七年級(jí)上冊數(shù)學(xué)《有理數(shù)的加減》教案_第1頁
七年級(jí)上冊數(shù)學(xué)《有理數(shù)的加減》教案_第2頁
七年級(jí)上冊數(shù)學(xué)《有理數(shù)的加減》教案_第3頁
七年級(jí)上冊數(shù)學(xué)《有理數(shù)的加減》教案_第4頁
七年級(jí)上冊數(shù)學(xué)《有理數(shù)的加減》教案_第5頁
已閱讀5頁,還剩53頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

PAGE第1頁,共1頁七年級(jí)上冊數(shù)學(xué)《有理數(shù)的加減》教案七年級(jí)上冊數(shù)學(xué)《有理數(shù)的加減》教案(精選17篇)

七年級(jí)上冊數(shù)學(xué)《有理數(shù)的加減》教案篇1

一、學(xué)生起點(diǎn)分析

學(xué)生的知識(shí)技能基礎(chǔ):學(xué)生在小學(xué)已經(jīng)學(xué)習(xí)過算術(shù)四則運(yùn)算,而初中的有理數(shù)運(yùn)算是以小學(xué)算術(shù)四則運(yùn)算為基礎(chǔ)的,不同的是有理數(shù)運(yùn)算多了一個(gè)符號(hào)問題。符號(hào)法則是有理數(shù)運(yùn)算法則的重要組成部分,也是學(xué)生學(xué)習(xí)本章知識(shí)和今后學(xué)習(xí)其他與計(jì)算有關(guān)的內(nèi)容時(shí)容易出錯(cuò)的知識(shí)點(diǎn)之一。

學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在前面相關(guān)知識(shí)的學(xué)習(xí)過程中,學(xué)生已經(jīng)經(jīng)歷了一些數(shù)學(xué)活動(dòng),感受到了數(shù)的范圍的擴(kuò)大,能借助生活經(jīng)驗(yàn)對一些簡單的實(shí)際問題進(jìn)行有理數(shù)的運(yùn)算,如計(jì)算比賽的得分,計(jì)算溫差等等。同時(shí)在以前的數(shù)學(xué)學(xué)習(xí)中學(xué)生已經(jīng)經(jīng)歷了很多合作學(xué)習(xí)的過程,具有了一定的合作學(xué)習(xí)的經(jīng)驗(yàn),具備了一定數(shù)學(xué)交流的能力。

學(xué)生學(xué)習(xí)中的困難預(yù)設(shè):學(xué)生學(xué)習(xí)數(shù)學(xué)是一種認(rèn)識(shí)過程,要遵循一般的認(rèn)識(shí)規(guī)律,而七年級(jí)的學(xué)生,對異號(hào)兩數(shù)相加從未接觸過,與小學(xué)加法比較,思維強(qiáng)度增大,需要通過絕對值大小的比較來確定和的符號(hào)和加法轉(zhuǎn)化為減法兩個(gè)過程,要求學(xué)生在課堂上短時(shí)間內(nèi)完成這個(gè)認(rèn)識(shí)過程確有一定的難度,在教學(xué)時(shí)應(yīng)從實(shí)例出發(fā),充分利用教材中的正負(fù)抵消的思想,用數(shù)形結(jié)合的觀點(diǎn)加以解釋,讓學(xué)生感知法則的由來,以突破這一難點(diǎn)。

二、教學(xué)任務(wù)分析

對于有理數(shù)的運(yùn)算,首先在于運(yùn)算的意義的理解,即首先要回答為什么要進(jìn)行運(yùn)算。為此,必須讓學(xué)生通過具體的問題情境,認(rèn)識(shí)到運(yùn)算的作用,加深學(xué)生對運(yùn)算本身意義的理解,同時(shí)也讓學(xué)生體會(huì)到運(yùn)算的應(yīng)用,從而培養(yǎng)學(xué)生一定的應(yīng)用意識(shí)和能力。教科書基于學(xué)生學(xué)習(xí)了相反數(shù)和絕對值基礎(chǔ)之上,提出了本課時(shí)的具體學(xué)習(xí)任務(wù):探索有理數(shù)的加法運(yùn)算法則,進(jìn)行有理數(shù)的加法運(yùn)算。本課時(shí)的教學(xué)重點(diǎn)是有理數(shù)加法法則的探索過程,利用有理數(shù)的加法法則進(jìn)行計(jì)算,教學(xué)難點(diǎn)是異號(hào)兩數(shù)相加的法則。教學(xué)方法是“引導(dǎo)——分類——?dú)w納”。本課時(shí)的教學(xué)目標(biāo)如下:

1.經(jīng)歷探索有理數(shù)加法法則的過程,理解有理數(shù)的加法法則;

2.能熟練進(jìn)行整數(shù)加法運(yùn)算;

3.培養(yǎng)學(xué)生的數(shù)學(xué)交流和歸納猜想的能力;

4.滲透分類、探索、歸納等思想方法,使學(xué)生了解研究數(shù)學(xué)的一些基本方法。

三、教學(xué)過程設(shè)計(jì)

本課時(shí)設(shè)計(jì)了六個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié):復(fù)習(xí)引入,提出問題;第二環(huán)節(jié):活動(dòng)探究,猜想結(jié)論;第三環(huán)節(jié):驗(yàn)證明確結(jié)論;第四環(huán)節(jié):運(yùn)用鞏固;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):布置作業(yè)。

(一)復(fù)習(xí)引入,提出問題

活動(dòng)內(nèi)容:

1.復(fù)習(xí)提問:

(1)下列各組數(shù)中,哪一個(gè)較大?

