2021-2022學(xué)年山西省晉城市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2021-2022學(xué)年山西省晉城市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2021-2022學(xué)年山西省晉城市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2021-2022學(xué)年山西省晉城市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2021-2022學(xué)年山西省晉城市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022學(xué)年山西省晉城市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.直線l與x軸平行,且與曲線y=x-ex相切,則切點(diǎn)的坐標(biāo)是()A.A.(1,1)

B.(-1,1)

C.(0,-l)

D.(0,1)

2.

3.A.沒(méi)有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線

4.

5.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于()。A.0

B.

C.

D.π

6.設(shè)D={(x,y){|x2+y2≤a2,a>0,y≥0),在極坐標(biāo)下二重積分(x2+y2)dxdy可以表示為()A.∫0πdθ∫0ar2dr

B.∫0πdθ∫0ar3dr

C.D.

7.A.A.Ax

B.

C.

D.

8.A.A.

B.

C.

D.

9.

10.

11.

12.A.0B.1C.2D.-1

13.方程z=x2+y2表示的曲面是()

A.橢球面B.旋轉(zhuǎn)拋物面C.球面D.圓錐面

14.

15.用多頭鉆床在水平放置的工件上同時(shí)鉆四個(gè)直徑相同的孔,如圖所示,每個(gè)鉆頭的切屑力偶矩為M1=M2=M3=M4=一15N·m,則工件受到的總切屑力偶矩為()。

A.30N·m,逆時(shí)針?lè)较駼.30N·m,順時(shí)針?lè)较駽.60N·m,逆時(shí)針?lè)较駾.60N·m,順時(shí)針?lè)较?/p>

16.

17.

18.A.A.

B.

C.

D.

19.

20.

二、填空題(20題)21.22.

23.微分方程y"-y'=0的通解為______.

24.25.26.

27.

28.函數(shù)f(x)=ex,g(x)=sinx,則f[g(x)]=__________。

29.

30.31.

32.

33.

34.

35.

36.∫(x2-1)dx=________。

37.

38.

39.

40.三、計(jì)算題(20題)41.求微分方程y"-4y'+4y=e-2x的通解.

42.

43.

44.

45.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.46.將f(x)=e-2X展開為x的冪級(jí)數(shù).47.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.48.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則49.證明:50.51.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).52.53.求微分方程的通解.54.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

55.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.56.求曲線在點(diǎn)(1,3)處的切線方程.

57.

58.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

59.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

60.四、解答題(10題)61.62.求由曲線y=2-x2,y=2x-1及x≥0圍成的平面圖形的面積S,以及此平面圖形繞x軸旋轉(zhuǎn)所成旋轉(zhuǎn)體的體積.

63.

64.65.求y"-2y'-8y=0的通解.

66.67.68.(本題滿分8分)69.70.五、高等數(shù)學(xué)(0題)71.

的極大值是_________;極小值是________。

六、解答題(0題)72.

參考答案

1.C

2.D

3.D

4.A

5.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論。

6.B因?yàn)镈:x2+y2≤a2,a>0,y≥0,令則有r2≤a2,0≤r≤a,0≤θ≤π,所以(x2+y2)dxdy=∫0πdθ∫0ar2.rdr=∫0πdθ∫0ar3.rdr故選B。

7.D

8.D

9.D解析:

10.C

11.C

12.C

13.B旋轉(zhuǎn)拋物面的方程為z=x2+y2.

14.C

15.D

16.A解析:

17.B解析:

18.D本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的基本性質(zhì).

19.D

20.A

21.x=-122.(2x+cosx)dx.

本題考查的知識(shí)點(diǎn)為微分運(yùn)算.

23.y=C1+C2exy=C1+C2ex

解析:本題考查的知識(shí)點(diǎn)為二階級(jí)常系數(shù)線性微分方程的求解.

特征方程為r2-r=0,

特征根為r1=0,r2=1,

方程的通解為y=C1+C2ex.

24.本題考查的知識(shí)點(diǎn)為定積分計(jì)算.

可以利用變量替換,令u=2x,則du=2dx,當(dāng)x=0時(shí),a=0;當(dāng)x=1時(shí),u=2.因此

或利用湊微分法

本題中考生常在最后由于粗心而出現(xiàn)錯(cuò)誤.如

這里中丟掉第二項(xiàng).

25.

26.

27.63/1228.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx

29.x=-3

30.f(x)本題考查了導(dǎo)數(shù)的原函數(shù)的知識(shí)點(diǎn)。

31.

32.2/3

33.

34.11解析:

35.e1/2e1/2

解析:

36.

37.x2+y2=Cx2+y2=C解析:

38.

解析:

39.

40.

41.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

42.

43.

44.由一階線性微分方程通解公式有

45.函數(shù)的定義域?yàn)?/p>

注意

46.

47.

48.由等價(jià)無(wú)窮小量的定義可知

49.

50.

51.

列表:

說(shuō)明

52.

53.

54.

55.由二重積分物理意義知

56.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

57.

58.

59.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

60.

61.

62.如圖10-2所示.本題考查的知識(shí)點(diǎn)為利用定積分求平面圖形的面積;利用定積分求旋轉(zhuǎn)體體積.

需注意的是所給平面圖形一部分位于x軸上方,而另一部分位于x軸下方.而位于x軸下方的圖形繞x軸旋轉(zhuǎn)一周所成的旋轉(zhuǎn)體包含于x軸上方的圖形繞x軸旋轉(zhuǎn)一周所成的旋轉(zhuǎn)體之中,因此只需求出x軸上方圖形繞x軸旋轉(zhuǎn)所成旋轉(zhuǎn)體的體積,即為所求旋轉(zhuǎn)體體積.

63.

64.65.特征方程為r2-2r-8=0特征根為r1=-2,r2=4方程的通解為

66.

67.68.本題考查的知識(shí)點(diǎn)為極限運(yùn)算.

解法1

解法2

在極限運(yùn)算中,先進(jìn)行等價(jià)無(wú)窮小代換,這是首要問(wèn)題.應(yīng)引起注意.

69.70.本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算(極坐標(biāo)系).

利用極坐標(biāo),區(qū)域D可以表示為

0≤0≤π,0≤r≤2,

如果積分區(qū)域?yàn)閳A域或圓的-部分,被積函數(shù)為f(x2+y2)的二重積分,通常利用極坐標(biāo)計(jì)算較方便.

使用極坐標(biāo)計(jì)算二重積分時(shí),要先將區(qū)域D的邊界曲線化為極坐標(biāo)下的方程表示,以確定出區(qū)域D的不等式表示式,再將積分

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論