版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年中考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.甲、乙、丙、丁四名射擊運動員進行淘汰賽,在相同條件下,每人射擊10次,甲、乙兩人的成績?nèi)鐖D所示,丙、丁二人的成績?nèi)绫硭荆蕴幻\動員,從平均數(shù)和方差兩個因素分析,應淘汰()丙丁平均數(shù)88方差1.21.8A.甲 B.乙 C.丙 D.丁2.如圖,已知△ABC中,∠A=75°,則∠1+∠2=()A.335°° B.255° C.155° D.150°3.下列計算正確的是()A.+= B.﹣= C.×=6 D.=44.某個密碼鎖的密碼由三個數(shù)字組成,每個數(shù)字都是0-9這十個數(shù)字中的一個,只有當三個數(shù)字與所設定的密碼及順序完全相同,才能將鎖打開,如果僅忘記了所設密碼的最后那個數(shù)字,那么一次就能打開該密碼的概率是()A.110 B.19 C.15.已知拋物線y=(x﹣)(x﹣)(a為正整數(shù))與x軸交于Ma、Na兩點,以MaNa表示這兩點間的距離,則M1N1+M2N2+…+M2018N2018的值是()A. B. C. D.6.如圖,四邊形ABCD是邊長為1的正方形,動點E、F分別從點C,D出發(fā),以相同速度分別沿CB,DC運動(點E到達C時,兩點同時停止運動).連接AE,BF交于點P,過點P分別作PM∥CD,PN∥BC,則線段MN的長度的最小值為()A. B. C. D.17.如圖,兩個同心圓(圓心相同半徑不同的圓)的半徑分別為6cm和3cm,大圓的弦AB與小圓相切,則劣弧AB的長為()A.2πcm B.4πcm C.6πcm D.8πcm8.如圖,在?ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點E.若BF=8,AB=5,則AE的長為()A.5 B.6 C.8 D.129.拒絕“餐桌浪費”,刻不容緩.節(jié)約一粒米的帳:一個人一日三餐少浪費一粒米,全國一年就可以節(jié)省斤,這些糧食可供9萬人吃一年.“”這個數(shù)據(jù)用科學記數(shù)法表示為()A. B. C. D..10.如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.11.如圖,平行于BC的直線DE把△ABC分成面積相等的兩部分,則的值為()A.1 B. C.-1 D.+112.如圖,菱形ABCD中,∠B=60°,AB=4,以AD為直徑的⊙O交CD于點E,則的長為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖所示,直線y=x+1(記為l1)與直線y=mx+n(記為l2)相交于點P(a,2),則關(guān)于x的不等式x+1≥mx+n的解集為__________.14.已知、為兩個連續(xù)的整數(shù),且,則=________.15.已知關(guān)于x的方程x2+mx+4=0有兩個相等的實數(shù)根,則實數(shù)m的值是______.16.等腰三角形一邊長為8,另一邊長為5,則此三角形的周長為_____.17.甲、乙兩個機器人檢測零件,甲比乙每小時多檢測20個,甲檢測300個比乙檢測200個所用的時間少,若設甲每小時檢測個,則根據(jù)題意,可列出方程:__________.18.在平面直角坐標系中,將點A(﹣3,2)向右平移3個單位長度,再向下平移2個單位長度,那么平移后對應的點A′的坐標是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)班級的課外活動,學生們都很積極.梁老師在某班對同學們進行了一次關(guān)于“我喜愛的體育項目”的調(diào)査,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請根據(jù)圖中的信息,解答下列問題:(1)調(diào)查了________名學生;(2)補全條形統(tǒng)計圖;(3)在扇形統(tǒng)計圖中,“乒乓球”部分所對應的圓心角度數(shù)為________;(4)學校將舉辦運動會,該班將推選5位同學參加乒乓球比賽,有3位男同學和2位女同學,現(xiàn)準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.20.(6分)如圖,已知△ABC內(nèi)接于,AB是直徑,OD∥AC,AD=OC.