(2)一位同學(xué)在一條東西方向的跑道上,先向東走了20米,又向西走了30米,能否確定他現(xiàn)在的位置位于出發(fā)點(diǎn)的哪個(gè)方向,與原來出發(fā)的位置相距多少米?若向東記為正,向西記為負(fù),該問題用算式表示為。

活動(dòng)目的:我們已經(jīng)熟悉正數(shù)的運(yùn)算,然而實(shí)際問題中做加法運(yùn)算的數(shù)有可能超出正數(shù)范圍。這里先讓學(xué)生回顧在具體問題中感受正數(shù)和負(fù)數(shù)的加法運(yùn)算。

2.提出問題:

某班舉行知識(shí)競賽,評(píng)分標(biāo)準(zhǔn)是:答對一題加1分,答錯(cuò)一題扣1分,不回答得0分.

如果我們用1個(gè)表示+1,用1個(gè),那么就表示0,同樣也表示0.

(1)計(jì)算(-2)+(-3).

在方框中放進(jìn)2個(gè)和3個(gè):

因此,(-2)+(-3)=-5.

用類似的方法計(jì)算(2)(-3)+2

(3)3+(-2)

(4)4+(-4)

思考:兩個(gè)有理數(shù)相加,還有哪些不同的情形?舉例說明。

引導(dǎo)學(xué)生列舉兩個(gè)正數(shù)相加,如3+2,一個(gè)數(shù)和零相加,如0+(-4),4+0。

活動(dòng)目的:通過實(shí)際問題情境類比列出兩個(gè)有理數(shù)相加的7種不同情形,兩個(gè)正數(shù)相加、兩個(gè)負(fù)數(shù)相加,異號(hào)兩數(shù)相加(根據(jù)絕對值又可分為三類)、一個(gè)加數(shù)為0。進(jìn)而討論如何進(jìn)行一般的有理數(shù)加法的運(yùn)算。

活動(dòng)的實(shí)際效果:實(shí)際問題情境為學(xué)生營造了良好的學(xué)習(xí)氛圍,利于他們積極探究.

(二)活動(dòng)探究,猜想結(jié)論:

上面我們列出了兩個(gè)有理數(shù)相加的7種不同情形,并根據(jù)它們的具體意義得出了它們相加的和.但是,要計(jì)算兩個(gè)有理數(shù)相加所得的和,我們總不能一直用這種方法.現(xiàn)在請同學(xué)們仔細(xì)觀察比較這7個(gè)算式,你能從中發(fā)現(xiàn)有理數(shù)加法的運(yùn)算法則嗎?也就是結(jié)果的符號(hào)怎么定?絕對值怎么算?

學(xué)生分組進(jìn)行活動(dòng),教師關(guān)注學(xué)生在活動(dòng)中的表現(xiàn),可以根據(jù)學(xué)生的實(shí)際情況給予適當(dāng)點(diǎn)撥和引導(dǎo),鼓勵(lì)學(xué)生大膽發(fā)表自己的意見,最后形成統(tǒng)一的認(rèn)識(shí)。

對“一起探究”,教師可引導(dǎo)學(xué)生按以下步驟思考:

1、觀察列出的具體算式,根據(jù)兩個(gè)加數(shù)的符號(hào)分類:兩個(gè)正數(shù)相加、兩個(gè)負(fù)數(shù)相加,異號(hào)兩數(shù)相加(根據(jù)絕對值又可分為三類)、一個(gè)加數(shù)為0。

2、同號(hào)兩數(shù)相加時(shí),和的符號(hào)與兩個(gè)加數(shù)的符號(hào)有怎樣的關(guān)系?和的絕對值和加數(shù)的絕對值有怎樣的關(guān)系?異號(hào)兩數(shù)相加時(shí)和的符號(hào)與兩個(gè)加數(shù)的符號(hào)有怎樣的關(guān)系?和的絕對值和加數(shù)的絕對值有怎么樣的關(guān)系?有一個(gè)加數(shù)為0時(shí),和是什么?

3、從中歸納概括出規(guī)律

在學(xué)生探究的基礎(chǔ)上,教師引出規(guī)定的加法法則。

在活動(dòng)中,盡可能讓學(xué)生獨(dú)立完成,必要時(shí)可以交流,教師只在適當(dāng)?shù)臅r(shí)候給予幫助。

同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對值相加。

異號(hào)兩數(shù)相加,絕對值值相等時(shí)和為0;絕對值不相等時(shí),取絕對值較大的加數(shù)的符號(hào),并用較大的絕對值減去較小的絕對值。

一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。

活動(dòng)目的:利用分組討論、分類歸納幫助學(xué)生理解加法運(yùn)算過程,同時(shí)有利于加法運(yùn)算法則的歸納。

活動(dòng)的實(shí)際效果:由于采用了圖示的教學(xué)手段,在教師的引導(dǎo)下讓學(xué)生分類觀察,發(fā)現(xiàn)規(guī)律,用自己的語言表達(dá)規(guī)律,最后由學(xué)生對規(guī)律進(jìn)行歸納總結(jié)補(bǔ)充,從而得出有理數(shù)的加法法則.通過實(shí)際問題情境,讓學(xué)生親身參加了探索發(fā)現(xiàn),獲取知識(shí)和技能的全過程。理解有理數(shù)加法法則規(guī)定的合理性,培養(yǎng)了學(xué)生的分類和歸納概括的能力。

(三)驗(yàn)證明確結(jié)論:

例1計(jì)算下列算式的結(jié)果,并說明理由:

(1)180+(-10)(2)(-10)+(-1);

(3)5+(-5);(4)0+(-2)

活動(dòng)目的:給學(xué)生提供示范,進(jìn)行有理數(shù)加法,可以按照“一觀察,二確定,三求和”的步驟進(jìn)行,一觀察是指觀察兩個(gè)加數(shù)是同號(hào)還是異號(hào),二確定是指確定“和”的符號(hào),三求和是指計(jì)算“和”的絕對值.

