版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在面積為S的△ABC的邊AB上任取一點P,則△PBC的面積大于的概率是()A. B. C. D.2.已知等差數(shù)列的前項和為,首項,若,則當取最大值時,的值為()A. B. C. D.3.若,且,則的值是()A. B. C. D.4.已知集合A={x|x2﹣x﹣2<0},B={x|≥﹣1},則A∪B=()A.(﹣1,2) B.(﹣1,2] C.(0,1) D.(0,2)5.《九章算術(shù)》中,將四個面都為直角三角形的三棱錐稱之為鱉臑,若三棱錐為鱉臑,平面,三棱錐的四個頂點都在球的球面上,則球的表面積為()A. B. C. D.6.在中,根據(jù)下列條件解三角形,其中有一解的是()A.,,B.,,C.,,D.,,7.若集合,則集合()A. B. C. D.8.設(shè)向量,,則向量與的夾角為()A. B. C. D.9.下列說法正確的是()A.銳角是第一象限的角,所以第一象限的角都是銳角;B.如果向量,則;C.在中,記,,則向量與可以作為平面ABC內(nèi)的一組基底;D.若,都是單位向量,則.10.執(zhí)行下面的程序框圖,則輸出的的值為()A.10 B.34 C.36 D.154二、填空題:本大題共6小題,每小題5分,共30分。11.已知實數(shù),滿足不等式組,則的最大值為_______.12.已知,若直線與直線垂直,則的最小值為_____13.經(jīng)過點且在x軸上的截距等于在y軸上的截距的直線方程是________.14.從原點向直線作垂線,垂足為點,則的方程為_______.15.計算:________.16.已知向量(1,x2),(﹣2,y2﹣2),若向量,共線,則xy的最大值為_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某制造商3月生產(chǎn)了一批乒乓球,從中隨機抽樣133個進行檢查,測得每個球的直徑(單位:mm),將數(shù)據(jù)分組如下:分組
頻數(shù)
頻率
[1.95,1.97)
13
[1.97,1.99)
23
[1.99,2.31)
53
[2.31,2.33]
23
合計
133
(Ⅰ)請在上表中補充完成頻率分布表(結(jié)果保留兩位小數(shù)),并在圖中畫出頻率分布直方圖;(Ⅱ)若以上述頻率作為概率,已知標準乒乓球的直徑為2.33mm,試求這批球的直徑誤差不超過3.33mm的概率;(Ⅲ)統(tǒng)計方法中,同一組數(shù)據(jù)經(jīng)常用該組區(qū)間的中點值(例如區(qū)間[1.99,2.31)的中點值是2.33作為代表.據(jù)此估計這批乒乓球直徑的平均值(結(jié)果保留兩位小數(shù)).18.已知點,,曲線任意一點滿足.(1)求曲線的方程;(2)設(shè)點,問是否存在過定點的直線與曲線相交于不同兩點,無論直線如何運動,軸都平分,若存在,求出點坐標,若不存在,請說明理由.19.如圖所示,將一矩形花壇擴建成一個更大的矩形花壇,要求點在上,點在上,且對角線過點,已知米,米.(1)要使矩形的面積大于64平方米,則的長應(yīng)在什么范圍內(nèi)?(2)當?shù)拈L為多少時,矩形花壇的面積最?。坎⑶蟪鲎钚≈?20.已知數(shù)列an的前n項和為S(1)求數(shù)列an(2)設(shè)bn=an·log221.已知公差不為0的等差數(shù)列{an}滿足a3=9,a(1)求{a(2)設(shè)數(shù)列{bn}滿足bn=1n(
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
記事件,基本事件是線段的長度,如下圖所示,作于,作于,根據(jù)三角形的面積關(guān)系得,再由三角形的相似性得,可得事件的幾何度量為線段的長度,可求得其概率.【詳解】記事件,基本事件是線段的長度,如下圖所示,作于,作于,因為,則有;化簡得:,因為,則由三角形的相似性得,所以,事件的幾何度量為線段的長度,因為,所以的面積大于的概率.故選:C【點睛】本題考查幾何概型,屬于基礎(chǔ)題.常有以下一些方面需考慮幾何概型,求解時需注意一些要點.(1)當試驗的結(jié)果構(gòu)成的區(qū)域為長度、面積、體積等時,應(yīng)考慮使用幾何概型求解.(2)利用幾何概型求概率時,關(guān)鍵是試驗的全部結(jié)果構(gòu)成的區(qū)域和事件發(fā)生的區(qū)域的尋找,有時需要設(shè)出變量,在坐標系中表示所需要的區(qū)域。(3)幾何概型有兩個特點:一是無限性,二是等可能性.基本事件可以抽象為點,盡管這些點是無限的,但它們所占據(jù)的區(qū)域都是有限的,因此可用"比例解法求解幾何概型的概率.2、B【解析】