(1)求證:四邊形OCAD是平行四邊形;(2)填空:①當∠B=時,四邊形OCAD是菱形;②當∠B=時,AD與相切.21.(6分)如圖,將邊長為m的正方形紙板沿虛線剪成兩個小正方形和兩個矩形,拿掉邊長為n的小正方形紙板后,將剩下的三塊拼成新的矩形.用含m或n的代數(shù)式表示拼成矩形的周長;m=7,n=4,求拼成矩形的面積.22.(8分)如圖1,在平面直角坐標系中,直線y=﹣x+1與拋物線y=ax2+bx+c(a≠0)相交于點A(1,0)和點D(﹣4,5),并與y軸交于點C,拋物線的對稱軸為直線x=﹣1,且拋物線與x軸交于另一點B.(1)求該拋物線的函數(shù)表達式;(2)若點E是直線下方拋物線上的一個動點,求出△ACE面積的最大值;(3)如圖2,若點M是直線x=﹣1的一點,點N在拋物線上,以點A,D,M,N為頂點的四邊形能否成為平行四邊形?若能,請直接寫出點M的坐標;若不能,請說明理由.23.(8分)如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿6米的B處安置高為1.5米的測角儀AB,在A處測得電線桿上C處的仰角為30°,求拉線CE的長(結(jié)果保留小數(shù)點后一位,參考數(shù)據(jù):).24.(10分)趙亮同學想利用影長測量學校旗桿的高度,如圖,他在某一時刻立1米長的標桿測得其影長為1.2米,同時旗桿的投影一部分在地面上,另一部分在某一建筑的墻上,分別測得其長度為9.6米和2米,則學校旗桿的高度為________米.25.(10分)已知一個矩形紙片OACB,將該紙片放置在平面直角坐標系中,點A(11,0),點B(0,6),點P為BC邊上的動點(點P不與點B、C重合),經(jīng)過點O、P折疊該紙片,得點B′和折痕OP.設BP=t.(Ⅰ)如圖①,當∠BOP=300時,求點P的坐標;(Ⅱ)如圖②,經(jīng)過點P再次折疊紙片,使點C落在直線PB′上,得點C′和折痕PQ,若AQ=m,試用含有t的式子表示m;(Ⅲ)在(Ⅱ)的條件下,當點C′恰好落在邊OA上時,求點P的坐標(直接寫出結(jié)果即可).26.(12分)隨著地鐵和共享單車的發(fā)展,“地鐵+單車”已經(jīng)成為很多市民出行的選擇.李華從文化宮站出發(fā),先乘坐地鐵,準備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車回家.設他出地鐵的站點與文化宮距離為x(單位:千米),乘坐地鐵的時間(單位:分鐘)是關(guān)于x的一次函數(shù),其關(guān)系如下表:地鐵站ABCDEX(千米)891011.513(分鐘)1820222528(1)求關(guān)于x的函數(shù)表達式;李華騎單車的時間(單位:分鐘)也受x的影響,其關(guān)系可以用來描述.請問:李華應選擇在哪一站出地鐵,才能使他從文化宮回到家所需的時間最短?并求出最短時間.27.(12分)如圖,已知拋物線y=ax2+2x+8與x軸交于A,B兩點,與y軸交于點C,且B(4,0).(1)求拋物線的解析式及其頂點D的坐標;(2)如果點P(p,0)是x軸上的一個動點,則當|PC﹣PD|取得最大值時,求p的值;(3)能否在拋物線第一象限的圖象上找到一點Q,使△QBC的面積最大,若能,請求出點Q的坐標;若不能,請說明理由.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
求出甲、乙的平均數(shù)、方差,再結(jié)合方差的意義即可判斷.【詳解】=(6+10+8+9+8+7+8+9+7+7)=8,=[(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]=×13=1.3;=(7+10+7+7+9+8+7+9+9+7)=8,=[(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]=×12=1.2;丙的平均數(shù)為8,方差為1.2,丁的平均數(shù)為8,方差為1.8,故4個人的平均數(shù)相同,方差丁最大.故應該淘汰?。蔬xD.【點睛】本題考查方差、平均數(shù)、折線圖等知識,解題的關(guān)鍵是記住平均數(shù)、方差的公式.2、B【解析】∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故選B.點睛:本題考查了三角形、四邊形內(nèi)角和定理,掌握n邊形內(nèi)角和為(n﹣2)×180°(n≥3且n為整數(shù))是解題的關(guān)鍵.3、B【解析】
