xué)慕課MOOC答案
- 2024江蘇鹽城港控股集團(tuán)限公司招聘23人易考易錯模擬試題(共500題)試卷后附參考答案
- 2024年三支一扶考試基本能力測驗試題及解答參考
評論
0/150
提交評論