活動(dòng)的實(shí)際效果:通過習(xí)題,加深了學(xué)生對有理數(shù)加法法則的理解。

(四)運(yùn)用鞏固:

活動(dòng)內(nèi)容:

1.口答下列算式的結(jié)果

(1)(+4)+(+3);(2)(-4)+(-3);

(3)(+4)+(-3);(4)(+3)+(-4);

(5)(+4)+(-4);(6)(-3)+0

(7)0+(+2);(8)0+0.

活動(dòng)目的:通過這組練習(xí),讓學(xué)生進(jìn)一步鞏固有理數(shù)加法的法則,達(dá)到熟練程度。

2.請同學(xué)們完成書上的隨堂練習(xí):

(1)(-25)+(-7);(2)(-13)+5;

(3)(-23)+0;(4)45+(-45)

全班學(xué)生書面練習(xí),四位學(xué)生板演,教師對學(xué)生板演進(jìn)行講評(píng).

活動(dòng)目的:習(xí)題的配備上,注意到學(xué)生的思維是一個(gè)循序漸進(jìn)的過程,所以由易到難,使學(xué)生在練習(xí)的過程中能夠逐步地提高能力,得到發(fā)展。

活動(dòng)的實(shí)際效果:通過練習(xí)進(jìn)一步熟悉有理數(shù)的加法法則。通過口答、演排糾錯(cuò),活躍課堂氣氛,充分調(diào)動(dòng)學(xué)生的積極性,學(xué)生在一種比較活躍的氛圍中,解決各種(五)課堂小結(jié):

活動(dòng)內(nèi)容:師生共同總結(jié)。

1.兩個(gè)有理數(shù)相加,“一觀察,二確定,三求和”,即首先判斷加法類型,再確定和的符號(hào),最后確定和的絕對值

2.有理數(shù)加法法則及其應(yīng)用。

3.注意異號(hào)的情況。

活動(dòng)目的:課堂小結(jié)并不只是課堂知識(shí)點(diǎn)的回顧,要盡量讓學(xué)生暢談自己的切身感受,教師對于發(fā)言進(jìn)行鼓勵(lì),進(jìn)一步梳理本節(jié)所學(xué),更要有所思考,達(dá)到對所學(xué)知識(shí)鞏固的目的。

活動(dòng)的實(shí)際效果:學(xué)生對“一觀察,二確定,三求和”的步驟印象較深,達(dá)到了本節(jié)課的教學(xué)目標(biāo)。

七年級(jí)上冊數(shù)學(xué)《有理數(shù)的加減》教案篇2

教學(xué)目標(biāo)

1.理解有理數(shù)加法的意義,掌握有理數(shù)加法法則中的符號(hào)法則和絕對值運(yùn)算法則;

2.能根據(jù)有理數(shù)加法法則熟練地進(jìn)行有理數(shù)加法運(yùn)算,弄清有理數(shù)加法與非負(fù)數(shù)加法的區(qū)別;

3.三個(gè)或三個(gè)以上有理數(shù)相加時(shí),能正確應(yīng)用加法交換律和結(jié)合律簡化運(yùn)算過程;

4.通過有理數(shù)加法法則及運(yùn)算律在加法運(yùn)算中的運(yùn)用,培養(yǎng)學(xué)生的運(yùn)算能力;

5.本節(jié)課通過行程問題說明有理數(shù)的加法法則的合理性,然后又通過實(shí)例說明如何運(yùn)用法則和運(yùn)算律,讓學(xué)生感知到數(shù)學(xué)知識(shí)來源于生活,并應(yīng)用于生活。

教學(xué)建議

(一)重點(diǎn)、難點(diǎn)分析

本節(jié)教學(xué)的重點(diǎn)是依據(jù)有理數(shù)的加法法則熟練進(jìn)行有理數(shù)的加法運(yùn)算。難點(diǎn)是有理數(shù)的加法法則的理解。

(1)加法法則本身是一種規(guī)定,教材通過行程問題讓學(xué)生了解法則的合理性。

(2)具體運(yùn)算時(shí),應(yīng)先判別題目屬于運(yùn)算法則中的哪個(gè)類型,是同號(hào)相加、異號(hào)相加、還是與0相加。

(3)如果是同號(hào)相加,取相同的符號(hào),并把絕對值相加。如果是異號(hào)兩數(shù)相加,應(yīng)先判別絕對值的大小關(guān)系,如果絕對值相等,則和為0;如果絕對值不相等,則和的符號(hào)取絕對值較大的加數(shù)的符號(hào),和的絕對值就是較大的絕對值與較小的絕對值的差。一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。

(二)知識(shí)結(jié)構(gòu)

(三)教法建議

1.對于基礎(chǔ)比較差的同學(xué),在學(xué)習(xí)新課以前可以適當(dāng)復(fù)習(xí)小學(xué)中算術(shù)運(yùn)算以及正負(fù)數(shù)、相反數(shù)、絕對值等知識(shí)。