根據(jù)同類二次根式才能合并可對A進行判斷;根據(jù)二次根式的乘法對B進行判斷;先把化為最簡二次根式,然后進行合并,即可對C進行判斷;根據(jù)二次根式的除法對D進行判斷.【詳解】解:A、與不能合并,所以A選項不正確;B、-=2?=,所以B選項正確;C、×=,所以C選項不正確;D、=÷=2÷=2,所以D選項不正確.故選B.【點睛】此題考查二次根式的混合運算,注意先化簡,再進一步利用計算公式和計算方法計算.4、A【解析】試題分析:根據(jù)題意可知總共有10種等可能的結(jié)果,一次就能打開該密碼的結(jié)果只有1種,所以P(一次就能打該密碼)=,故答案選A.考點:概率.5、C【解析】
代入y=0求出x的值,進而可得出MaNa=-,將其代入M1N1+M2N2+…+M2018N2018中即可求出結(jié)論.【詳解】解:當y=0時,有(x-)(x-)=0,解得:x1=,x2=,∴MaNa=-,∴M1N1+M2N2+…+M2018N2018=1-+-+…+-=1-=.故選C.【點睛】本題考查了拋物線與x軸的交點坐標、二次函數(shù)圖象上點的坐標特征以及規(guī)律型中數(shù)字的變化類,利用二次函數(shù)圖象上點的坐標特征求出MaNa的值是解題的關(guān)鍵.6、B【解析】分析:由于點P在運動中保持∠APD=90°,所以點P的路徑是一段以AD為直徑的弧,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,再由勾股定理可得QC的長,再求CP即可.詳解:由于點P在運動中保持∠APD=90°,∴點P的路徑是一段以AD為直徑的弧,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,在Rt△QDC中,QC=,∴CP=QC-QP=,故選B.點睛:本題主要考查的是圓的相關(guān)知識和勾股定理,屬于中等難度的題型.解決這個問題的關(guān)鍵是根據(jù)圓的知識得出點P的運動軌跡.7、B【解析】
首先連接OC,AO,由切線的性質(zhì),可得OC⊥AB,根據(jù)已知條件可得:OA=2OC,進而求出∠AOC的度數(shù),則圓心角∠AOB可求,根據(jù)弧長公式即可求出劣弧AB的長.【詳解】解:如圖,連接OC,AO,
∵大圓的一條弦AB與小圓相切,
∴OC⊥AB,
∵OA=6,OC=3,
∴OA=2OC,
∴∠A=30°,
∴∠AOC=60°,
∴∠AOB=120°,
∴劣弧AB的長==4π,
故選B.【點睛】本題考查切線的性質(zhì),弧長公式,熟練掌握切線的性質(zhì)是解題關(guān)鍵.8、B【解析】試題分析:由基本作圖得到AB=AF,AG平分∠BAD,故可得出四邊形ABEF是菱形,由菱形的性質(zhì)可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,進而得出AE=2AO=1.故選B.考點:1、作圖﹣基本作圖,2、平行四邊形的性質(zhì),3、勾股定理,4、平行線的性質(zhì)9、C【解析】
用科學記數(shù)法表示較大的數(shù)時,一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【詳解】32400000=3.24×107元.
故選C.【點睛】此題主要考查了用科學記數(shù)法表示較大的數(shù),一般形式為a×10n,其中1≤|a|<10,確定a與n的值是解題的關(guān)鍵.10、B【解析】
先根據(jù)翻折變換的性質(zhì)得到△DEF≌△AEF,再根據(jù)等腰三角形的性質(zhì)及三角形外角的性質(zhì)可得到∠BED=CDF,設CD=1,CF=x,則CA=CB=2,再根據(jù)勾股定理即可求解.【詳解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,設CD=1,CF=x,則CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,∴sin∠BED=sin∠CDF=.故選B.【點睛】本題考查的是圖形翻折變換的性質(zhì)、等腰直角三角形的性質(zhì)、勾股定理、三角形外角的性質(zhì),涉及面較廣,但難易適中.11、C【解析】【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性質(zhì)結(jié)合S△ADE=S四邊形BCED,可得出,結(jié)合BD=AB﹣AD即可求出的值.【詳解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,∵S△ADE=S四邊形BCED,S△ABC=S△ADE+S四邊形BCED,∴,∴,故選C.【點睛】本題考查了相似三角形的判定與性質(zhì),牢記相似三角形的面積比等于相似比的平方是解題的關(guān)鍵.12、B【解析】
