版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年江蘇省泰州市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案及部分解析)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.用待定系數(shù)法求微分方程y"-y=xex的一個(gè)特解時(shí),特解的形式是(式中α、b是常數(shù))。A.(αx2+bx)ex
B.(αx2+b)ex
C.αx2ex
D.(αx+b)ex
3.
4.
5.()是一個(gè)組織的精神支柱,是組織文化的核心。
A.組織的價(jià)值觀B.倫理觀C.組織精神D.組織素養(yǎng)
6.
7.等于().A.A.0
B.
C.
D.∞
8.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx
9.
10.級(jí)數(shù)(k為非零正常數(shù))().A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
11.
12.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C
13.按照盧因的觀點(diǎn),組織在“解凍”期間的中心任務(wù)是()
A.改變員工原有的觀念和態(tài)度B.運(yùn)用策略,減少對(duì)變革的抵制C.變革約束力、驅(qū)動(dòng)力的平衡D.保持新的組織形態(tài)的穩(wěn)定
14.
15.A.A.5B.3C.-3D.-5
16.()有助于同級(jí)部門(mén)或同級(jí)領(lǐng)導(dǎo)之間的溝通了解。
A.上行溝通B.下行溝通C.平行溝通D.分權(quán)17.下列命題中正確的有()A.A.
B.
C.
D.
18.
19.
20.A.dx+dyB.1/3·(dx+dy)C.2/3·(dx+dy)D.2(dx+dy)二、填空題(20題)21.22.23.設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,則該切線方程為_(kāi)_____.
24.
25.
26.
27.
28.
29.
30.設(shè)y=f(x)可導(dǎo),點(diǎn)xo=2為f(x)的極小值點(diǎn),且f(2)=3.則曲線y=f(x)在點(diǎn)(2,3)處的切線方程為_(kāi)_________.
31.
32.
33.
34.函數(shù)的間斷點(diǎn)為_(kāi)_____.
35.
36.
37.
38.y"+8y=0的特征方程是________。
39.
40.曲線y=x3-6x的拐點(diǎn)坐標(biāo)為_(kāi)_____.三、計(jì)算題(20題)41.42.
43.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
44.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
45.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.46.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).47.求微分方程的通解.
48.
49.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).50.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.51.證明:52.
53.
54.求微分方程y"-4y'+4y=e-2x的通解.
55.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
56.
57.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.58.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
59.60.求曲線在點(diǎn)(1,3)處的切線方程.四、解答題(10題)61.
62.63.
64.
65.
66.求函數(shù)f(x,y)=e2x(x+y2+2y)的極值.
67.設(shè)y=(1/x)+ln(1+x),求y'。
68.求微分方程y"-4y'+4y=e-2x的通解。
69.
70.五、高等數(shù)學(xué)(0題)71.下列等式中正確的是()。A.
B.
C.
D.
六、解答題(0題)72.設(shè)y=xcosx,求y'.
參考答案
1.A
2.Ay"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1
y"-y=xex中自由項(xiàng)f(x)=xex,α=1是特征單根,應(yīng)設(shè)y*=x(ax+b)ex=(αx2+bx)ex。
所以選A。
3.A
4.C
5.C解析:組織精神是組織文化的核心,是一個(gè)組織的精神支柱。
6.C
7.A
8.B
9.C
10.A本題考查的知識(shí)點(diǎn)為無(wú)窮級(jí)數(shù)的收斂性.
由于收斂,可知所給級(jí)數(shù)絕對(duì)收斂.
11.C
12.C
13.A解析:組織在解凍期間的中心任務(wù)是改變員工原有的觀念和態(tài)度。
14.A解析:
15.Cf(x)為分式,當(dāng)x=-3時(shí),分式的分母為零,f(x)沒(méi)有定義,因此
x=-3為f(x)的間斷點(diǎn),故選C。
16.C解析:平行溝通有助于同級(jí)部門(mén)或同級(jí)領(lǐng)導(dǎo)之間的溝通了解。
17.B
18.B
19.C
20.C本題考查了二元函數(shù)的全微分的知識(shí)點(diǎn),
21.
22.23.y=f(1)本題考查的知識(shí)點(diǎn)有兩個(gè):一是導(dǎo)數(shù)的幾何意義,二是求切線方程.
設(shè)切點(diǎn)為(x0,f(x0)),則曲線y=f(x)過(guò)該點(diǎn)的切線方程為
y-f(x0)=f'(x0)(x-x0).
由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f'(x0)=0,故所求切線方程為
y=f(1)=0.
本題中考生最常見(jiàn)的錯(cuò)誤為:將曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程寫(xiě)為
y-f(x0)=f'(x)(x-x0)
而導(dǎo)致錯(cuò)誤.本例中錯(cuò)誤地寫(xiě)為
y-f(1)=f'(x)(x-1).
本例中由于f(x)為抽象函數(shù),一些考生不習(xí)慣于寫(xiě)f(1),有些人誤寫(xiě)切線方程為
y-1=0.