2.有理數(shù)的加法法則是規(guī)定的,而教材開始部分的行程問題是為了說明加法法則的合理性。

3.應(yīng)強(qiáng)調(diào)加法交換律“a+b=b+a”中字母a、b的任意性。

4.計(jì)算三個(gè)或三個(gè)以上的加法算式,應(yīng)建議學(xué)生養(yǎng)成良好的運(yùn)算習(xí)慣。不要盲目動(dòng)手,應(yīng)該先仔細(xì)觀察式子的特點(diǎn),深刻認(rèn)識(shí)加數(shù)間的相互關(guān)系,找到合理的運(yùn)算步驟,再適當(dāng)運(yùn)用加法交換律和結(jié)合律可以使加法運(yùn)算更為簡化。

5.可以給出一些類似“兩數(shù)之和必大于任何一個(gè)加數(shù)”的判斷題,以明確由于負(fù)數(shù)參與加法運(yùn)算,一些算術(shù)加法中的正確結(jié)論在有理數(shù)加法運(yùn)算中未必也成立。

6.在探討導(dǎo)出有理數(shù)的加法法則的行程問題時(shí),可以嘗試發(fā)揮多媒體教學(xué)的作用。用動(dòng)畫演示人或物體在同一直線上兩次運(yùn)動(dòng)的過程,讓學(xué)生更好的理解有理數(shù)運(yùn)算法則。

教學(xué)設(shè)計(jì)示例

有理數(shù)的加法(第一課時(shí))

教學(xué)目的

1.使學(xué)生理解有理數(shù)加法的意義,初步掌握有理數(shù)加法法則,并能準(zhǔn)確地進(jìn)行有理數(shù)的加法運(yùn)算.

2.通過有理數(shù)的加法運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力.

教學(xué)重點(diǎn)與難點(diǎn)

重點(diǎn):熟練應(yīng)用有理數(shù)的加法法則進(jìn)行加法運(yùn)算.

難點(diǎn):有理數(shù)的加法法則的理解.

教學(xué)過程

(一)復(fù)習(xí)提問

1.有理數(shù)是怎么分類的?

2.有理數(shù)的絕對值是怎么定義的?一個(gè)有理數(shù)的絕對值的幾何意義是什么?

3.有理數(shù)大小比較是怎么規(guī)定的?下列各組數(shù)中,哪一個(gè)較大?利用數(shù)軸說明?

-3與-2;|3|與|-3|;|-3|與0;

-2與|+1|;-|+4|與|-3|.

(二)引入新課

在小學(xué)算術(shù)中學(xué)過了加、減、乘、除四則運(yùn)算,這些運(yùn)算是在正有理數(shù)和零的范圍內(nèi)的運(yùn)算.引入負(fù)數(shù)之后,這些運(yùn)算法則將是怎樣的呢?我們先來學(xué)有理數(shù)的加法運(yùn)算.

(三)進(jìn)行新課有理數(shù)的加法(板書課題)

例1如圖所示,某人從原點(diǎn)0出發(fā),如果第一次走了5米,第二次接著又走了3米,求兩次行走后某人在什么地方?

兩次行走后距原點(diǎn)0為8米,應(yīng)該用加法.

為區(qū)別向東還是向西走,這里規(guī)定向東走為正,向西走為負(fù).這兩數(shù)相加有以下三種情況:

1.同號(hào)兩數(shù)相加

(1)某人向東走5米,再向東走3米,兩次一共走了多少米?

這是求兩次行走的路程的和.

5+3=8

用數(shù)軸表示如圖

從數(shù)軸上表明,兩次行走后在原點(diǎn)0的東邊.離開原點(diǎn)的距離是8米.因此兩次一共向東走了8米.

可見,正數(shù)加正數(shù),其和仍是正數(shù),和的絕對值等于這兩個(gè)加數(shù)的絕對值的和.

(2)某人向西走5米,再向西走3米,兩次一共向東走了多少米?

顯然,兩次一共向西走了8米

(-5)+(-3)=-8

用數(shù)軸表示如圖

從數(shù)軸上表明,兩次行走后在原點(diǎn)0的西邊,離開原點(diǎn)的距離是8米.因此兩次一共向東走了-8米.

可見,負(fù)數(shù)加負(fù)數(shù),其和仍是負(fù)數(shù),和的絕對值也是等于兩個(gè)加數(shù)的絕對值的和.

總之,同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對值相加.

例如,(-4)+(-5),同號(hào)兩數(shù)相加

(-4)+(-5)=-(),...取相同的符號(hào)

4+5=9把絕對值相加

∴(-4)+(-5)=-9.

口答練習(xí):

(1)舉例說明算式7+9的實(shí)際意義?

(2)(-20)+(-13)=?

(3)

2.異號(hào)兩數(shù)相加

(1)某人向東走5米,再向西走5米,兩次一共向東走了多少米?

由數(shù)軸上表明,兩次行走后,又回到了原點(diǎn),兩次一共向東走了0米.

5+(-5)=0

可知,互為相反數(shù)的兩個(gè)數(shù)相加,和為零.

(2)某人向東走5米,再向西走3米,兩次一共向東走了多少米?

由數(shù)軸上表明,兩次行走后在原點(diǎn)o的東邊,離開原點(diǎn)的距離是2米.因此,兩次一共向東走了2米.

就是5+(-3)=2.

(3)某人向東走3米,再向西走5米,兩次一共向東走了多少米?

由數(shù)軸上表明,兩次行走后在原點(diǎn)o的西邊,離開原點(diǎn)的距離是2米.因此,兩次一共向東走了-2米.

就是3+(-5)=-2.

請同學(xué)們想一想,異號(hào)兩數(shù)相加的法則是怎么規(guī)定的?強(qiáng)調(diào)和的符號(hào)是如何確定的?和的絕對值如何確定?

最后歸納

絕對值不相等的異號(hào)兩數(shù)相加,取絕對值較大的加數(shù)的符號(hào),并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個(gè)數(shù)相加得0.