連接OE,由菱形的性質(zhì)得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出∠DOE=60°,再由弧長公式即可得出答案.【詳解】解:連接OE,如圖所示:∵四邊形ABCD是菱形,∴∠D=∠B=60°,AD=AB=4,∴OA=OD=2,∵OD=OE,∴∠OED=∠D=60°,∴∠DOE=180°﹣2×60°=60°,∴的長==;故選B.【點睛】本題考查弧長公式、菱形的性質(zhì)、等腰三角形的性質(zhì)等知識;熟練掌握菱形的性質(zhì),求出∠DOE的度數(shù)是解決問題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x≥1【解析】
把y=2代入y=x+1,得x=1,∴點P的坐標為(1,2),根據(jù)圖象可以知道當x≥1時,y=x+1的函數(shù)值不小于y=mx+n相應的函數(shù)值,因而不等式x+1≥mx+n的解集是:x≥1,故答案為x≥1.【點睛】本題考查了一次函數(shù)與不等式(組)的關(guān)系及數(shù)形結(jié)合思想的應用.解決此類問題關(guān)鍵是仔細觀察圖形,注意幾個關(guān)鍵點(交點、原點等),做到數(shù)形結(jié)合.14、11【解析】
根據(jù)無理數(shù)的性質(zhì),得出接近無理數(shù)的整數(shù),即可得出a,b的值,即可得出答案.【詳解】∵a<<b,a、b為兩個連續(xù)的整數(shù),
∴,
∴a=5,b=6,
∴a+b=11.
故答案為11.【點睛】本題考查的是估算無理數(shù)的大小,熟練掌握無理數(shù)是解題的關(guān)鍵.15、±4【解析】分析:由方程有兩個相等的實數(shù)根,得到根的判別式等于0,列出關(guān)于m的方程,求出方程的解即可得到m的值.詳解:∵方程有兩個相等的實數(shù)根,∴解得:故答案為點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.16、18或21【解析】當腰為8時,周長為8+8+5=21;當腰為5時,周長為5+5+8=18.故此三角形的周長為18或21.17、【解析】【分析】若設甲每小時檢測個,檢測時間為,乙每小時檢測個,檢測時間為,根據(jù)甲檢測300個比乙檢測200個所用的時間少,列出方程即可.【解答】若設甲每小時檢測個,檢測時間為,乙每小時檢測個,檢測時間為,根據(jù)題意有:.故答案為【點評】考查分式方程的應用,解題的關(guān)鍵是找出題目中的等量關(guān)系.18、(0,0)【解析】
根據(jù)坐標的平移規(guī)律解答即可.【詳解】將點A(-3,2)向右平移3個單位長度,再向下平移2個單位長度,那么平移后對應的點A′的坐標是(-3+3,2-2),即(0,0),故答案為(0,0).【點睛】此題主要考查坐標與圖形變化-平移.平移中點的變化規(guī)律是:橫坐標右移加,左移減;縱坐標上移加,下移減.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、50見解析(3)115.2°(4)【解析】試題分析:(1)用最喜歡籃球的人數(shù)除以它所占的百分比可得總共的學生數(shù);(2)用學生的總?cè)藬?shù)乘以各部分所占的百分比,可得最喜歡足球的人數(shù)和其他的人數(shù),即可把條形統(tǒng)計圖補充完整;(3)根據(jù)圓心角的度數(shù)=360o×它所占的百分比計算;(4)列出樹狀圖可知,共有20種等可能的結(jié)果,兩名同學恰為一男一女的有12種情況,從而可求出答案.解:(1)由題意可知該班的總?cè)藬?shù)=15÷30%=50(名)故答案為50;(2)足球項目所占的人數(shù)=50×18%=9(名),所以其它項目所占人數(shù)=50﹣15﹣9﹣16=10(名)補全條形統(tǒng)計圖如圖所示:(3)“乒乓球”部分所對應的圓心角度數(shù)=360°×=115.2°,故答案為115.2°;(4)畫樹狀圖如圖.由圖可知,共有20種等可能的結(jié)果,兩名同學恰為一男一女的有12種情況,所以P(恰好選出一男一女)==.點睛:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,概率的計算.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息及掌握概率的計算方法是解決問題的關(guān)鍵.20、(1)證明見解析;(2)①30°,②45°【解析】試題分析:(1)根據(jù)已知條件求得∠OAC=∠OCA,∠AOD=∠ADO,然后根據(jù)三角形內(nèi)角和定理得出∠AOC=∠OAD,從而證得OC∥AD,即可證得結(jié)論;