設(shè)等差數(shù)列的公差為,,由,可得,令求出正整數(shù)的最大值,即可得出取得最大值時對應(yīng)的的值.【詳解】設(shè)等差數(shù)列的公差為,由,得,可得,令,,可得,解得.因此,最大.故選:B.【點睛】本題考查等差數(shù)列前項和的最值,一般利用二次函數(shù)的基本性質(zhì)求解,也可由數(shù)列項的符號求出正整數(shù)的最大值來求解,考查計算能力,屬于中等題.3、A【解析】
對兩邊平方,可得,進而可得,再根據(jù),可知,由此即可求出結(jié)果.【詳解】因為,所以,所以,所以,又,所以所以.故選:A.【點睛】本題主要考查了同角的基本關(guān)系,屬于基礎(chǔ)題.4、B【解析】
先分別求出集合A和B,由此能求出A∪B.【詳解】∵集合A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|≥﹣1}={x|0<x≤2},∴A∪B={x|﹣1<x≤2}=(﹣1,2].故選B.【點睛】本題考查并集的求法,考查并集定義等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.5、C【解析】由題意,PA⊥面ABC,則為直角三角形,PA=3,AB=4,所以PB=5,又△ABC是直角三角形,所以∠ABC=90°,AB=4,AC=5所以BC=3,因為為直角三角形,經(jīng)分析只能,故,三棱錐的外接球的圓心為PC的中點,所以則球的表面積為.故選C.6、D【解析】
根據(jù)三角形解的個數(shù)的判斷條件得出各選項中對應(yīng)的解的個數(shù),于此可得出正確選項.【詳解】對于A選項,,,此時,無解;對于B選項,,,此時,有兩解;對于C選項,,則為最大角,由于,此時,無解;對于D選項,,且,此時,有且只有一解.故選D.【點睛】本題考查三角形解的個數(shù)的判斷,解題時要熟悉三角形個數(shù)的判斷條件,考查推理能力,屬于中等題.7、D【解析】試題分析:作數(shù)軸觀察易得.考點:集合的基本運算.8、C【解析】
由條件有,利用公式可求夾角.【詳解】,.又又向量與的夾角的范圍是向量與的夾角為.故選:C9、C【解析】
可舉的角在第一象限,但不是銳角,可判斷A;考慮兩向量是否為零向量,可判斷B;由不共線,推得與不共線,可判斷C;考慮兩向量的方向可判斷D,得到答案.【詳解】對于A,銳角是第一象限的角,但第一象限的角不一定為銳角,比如的角在第一象限,但不是銳角,故A錯誤;對于B,如果兩個非零向量滿足,則,若存在零向量,結(jié)論不一定成立,故B錯誤;對于C,在中,記,可得與不共線,則向量與可以作為平面內(nèi)的一組基底,故C正確;對于D,若都是單位向量,且方向相同時,;若方向不相同,結(jié)論不成立,所以D錯誤.故選C.【點睛】本題主要考查了命題的真假判斷,主要是向量共線和垂直的條件,著重考查了判斷能力和分析能力,屬于基礎(chǔ)題.10、B【解析】試題分析:第一次循環(huán):第二次循環(huán):第三次循環(huán):第四次循環(huán):結(jié)束循環(huán),輸出,選B.考點:循環(huán)結(jié)構(gòu)流程圖【名師點睛】算法與流程圖的考查,側(cè)重于對流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學問題,是求和還是求項.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】
作出不等式組表示的平面區(qū)域,根據(jù)目標函數(shù)的幾何意義,結(jié)合圖象,即可求解,得到答案.【詳解】由題意,作出不等式組表示的平面區(qū)域,如圖所示,又由,即表示平面區(qū)域內(nèi)任一點與點之間連線的斜率,顯然直線的斜率最大,又由,解得,則,所以的最大值為2.【點睛】本題主要考查簡單線性規(guī)劃求解目標函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計算能力,屬于基礎(chǔ)題.12、8【解析】
兩直線斜率存在且互相垂直,由斜率乘積為-1求得等式,把目標式子化成,運用基本不等式求得最小值.【詳解】設(shè)直線的斜率為,,直線的斜率為,,兩條直線垂直,,整理得:,,等號成立當且僅當,的最小值為.【點睛】利用“1”的代換,轉(zhuǎn)化成可用基本不等式求最值,考查轉(zhuǎn)化與化歸的思想.13、或【解析】
當直線不過原點時,設(shè)直線的方程為,把點代入求得的值,即可求得直線方程,當直線過原點時,直線的方程為,綜合可得答案.【詳解】當直線不過原點時,設(shè)直線的方程為,把點代入可得:,即此時直線的方程為:當直線過原點時,直線的方程為,即綜上可得:滿足條件的直線方程為:或故答案為:或【點睛】過原點的直線橫縱截距都為0,在解題的時候容易漏掉.14、.【解析】
先求得直線的斜率,由直線垂直時的斜率關(guān)系可求得直線的斜率.再根據(jù)點斜式即可求得直線的方程.【詳解】從原點向直線作垂線,垂足為點則直線的斜率由兩條垂直直線的斜率關(guān)系可知根據(jù)點斜式可得直線的方程為化簡得故答案為:【點睛】本題考查了直線垂直時的斜率關(guān)系,點斜式方程的應(yīng)用,屬于基礎(chǔ)題.15、3【解析】