例如(-8)+5絕對值不相等的異號(hào)兩數(shù)相加

8>5

(-8)+5=-()取絕對值較大的加數(shù)符號(hào)

8-5=3用較大的絕對值減去較小的絕對值

∴(-8)+5=-3.

口答練習(xí)

用算式表示:溫度由-4℃上升7℃,達(dá)到什么溫度.

(-4)+7=3(℃)

3.一個(gè)數(shù)和零相加

(1)某人向東走5米,再向東走0米,兩次一共向東走了多少米?

顯然,5+0=5.結(jié)果向東走了5米.

(2)某人向西走5米,再向東走0米,兩次一共向東走了多少米?

容易得出:(-5)+0=-5.結(jié)果向東走了-5米,即向西走了5米.

請同學(xué)們把(1)、(2)畫出圖來

由(1),(2)得出:一個(gè)數(shù)同0相加,仍得這個(gè)數(shù).

總結(jié)有理數(shù)加法的三個(gè)法則.學(xué)生看書,引導(dǎo)他們看有理數(shù)加法運(yùn)算的三種情況.

有理數(shù)加法運(yùn)算的三種情況:

特例:兩個(gè)互為相反數(shù)相加;

(3)一個(gè)數(shù)和零相加.

每種運(yùn)算的法則強(qiáng)調(diào):(1)確定和的符號(hào);(2)確定和的絕對值的方法.

(四)例題分析

例1計(jì)算(-3)+(-9).

分析:這是兩個(gè)負(fù)數(shù)相加,屬于同號(hào)兩數(shù)相加,和的符號(hào)與加數(shù)相同(應(yīng)為負(fù)),和的絕對值就是把絕對值相加(應(yīng)為3+9=12)(強(qiáng)調(diào)相同、相加的特征).

解:(-3)+(-9)=-12.

例2

分析:這是異號(hào)兩數(shù)相加,和的符號(hào)與絕對值較大的加數(shù)的符號(hào)相同(應(yīng)為負(fù)),和的絕對值等于較大絕對值減去較小絕對值.

.(強(qiáng)調(diào)“兩個(gè)較大”“一個(gè)較小”)

解:#FormatImgID_13#

解題時(shí),先確定和的符號(hào),后計(jì)算和的絕對值.

(五)鞏固練習(xí)

1.計(jì)算(口答)

(1)4+9;(2)4+(-9);(3)-4+9;(4)(-4)+(-9);

(5)4+(-4);(6)9+(-2);(7)(-9)+2;(8)-9+0;

2.計(jì)算

(1)5+(-22);(2)(-1.3)+(-8)

(3)(-0.9)+1.5;(4)2.7+(-3.5)

七年級(jí)上冊數(shù)學(xué)《有理數(shù)的加減》教案篇3

1.熟練地進(jìn)行有理數(shù)加減混合運(yùn)算,并利用運(yùn)算律簡化運(yùn)算;

2.培養(yǎng)學(xué)生的運(yùn)算能力。

加減運(yùn)算法則和加法運(yùn)算律。

省略加號(hào)與括號(hào)的計(jì)算。

電腦、投影儀

一、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問題

說出-6+9-8-7+3兩種讀法.

二、解決問題

1.計(jì)算:(1)-12+11-8+39;(2)+45-9-91+5;

(3)-5-5-3-3;(4)-6-8-2+3.54-4.72+16.46-5.28;

2.用較簡便方法計(jì)算:

-16+25+16-15+4-10.

三、應(yīng)用、拓展

例1.計(jì)算:2/3-1/8-(-1/3)+(-3/8)

練一練:1.P46第1題(1)-(4)題;P46問題解決

例2.當(dāng)a=13,b=-12.1,c=-10.6,d=25.1時(shí),求下列代數(shù)式的值:

(1)a-(b+c);(2)a-b-c;(3)a-(b+c+d);(4)a-b-c-d;

(5)a-(b-d);(6)a-b+d;(7)(a+b)-(c+d);(8)a+b-c-d;

(9)(a-c)-(b-d);(10)a-c-b+d.

請同學(xué)們觀察一下計(jì)算結(jié)果,可以發(fā)現(xiàn)什么規(guī)律?

練一練:1.當(dāng)a=2.7,b=-3.2,c=-1.8時(shí),求下列代數(shù)式的值:

(1)a+b-c;(2)a-b+c;(3)-a+b-c;(4)-a-b+c.

2.分別根據(jù)下列條件求代數(shù)式·-y-z+w的值:

(1)·=-3,y=-2,z=0,w=5;

(2)·=0.3,y=-0.7,z=1.1,w=-2.1;

七年級(jí)上冊數(shù)學(xué)《有理數(shù)的加減》教案篇4

學(xué)習(xí)目標(biāo):

1、理解加減法統(tǒng)一成加法運(yùn)算的意義.

2、會(huì)將有理數(shù)的加減混合運(yùn)算轉(zhuǎn)化為有理數(shù)的加法運(yùn)算.

3、培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的信心.

學(xué)習(xí)重點(diǎn)、難點(diǎn):有理數(shù)加減法統(tǒng)一成加法運(yùn)算

教學(xué)方法:講練相結(jié)合

教學(xué)過程

一、學(xué)前準(zhǔn)備

1、一架飛機(jī)作特技表演,起飛后的高度變化如下表:

高度的變化上升4.5千米下降3.2千米上升1.1千米下降1.4千米

記作+4.5千米—3.2千米+1.1千米—1.4千米

請你們想一想,并和同伴一起交流,算算此時(shí)飛機(jī)比起飛點(diǎn)高了千米.