(2)①若四邊形OCAD是菱形,則OC=AC,從而證得OC=OA=AC,得出∠即可求得
②AD與相切,根據(jù)切線的性質(zhì)得出根據(jù)AD∥OC,內(nèi)錯角相等得出從而求得試題解析:(方法不唯一)(1)∵OA=OC,AD=OC,∴OA=AD,∴∠OAC=∠OCA,∠AOD=∠ADO,∵OD∥AC,∴∠OAC=∠AOD,∴∠OAC=∠OCA=∠AOD=∠ADO,∴∠AOC=∠OAD,∴OC∥AD,∴四邊形OCAD是平行四邊形;(2)①∵四邊形OCAD是菱形,∴OC=AC,又∵OC=OA,∴OC=OA=AC,∴∴故答案為②∵AD與相切,∴∵AD∥OC,∴∴故答案為21、(1)矩形的周長為4m;(2)矩形的面積為1.【解析】
(1)根據(jù)題意和矩形的周長公式列出代數(shù)式解答即可.(2)根據(jù)題意列出矩形的面積,然后把m=7,n=4代入進行計算即可求得.【詳解】(1)矩形的長為:m﹣n,矩形的寬為:m+n,矩形的周長為:2[(m-n)+(m+n)]=4m;(2)矩形的面積為S=(m+n)(m﹣n)=m2-n2,當m=7,n=4時,S=72-42=1.【點睛】本題考查了矩形的周長與面積、列代數(shù)式問題、平方差公式等,解題的關(guān)鍵是根據(jù)題意和矩形的性質(zhì)列出代數(shù)式解答.22、(1)y=x2+2x﹣3;(2);(3)詳見解析.【解析】試題分析:(1)先利用拋物線的對稱性確定出點B的坐標,然后設拋物線的解析式為y=a(x+3)(x-1),將點D的坐標代入求得a的值即可;(2)過點E作EF∥y軸,交AD與點F,過點C作CH⊥EF,垂足為H.設點E(m,m2+2m-3),則F(m,-m+1),則EF=-m2-3m+4,然后依據(jù)△ACE的面積=△EFA的面積-△EFC的面積列出三角形的面積與m的函數(shù)關(guān)系式,然后利用二次函數(shù)的性質(zhì)求得△ACE的最大值即可;(3)當AD為平行四邊形的對角線時.設點M的坐標為(-1,a),點N的坐標為(x,y),利用平行四邊形對角線互相平分的性質(zhì)可求得x的值,然后將x=-2代入求得對應的y值,然后依據(jù)=,可求得a的值;當AD為平行四邊形的邊時.設點M的坐標為(-1,a).則點N的坐標為(-6,a+5)或(4,a-5),將點N的坐標代入拋物線的解析式可求得a的值.試題解析:(1)∴A(1,0),拋物線的對稱軸為直線x=-1,∴B(-3,0),設拋物線的表達式為y=a(x+3)(x-1),將點D(-4,5)代入,得5a=5,解得a=1,∴拋物線的表達式為y=x2+2x-3;(2)過點E作EF∥y軸,交AD與點F,交x軸于點G,過點C作CH⊥EF,垂足為H.設點E(m,m2+2m-3),則F(m,-m+1).∴EF=-m+1-m2-2m+3=-m2-3m+4.∴S△ACE=S△EFA-S△EFC=EF·AG-EF·HC=EF·OA=-(m+)2+.∴△ACE的面積的最大值為;(3)當AD為平行四邊形的對角線時:設點M的坐標為(-1,a),點N的坐標為(x,y).∴平行四邊形的對角線互相平分,∴=,=,解得x=-2,y=5-a,將點N的坐標代入拋物線的表達式,得5-a=-3,解得a=8,∴點M的坐標為(-1,8),當AD為平行四邊形的邊時:設點M的坐標為(-1,a),則點N的坐標為(-6,a+5)或(4,a-5),∴將x=-6,y=a+5代入拋物線的表達式,得a+5=36-12-3,解得a=16,∴M(-1,16),將x=4,y=a-5代入拋物線的表達式,得a-5=16+8-3,解得a=26,∴M(-1,26),綜上所述,當點M的坐標為(-1,26)或(-1,16)或(-1,8)時,以點A,D,M,N為頂點的四邊形能成為平行四邊形.23、5.7米.【解析】試題分析:由題意,過點A作AH⊥CD于H.在Rt△ACH中,可求出CH,進而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的長.