直接利用數(shù)列的極限的運算法則求解即可.【詳解】.故答案為:3【點睛】本題考查數(shù)列的極限的運算法則,考查計算能力,屬于基礎(chǔ)題.16、【解析】
由題意利用兩個向量共線的性質(zhì),兩個向量坐標形式的運算,可得,再利用基本不等式,求得的最大值.【詳解】向量,,若向量,共線,則,,即,當且僅當,時,取等號.故的最大值為,故答案為:.【點睛】本題主要考查兩個向量共線的性質(zhì),考查兩個向量坐標形式的運算和基本不等式,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析;(Ⅱ)3.9;(Ⅲ)【解析】試題分析:(Ⅰ)根據(jù)公式:頻率=頻數(shù)÷樣本容量可補充完成頻率分布表,然后作出頻率分布直方圖;(Ⅱ)直徑誤差不超過3.33mm的頻率有3.53,3.53,3.53,所以這批球的直徑誤差不超過3.33mm的概率3.53+3.53+3.53=3.9;(Ⅲ)由平均值公式可求得試題解析:(Ⅰ)分組
頻數(shù)
頻率
[4.95,4.97)
43
3.43
[4.97,4.99)
53
3.53
[4.99,5.34)
53
3.53
[5.34,5.33]
53
3.53
合計
433
4
(Ⅱ)設(shè)誤差不超過3.33的事件為,則.(Ⅲ)考點:4.頻率分布直方圖;5.求數(shù)值的平均值18、(1);(2)【解析】
(1)設(shè),再根據(jù)化簡求解方程即可.(2)設(shè)過定點的直線方程為,根據(jù)軸平分可得.再聯(lián)立直線與圓的方程,化簡利用韋達定理求解中參數(shù)的關(guān)系,進而求得定點即可.【詳解】(1)設(shè),因為,故,即,整理可得.(2)當直線與軸垂直,且在圓內(nèi)時,易得關(guān)于軸對稱,故必有軸平分.當直線斜率存在時,設(shè)過定點的直線方程為.設(shè).聯(lián)立,.因為無論直線如何運動,軸都平分,故,即,所以,.所以代入韋達定理有,化簡得.故,恒過定點.即.【點睛】本題主要考查了軌跡方程的求解方法以及聯(lián)立直線與圓的方程,利用韋達定理代入題中所給的關(guān)系式,化簡求直線中參數(shù)的關(guān)系求得定點的問題.屬于難題.19、(1),(2)時,【解析】
(1)設(shè),有題知,得到,再計算矩形的面積,解不等式即可.(2)首先將花壇的面積化簡為,再利用基本不等式的性質(zhì)即可求出面積的最小值.【詳解】(1)設(shè),.因為四邊形為矩形,所以.即:,解得:.所以,.所以,,解得或.因為,所以或.所以的長度范圍是.(2)因為.當且僅當,即時取“”.所以當時,.【點睛】本題第一問考查了函數(shù)模型,第二問考查了基本不等式,屬于中檔題.20、(1)an=【解析】
(1)利用an=S(2)利用錯位相減法可求Tn【詳解】(1)因為Sn=2整理得到an=4,n=1(2)因為bn所以Tn2T所以-Tn【點睛】數(shù)列求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年沈陽地鐵集團有限公司招聘筆試參考題庫含答案解析
- 2024年餐飲店轉(zhuǎn)讓合同協(xié)議樣本
- 二零二五年度自愿離婚協(xié)議書-2025版婚姻解除合同2篇
- 2024版公寓布草采購合同3篇
- 2024版材料開口合同范本
- 二零二五年度旅游餐飲廣告發(fā)布與地方特色推廣合同3篇
- 二零二五年度白酒團購市場推廣合同3篇
- 二零二五年度智能房產(chǎn)過戶合同示范文本3篇
- 感染科醫(yī)生崗位工作總結(jié)
- 家居建材行業(yè)客服工作總結(jié)
- 廣東大灣區(qū)2024-2025學年度高一上學期期末統(tǒng)一測試英語試題(無答案)
- 2024-2025學年遼寧省沈陽市高一上學期1月期末質(zhì)量監(jiān)測數(shù)學試題(含解析)
- 物理(四川)-【八省聯(lián)考】河南、山西、陜西、內(nèi)蒙古、四川、云南、寧夏、青海八省2025年高考綜合改革適應(yīng)性演練聯(lián)考試題和答案
- 《少兒主持人》課件
- 北京市朝陽區(qū)2024-2025學年高二上學期期末考試生物試卷(含答案)
- 2025年西藏拉薩市柳梧新區(qū)城市投資建設(shè)發(fā)展集團有限公司招聘筆試參考題庫附帶答案詳解
- DB51T 1069-2010 四川泡菜生產(chǎn)規(guī)范
- 斷絕關(guān)系協(xié)議書
- 2023-建筑施工技02課件講解
- 2025年部編版一年級語文上冊期末復(fù)習計劃
- 2024高考物理一輪復(fù)習:觀察電容器的充、放電現(xiàn)象(練習)(學生版+解析)
評論
0/150
提交評論