2、你是怎么算出來的,方法是

二、探究新知

1、現(xiàn)在我們來研究(—20)+(+3)—(—5)—(+7),該怎么計(jì)算呢?還是先自己獨(dú)立動(dòng)動(dòng)手吧!

2、怎么樣,計(jì)算出來了嗎,是怎樣計(jì)算的,與同伴交流交流,師巡視指導(dǎo).

3、師生共同歸納:遇到一個(gè)式子既有加法,又有減法,第一步應(yīng)該先把減法轉(zhuǎn)化為.再把加號(hào)記在腦子里,省略不寫

如:(-20)+(+3)-(-5)-(+7)有加法也有減法

=(-20)+(+3)+(+5)+(-7)先把減法轉(zhuǎn)化為加法

=-20+3+5-7再把加號(hào)記在腦子里,省略不寫

可以讀作:“負(fù)20、正3、正5、負(fù)7的”或者“負(fù)20加3加5減7”.

4、師生完整寫出解題過程

三、解決問題

1、解決引例中的問題,再比較前面的方法,你的感覺是

2、例題:計(jì)算-4.4-(-4)-(+2)+(-2)+12.4

3、練習(xí):計(jì)算1)(—7)—(+5)+(—4)—(—10)

三、鞏固

1、小結(jié):說說這節(jié)課的收獲

2、P241、2

3、計(jì)算

1)27—18+(—7)—322)

四、作業(yè)

1、P2552、P26第8題、14題

七年級(jí)上冊數(shù)學(xué)《有理數(shù)的加減》教案篇5

教學(xué)目的和要求:

1.使學(xué)生了解有理數(shù)加法的意義。

2.使學(xué)生理解有理數(shù)加法的法則,能熟練地進(jìn)行有理數(shù)加法運(yùn)算。

3.培養(yǎng)學(xué)生分析問題、解決問題的能力,在有理數(shù)加法法則的教學(xué)過程中,注意培養(yǎng)學(xué)生的觀察、比較、歸納及運(yùn)算能力。(在教學(xué)中適當(dāng)滲透分類討論思想)

教學(xué)重點(diǎn)和難點(diǎn):

重點(diǎn):理解有理數(shù)加法法則,運(yùn)用有理數(shù)加法法則進(jìn)行有理數(shù)加法運(yùn)算。

難點(diǎn):理解有理數(shù)加法法則,尤其是異號(hào)兩數(shù)相加的情形。

教學(xué)工具和方法:

工具:應(yīng)用投影儀,投影片。

方法:分層次教學(xué),講授、練習(xí)相結(jié)合。(采取合作探究式教學(xué)方法,讓學(xué)生在合作學(xué)習(xí)中學(xué)習(xí)知識(shí),掌握方法。)

教學(xué)過程:

一、復(fù)習(xí)引入:

1.在小學(xué)里,已經(jīng)學(xué)過了正整數(shù)、正分?jǐn)?shù)(包括正小數(shù))及數(shù)0的四則運(yùn)算?,F(xiàn)在引入了負(fù)數(shù),數(shù)的范圍擴(kuò)充到了有理數(shù)。那么,如何進(jìn)行有理數(shù)的運(yùn)算呢?

2.問題:[

一位同學(xué)沿著一條東西向的跑道,先走了20米,又走了30米,能否確定他現(xiàn)在位于原來位置的哪個(gè)方向,相距多少米?

我們知道,求兩次運(yùn)動(dòng)的總結(jié)果,可以用加法來解答??墒巧鲜鰡栴}不能得到確定答案,因?yàn)閱栴}中并未指出行走方向。(大部分同學(xué)都會(huì)用小學(xué)學(xué)過的的知識(shí)來完成。先給予肯定,鼓勵(lì)同學(xué)們對小學(xué)知識(shí)的掌握程度,再鼓勵(lì)同學(xué)們想想還有沒有其他情況)

[來源:學(xué)#科#網(wǎng)]

二、講授新課:

1.發(fā)現(xiàn)、總結(jié)(分類):

我們必須把問題說得明確些,并規(guī)定向東為正,向西為負(fù)。

(同號(hào)兩數(shù)相加法則)

(1)若兩次都是向東走,很明顯,一共向東走了50米,寫成算式就是:(+20)+(+30)=+50,

即這位同學(xué)位于原來位置的東方50米處。這一運(yùn)算在數(shù)軸上表示如圖:

(2)若兩次都是向西走,則他現(xiàn)在位于原來位置的西方50米處,

寫成算式就是:(―20)+(―30)=―50。

(師生共同歸納同號(hào)兩數(shù)相加法則:[來源:Z+··+]

同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對值相加)

(異號(hào)兩數(shù)相加法則)

(3)若第一次向東走20米,第二次向西走30米,我們先在數(shù)軸上表示如圖:

寫成算式是(+20)+(―30)=―10,即這位同學(xué)位于原來位置的西方10米處。

(4)若第一次向西走20米,第二次向東走30米,寫成算式是:(―20)+(+30)=()。即這位同學(xué)位于原來位置的()方()米處。

后兩種情形中,兩個(gè)加數(shù)符號(hào)不同(通常可稱異號(hào)),所得和的符號(hào)似乎不能確定,讓我們再試幾次(下式中的加數(shù)不妨仍可看作運(yùn)動(dòng)的方向和路程):

你能發(fā)現(xiàn)和與兩個(gè)加數(shù)的符號(hào)和絕對值之間有什么關(guān)系嗎?