試題解析:解:如答圖,過點A作AH⊥CD,垂足為H,由題意可知四邊形ABDH為矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6.在Rt△ACH中,CH=AH?tan∠CAH=6tan30°=6×,∵DH=1.5,∴CD=+1.5.在Rt△CDE中,∵∠CED=60°,∴CE=(米).答:拉線CE的長約為5.7米.考點:1.解直角三角形的應用(仰角俯角問題);2.銳角三角函數(shù)定義;3.特殊角的三角函數(shù)值;4.矩形的判定和性質(zhì).24、10【解析】試題分析:根據(jù)相似的性質(zhì)可得:1:1.2=x:9.6,則x=8,則旗桿的高度為8+2=10米.考點:相似的應用25、(Ⅰ)點P的坐標為(,1).(Ⅱ)(0<t<11).(Ⅲ)點P的坐標為(,1)或(,1).【解析】
(Ⅰ)根據(jù)題意得,∠OBP=90°,OB=1,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案.(Ⅱ)由△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易證得△OBP∽△PCQ,然后由相似三角形的對應邊成比例,即可求得答案.(Ⅲ)首先過點P作PE⊥OA于E,易證得△PC′E∽△C′QA,由勾股定理可求得C′Q的長,然后利用相似三角形的對應邊成比例與,即可求得t的值:【詳解】(Ⅰ)根據(jù)題意,∠OBP=90°,OB=1.在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=12+t2,解得:t1=,t2=-(舍去).∴點P的坐標為(,1).(Ⅱ)∵△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,∴△OB′P≌△OBP,△QC′P≌△QCP.∴∠OPB′=∠OPB,∠QPC′=∠QPC.∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°.∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ.又∵∠OBP=∠C=90°,∴△OBP∽△PCQ.∴.由題意設BP=t,AQ=m,BC=11,AC=1,則PC=11-t,CQ=1-m.∴.∴(0<t<11).(Ⅲ)點P的坐標為(,1)或(,1).過點P作PE⊥OA于E,∴∠PEA=∠QAC′=90°.∴∠PC′E+∠EPC′=90°.∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A.∴△PC′E∽△C′QA.∴.∵PC′=PC=11-t,PE=OB=1,AQ=m,C′Q=CQ=1-m,∴.∴.∵,即,∴,即.將代入,并化簡,得.解得:.∴點P的坐標為(,1)或(,1).26、(1)y1=2x+2;(2)選擇在B站出地鐵,最短時間為39.5分鐘.【解析】
(1)根據(jù)表格中的數(shù)據(jù),運用待定系數(shù)法,即可求得y1關(guān)于x的函數(shù)表達式;(2)設李華從文化宮回到家所需的時間為y,則y=y1+y2=x2-9x+80,根據(jù)二次函數(shù)的性質(zhì)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024全新一代智能家居設備租賃服務合同下載3篇
- 2024年度新能源汽車充電樁安裝與銷售獨家代理合同3篇
- 二項式定理及應用課件
- 寬帶合作合同范例
- 門面提前終止合同范例
- 購房出資合同范例
- 商鋪出兌合同范例
- 黃金產(chǎn)品維修合同范例
- 勞務合同范例兒
- 風帆股合同范例
- 天津市2023-2024學年高一上學期語文期末考試試卷(含答案)3
- 旅游產(chǎn)品及開發(fā)
- 2025屆東莞東華高級中學高二物理第一學期期末檢測試題含解析
- 剪刀式登高車安全技術(shù)交底
- 工廠銑工安全培訓課件
- 餐飲組織架構(gòu)圖(完整版)-20210618215128
- 部編版語文小學五年級上學期期末試卷與參考答案(2024-2025學年)
- 2024重慶城建控股(集團)限責任公司招聘高頻難、易錯點500題模擬試題附帶答案詳解
- 兒科吸痰小講課
- 2024-秋季新版人教版三年級上冊英語單詞
- 中國上市及新三板掛牌公司低空經(jīng)濟發(fā)展報告2024
評論
0/150
提交評論