24.
25.
26.
解析:
27.ex2
28.3x2siny
29.
本題考查的知識(shí)點(diǎn)為不定積分的換元積分法.
30.
31.
本題考查的知識(shí)點(diǎn)為連續(xù)性與極限的關(guān)系,左極限、右極限與極限的關(guān)系.
32.
解析:
33.-2sin2-2sin2解析:34.本題考查的知識(shí)點(diǎn)為判定函數(shù)的間斷點(diǎn).
僅當(dāng),即x=±1時(shí),函數(shù)沒(méi)有定義,因此x=±1為函數(shù)的間斷點(diǎn)。
35.
36.
37.1+2ln2
38.r2+8r=0本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性微分方程特征方程的概念。y"+8y"=0的特征方程為r2+8r=0。
39.
本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.40.(0,0)本題考查的知識(shí)點(diǎn)為求曲線的拐點(diǎn).
依求曲線拐點(diǎn)的一般步驟,只需
(1)先求出y".
(2)令y"=0得出x1,…,xk.
(3)判定在點(diǎn)x1,x2,…,xk兩側(cè),y"的符號(hào)是否異號(hào).若在xk的兩側(cè)y"異號(hào),則點(diǎn)(xk,f(xk)為曲線y=f(x)的拐點(diǎn).
y=x3-6x,
y'=3x2-6,y"=6x.
令y"=0,得到x=0.當(dāng)x=0時(shí),y=0.
當(dāng)x<0時(shí),y"<0;當(dāng)x>0時(shí),y">0.因此點(diǎn)(0,0)為曲線y=x3-6x的拐點(diǎn).
本題出現(xiàn)較多的錯(cuò)誤為:填x=0.這個(gè)錯(cuò)誤產(chǎn)生的原因是對(duì)曲線拐點(diǎn)的概念不清楚.拐點(diǎn)的定義是:連續(xù)曲線y=f(x)上的凸與凹的分界點(diǎn)稱之為曲線的拐點(diǎn).其一般形式為(x0,f(x0)),這是應(yīng)該引起注意的,也就是當(dāng)判定y"在x0的兩側(cè)異號(hào)之后,再求出f(x0),則拐點(diǎn)為(x0,f(x0)).
注意極值點(diǎn)與拐點(diǎn)的不同之處!
41.
42.由一階線性微分方程通解公式有
43.由等價(jià)無(wú)窮小量的定義可知
44.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
45.
46.
47.
48.
49.
列表:
說(shuō)明
50.由二重積分物理意義知
51.
52.
則
53.
54.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
55.函數(shù)的定義域?yàn)?/p>
注意
56.
57.
58.
59.60.曲線方程為,點(diǎn)(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個(gè)人版權(quán)使用合同范本4篇
- 2025年度水利設(shè)施維護(hù)承包合同樣本4篇
- 2025年銷售經(jīng)理勞動(dòng)合同編制與執(zhí)行手冊(cè)2篇
- 2025年度文化藝術(shù)館軟裝承接合同樣本4篇
- Unit 1 The king's new clothes(說(shuō)課稿)-2024-2025學(xué)年譯林版(三起)英語(yǔ)六年級(jí)上冊(cè)
- 二零二五版臨時(shí)租車合同售后服務(wù)承諾4篇
- 2024-2026年中國(guó)軟件產(chǎn)業(yè)園行業(yè)發(fā)展前景及行業(yè)投資策略研究報(bào)告
- 2025年中國(guó)喹硫平行業(yè)發(fā)展運(yùn)行現(xiàn)狀及投資潛力預(yù)測(cè)報(bào)告
- 2025年中國(guó)新型平板跑步機(jī)市場(chǎng)全面調(diào)研及行業(yè)投資潛力預(yù)測(cè)報(bào)告
- 2025高考生物備考說(shuō)課稿:動(dòng)物和人體生命活動(dòng)的調(diào)節(jié)之以下丘腦為核心構(gòu)建生命活動(dòng)調(diào)節(jié)模型
- TD/T 1060-2021 自然資源分等定級(jí)通則(正式版)
- 人教版二年級(jí)下冊(cè)口算題大全1000道可打印帶答案
- 《創(chuàng)傷失血性休克中國(guó)急診專家共識(shí)(2023)》解讀
- 倉(cāng)庫(kù)智能化建設(shè)方案
- 海外市場(chǎng)開(kāi)拓計(jì)劃
- 2024年度國(guó)家社會(huì)科學(xué)基金項(xiàng)目課題指南
- 供應(yīng)鏈組織架構(gòu)與職能設(shè)置
- 幼兒數(shù)學(xué)益智圖形連線題100題(含完整答案)
- 2024年九省聯(lián)考新高考 數(shù)學(xué)試卷(含答案解析)
- 紅色歷史研學(xué)旅行課程設(shè)計(jì)
- 如何避免護(hù)理患者投訴
評(píng)論
0/150
提交評(píng)論