(+4)+(―3)=();(+3)+(―10)=();

(―5)+(+7)=();(―6)+2=()。

再看兩種特殊情形:

(5)第一次向西走了30米,第二次向東走了30米.寫成算式是:(―30)+(+30)=()。

(6)第一次向西走了30米,第二次沒走.寫成算式是:(―30)+0=()。我們不難得出它們的結(jié)果。

(師生共同歸納異號(hào)兩數(shù)相加法則:

絕對值不相等的異號(hào)兩數(shù)相加,取絕對值較大的加數(shù)的符號(hào),并用較大的絕對值減去較小的絕對值)

(互為相反數(shù)的兩數(shù)相加為零

問題:會(huì)不會(huì)出現(xiàn)和為0的情況?

(5)第一次向西走了30米,第二次向東走了30米.寫成算式是:(―30)+(+30)=()。

師生共同歸納法則3:互為相反數(shù)的兩數(shù)相加得0)

問題:你能有法則來解釋法則3嗎?

學(xué)生回答:可以用異號(hào)兩數(shù)相加的法則)

((6)第一次向西走了30米,第二次沒走.寫成算式是:(―30)+0=()。我們不難得出它們的結(jié)果。

一般地,一個(gè)數(shù)同0相加,仍得這個(gè)數(shù))

2.概括:

綜合以上情形,我們得到有理數(shù)的加法法則:

(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對值相加;

(2)絕對值不相等的異號(hào)兩數(shù)相加,取絕對值較大的加數(shù)的符號(hào),并用較大的絕對值減去較小的絕對值;

(3)互為相反數(shù)的兩個(gè)數(shù)相加得0;

(4)一個(gè)數(shù)同0相加,仍得這個(gè)數(shù).

注意:

一個(gè)有理數(shù)由符號(hào)和絕對值兩部分組成,所以進(jìn)行加法運(yùn)算時(shí),必須分別確定和的符號(hào)和絕對值.這與小學(xué)階段學(xué)習(xí)加法運(yùn)算不同。

3.例題:

例:計(jì)算:

(1)(+2)+(―11);(2)(+20)+(+12);(3);(4)(―3.4)+4.3。

解:(1)解原式=―(11―2)=―9;

(2)解原式=+(20+12)=+32=32;

(3)解原式=;

(4)解原式=+(4.3―3.4)=0.9。

4.五分鐘測試:

計(jì)算:(1)(+3)+(+7);(2)(―10)+(―3);(3)(+6)+(―5);(4)0+(―5)。

三、課堂小結(jié):

這節(jié)課我們從實(shí)例出發(fā),經(jīng)過比較、歸納,得出了有理數(shù)加法的法則.今后我們經(jīng)常要用類似的思想方法研究其他問題.

應(yīng)用有理數(shù)加法法則進(jìn)行計(jì)算時(shí),要同時(shí)注意確定“和”的符號(hào)、計(jì)算“和”的絕對值兩件事。

(運(yùn)算的關(guān)鍵:先分類,在按法則運(yùn)算

運(yùn)算步驟:先確定符號(hào),再計(jì)算絕對值

注意問題:要借助數(shù)軸來進(jìn)一步驗(yàn)證有理數(shù)的加法法則)

四、課堂作業(yè):

課本:P18:1,2,3。

板書設(shè)計(jì):

教學(xué)后記:

七年級(jí)上冊數(shù)學(xué)《有理數(shù)的加減》教案篇6

第1課時(shí)認(rèn)識(shí)立體圖形與平面圖形

教學(xué)目標(biāo)

1.可以從簡單實(shí)物的外形中抽象出幾何圖形,并了解立體圖形與平面圖形的區(qū)別;

2.會(huì)判斷一個(gè)幾何圖形是立體圖形還是平面圖形,能準(zhǔn)確識(shí)別棱柱與棱錐.

教學(xué)過程

一、情境導(dǎo)入

觀察實(shí)物及欣賞圖片:

我們生活在一個(gè)圖形的世界中,圖形世界是多姿多彩的.其中蘊(yùn)含著大量的幾何圖形.本節(jié)我們就來研究圖形問題.

二、合作探究

探究點(diǎn)一:立體圖形

【類型一】從實(shí)物圖中抽象立體圖形的認(rèn)識(shí)

例1觀察下列實(shí)物模型,其形狀是圓柱體的是()

解析:圓柱的上下底面都是圓,所以正確的是D.

方法總結(jié):結(jié)合實(shí)物,認(rèn)識(shí)常見的立體圖形,如:長方體、正方體、圓柱、圓錐、球、棱柱、棱錐等.

【類型二】立體圖形的名稱與分類

例2如圖所示為8個(gè)立體圖形.

其中,是柱體的序號(hào)為________,是錐體的序號(hào)為________,是球的序號(hào)為________.

解析:分別根據(jù)柱體,錐體,球體的定義可得結(jié)論,柱體為①②⑤⑦⑧,錐體為④⑥,球?yàn)棰?,故填①②⑤⑦?④⑥;③.

方法總結(jié):正確理解立體圖形的定義是解題的關(guān)鍵.

探究點(diǎn)二:平面圖形的認(rèn)識(shí)

【類型一】平面圖形的識(shí)別

例3有下列圖形,①三角形,②長方形,③平行四邊形,④立方體,⑤圓錐,⑥圓柱,⑦圓,⑧球體,其中平面圖形的個(gè)數(shù)為()

A.5個(gè)B.4個(gè)

C.3個(gè)D.2個(gè)

解析:根據(jù)平面圖形的定義:一個(gè)圖形的各部分都在同一個(gè)平面內(nèi)可判斷①②③⑦是平面圖形.故選B.

