




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
關于全等三角形的判定方法第一頁,共二十二頁,編輯于2023年,星期日
三邊對應相等的兩個三角形全等(可以簡寫為“邊邊邊”或“SSS”)。ABCDEF在△ABC和△DEF中∴△ABC≌△DEF(SSS)AB=DEBC=EFCA=FD用符號語言表達為:三角形全等判定方法1知識回顧:第二頁,共二十二頁,編輯于2023年,星期日
三步走:①準備條件②擺齊條件③得結論注重書寫格式第三頁,共二十二頁,編輯于2023年,星期日除了SSS外,還有其他情況嗎?繼續(xù)探索三角形全等的條件.思考(2)三條邊(1)三個角(3)兩邊一角(4)兩角一邊當兩個三角形滿足六個條件中的三個時,有四種情況:SSS不能!?第四頁,共二十二頁,編輯于2023年,星期日繼續(xù)探討三角形全等的條件:兩邊一角思考:已知一個三角形的兩條邊和一個角,那么這兩條邊與這一個角的位置上有幾種可能性呢?ABCABC圖一圖二在圖一中,∠A是AB和AC的夾角,符合圖一的條件,它可稱為“兩邊夾角”。符合圖二的條件,通常說成“兩邊和其中一邊的對角”第五頁,共二十二頁,編輯于2023年,星期日已知△ABC,畫一個△A′B′C′使AB=A′B′,AC=A′C′,∠A=∠A′。結論:兩邊及夾角對應相等的兩個三角形全等思考:①
△A′B′C′與
△ABC
全等嗎?如何驗正?畫法:1.畫∠DA′E=∠A;2.在射線AD上截取A′B′=AB,在射線A′E上截取A′C′=AC;3.連接B′C′.′ACBA′EDCB′′思考:②這兩個三角形全等是滿足哪三個條件?探索邊角邊第六頁,共二十二頁,編輯于2023年,星期日三角形全等判定方法2用符號語言表達為:在△ABC與△DEF中∴△ABC≌△DEF(SAS)兩邊和它們的夾角對應相等的兩個三角形全等。(可以簡寫成“邊角邊”或“SAS”)FEDCBAAC=DF∠C=∠FBC=EF第七頁,共二十二頁,編輯于2023年,星期日1.在下列圖中找出全等三角形Ⅰ?30o8cm9cmⅥ?30o8cm8cmⅣⅣ8cm5cmⅡ30o?8cm5cmⅤ30o8cm?5cmⅧ8cm5cm?30o8cm9cmⅦⅢ?30o8cm8cmⅢ練習一第八頁,共二十二頁,編輯于2023年,星期日A45°
探索邊邊角BB′C10cm
8cm
8cm
兩邊及其中一邊的對角對應相等的兩個三角形全等嗎?已知:AC=10cm,BC=8cm,∠A=45°.△ABC的形狀與大小是唯一確定的嗎?第九頁,共二十二頁,編輯于2023年,星期日10cm
AB′C45°
8cm
探索邊邊角BA8cm
45°
10cm
CSSA不存在顯然:△ABC與△AB’C不全等第十頁,共二十二頁,編輯于2023年,星期日知識梳理:ABDABCSSA不能判定全等第十一頁,共二十二頁,編輯于2023年,星期日兩邊及一角對應相等的兩個三角形全等嗎?①兩邊及夾角對應相等的兩個三角形全等(SAS);②兩邊及其中一邊的的對角對應相等的兩個三角形不一定全等.③現(xiàn)在你知道哪些三角形全等的判定方法?SSS,SAS第十二頁,共二十二頁,編輯于2023年,星期日例.如圖,AC=BD,∠CAB=∠DBA,你能判斷BC=AD嗎?說明理由。ABCD證明:在△ABC與△BAD中AC=BD
∠CAB=∠DBAAB=BA∴△ABC≌△BAD(SAS)(已知)(已知)(公共邊)∴BC=AD(全等三角形的對應邊相等)第十三頁,共二十二頁,編輯于2023年,星期日因為全等三角形的對應角相等,對應邊相等,所以,證明分別屬于兩個三角形的線段相等或角相等的問題,常常通過證明兩個三角形全等來解決。歸納第十四頁,共二十二頁,編輯于2023年,星期日CABDO在下列推理中填寫需要補充的條件,使結論成立:(1)如圖,在△AOB和△DOC中AO=DO(已知)______=________()BO=CO(已知)∴△AOB≌△DOC()∠AOB∠DOC對頂角相等SAS練習一第十五頁,共二十二頁,編輯于2023年,星期日(2).如圖,在△AEC和△ADB中,已知AE=AD,AC=AB,請說明△AEC≌△ADB的理由。____=____(已知)∠A=∠A(公共角)_____=____(已知)∴△AEC≌△ADB()AEBDCAEADACABSAS解:在△AEC和△ADB中第十六頁,共二十二頁,編輯于2023年,星期日1.若AB=AC,則添加什么條件可得△ABD≌△ACD?△ABD≌△ACDAB=ACABDC∠BAD=∠CADSAS練習二AD=ADBD=CDS第十七頁,共二十二頁,編輯于2023年,星期日2.如圖,要證△ACB≌△ADB,至少選用哪些條件可ABCD△ACB≌△ADBSAS證得△ACB≌△ADBAB=AB∠CAB=∠DABAC=ADSBC=BD第十八頁,共二十二頁,編輯于2023年,星期日3.如圖:己知AD∥BC,AE=CF,AD=BC,E、F都在直線AC上,試說明DE∥BF。FCBEDA●●練習三●●第十九頁,共二十二頁,編輯于2023年,星期日ABCDFE例.如圖,已知AB=DE,AC=DF,要說明△ABC≌△DEF,還需增加一個什么條件?同步練習第二十頁,共二十二頁,編輯于2023年,星期日
三邊對應相等的兩個三角形全等(可以簡寫為“邊邊邊”或“SSS”)。ABCDEF在△ABC和△DEF中∴△ABC≌△DEF(SSS)AB=DEBC=EFCA=FD用符號語言表達為:三角形全等判定方法1知識梳理:第二十一頁,共二十二頁,編輯于2023年,星期日三角形全等判定方法2用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課件制作基礎培訓
- 電廠鍋爐安全培訓
- 小學應急預案技巧
- 腫瘤知識講座
- 倉庫貨物調配的合理性分析計劃
- 教學管理與科研結合計劃
- 基于行業(yè)變化的會計職業(yè)調整計劃
- 推動跨部門合作的人事項目計劃
- 生產基礎知識培訓
- DB12T 713-2016 周轉箱 裝卸操作規(guī)范
- 2025年上海嘉定區(qū)江橋鎮(zhèn)企業(yè)服務有限公司招聘筆試參考題庫附帶答案詳解
- 合作合同模板
- 學校保潔方案
- 羅明亮小數的意義課件
- 2025中國冶金地質總局總部招聘筆試考點考試題庫答案及解析
- 2025高職單招考試(語文)試題(附答案)
- TCI 535-2024 鋁合金液態(tài)模鍛模具技術條件
- 胰島素泵護理管理規(guī)范
- 硅pu球場施工方案
- 企業(yè)數據資產入表流程研究
- 9.1.1 西亞 第1課時 課件 七年級地理下冊 人教版
評論
0/150
提交評論