方法總結(jié):區(qū)分平面圖形要記住平面圖形的特征,即一個(gè)圖形的各部分都在同一個(gè)平面內(nèi).

【類型二】由平面圖形組成的圖形

例4如圖所示,各標(biāo)志的圖形主要由哪些簡單的平面圖形組成?

解:(1)由5個(gè)圖形組成;

(2)由2個(gè)正方形和1個(gè)長方形組成;

(3)由3個(gè)四邊形組成.

方法總結(jié):解決這類問題的關(guān)鍵是正確區(qū)分圖形的形狀和名稱.

三、板書設(shè)計(jì)

1.立體圖形

特征:幾何圖形的各部分不都在同一平面內(nèi).

2.平面圖形

特征:幾何圖形的各部分都在同一平面內(nèi).

教學(xué)反思

本節(jié)利用課件展示圖片,聯(lián)系生活實(shí)際,激發(fā)學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的積極性.使學(xué)生以最佳狀態(tài)投入到學(xué)習(xí)中去.通過動(dòng)手操作培養(yǎng)學(xué)生動(dòng)手操作能力,同時(shí)也加深了學(xué)生對立體圖形和平面圖形的認(rèn)識(shí).使學(xué)生在討論交流的基礎(chǔ)上總結(jié)出立體圖形和平面圖形的特征.

第2課時(shí)從不同的方向看立體圖形和立體圖形的展開圖

教學(xué)目標(biāo)

1.經(jīng)歷從不同方向觀察物體的活動(dòng)過程,初步體會(huì)從不同方向觀察同一物體可能看到不一樣的結(jié)果;

2.能畫出從不同方向看一些簡單幾何體以及由它們組成的簡單組合體得到的平面圖形,了解直棱柱、圓柱、圓錐的展開圖或根據(jù)展開圖判斷立體圖形.(重點(diǎn),難點(diǎn))

教學(xué)過程

一、情境導(dǎo)入

《題西林壁》

蘇東坡

橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同.

不識(shí)廬山真面目,只緣身在此山中.

詩中描繪出詩人面對廬山看到的兩幅不同的畫面,你能用簡潔的圖形把它們形象的勾勒出來嗎?

二、合作探究

探究點(diǎn)一:從不同的方向觀察立體圖形

【類型一】判斷從不同的方向看到的圖形

例1沿圓柱體上底面直徑截去一部分后的物體如圖所示,它從上面看到的圖形是()

解析:從上面看依然可得到兩個(gè)半圓的組合圖形.故選D.

方法總結(jié):本題考查了從不同的方向觀察物體.在解題時(shí)要注意,看不見的線畫成虛線,看得見的線畫成實(shí)線.

【類型二】畫從不同的方向看到的圖形

例2如圖所示,由五個(gè)小立方體構(gòu)成的立體圖形,請你分別畫出從它的正面、左面、上面三個(gè)方向看所得到的平面圖形.

解析:從正面看所得到的圖形,從左往右有三列,分別有1,1,2個(gè)小正方形;從左面看所得到的圖形,從左往右有兩列,分別有2,1個(gè)小正方形;從上面看所得到的圖形,從左往右有三列,分別有2,1,1個(gè)小正方形.

解:如圖所示:

方法總結(jié):畫出從不同的方向看物體的形狀的方法:首先觀察物體,畫出視圖的外輪廓線,然后將視圖補(bǔ)充完整,其中看得見部分的輪廓線通常畫成實(shí)線,看不見部分的輪廓線通常畫成虛線.在畫三種視圖時(shí),從正面、上面看到的圖形要長對正,從正面、左面看到的圖形要高平齊,從上面、左面看到的圖形要寬相等.

七年級(jí)上冊數(shù)學(xué)《有理數(shù)的加減》教案篇7

教材分析:

《解一元一次方程(一)合并同類項(xiàng)與移項(xiàng)》是義務(wù)教育教科書七年級(jí)數(shù)學(xué)上冊第三章第二節(jié)的內(nèi)容。在此之前,學(xué)生已學(xué)會(huì)了有理數(shù)運(yùn)算,掌握了單項(xiàng)式、多項(xiàng)式的有關(guān)概念及同類項(xiàng)、合并同類項(xiàng),和等式性質(zhì),進(jìn)一步將所學(xué)知識(shí)運(yùn)用到解方程中。這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。合并同類項(xiàng)與移項(xiàng)是解方程的基礎(chǔ),解方程它的移項(xiàng)根據(jù)是等式性質(zhì)1、系數(shù)化為1它的根據(jù)是等式性質(zhì)2,解方程是今后進(jìn)一步學(xué)習(xí)不可缺少的知識(shí)。因而,解方程是初中數(shù)學(xué)中必須要掌握的重點(diǎn)內(nèi)容。

設(shè)計(jì)思路:

《數(shù)學(xué)課程標(biāo)準(zhǔn)》中明確指出:學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者?;谝陨侠砟睿Y(jié)合本節(jié)課內(nèi)容及學(xué)生情況,教學(xué)設(shè)計(jì)中采用了探究發(fā)現(xiàn)法和多媒體輔助教學(xué)法,在學(xué)生已有的知識(shí)儲(chǔ)備基礎(chǔ)上,利用課件,鼓勵(lì)和引導(dǎo)學(xué)生采用自主探索與合作交流相結(jié)合的方式進(jìn)行學(xué)習(xí),讓學(xué)生始終處于積極探索的過程中,通過學(xué)生動(dòng)手練習(xí),動(dòng)腦思考,完成教學(xué)任務(wù)。其基本程序設(shè)計(jì)為:

復(fù)習(xí)回顧、設(shè)問題導(dǎo)入探索規(guī)律、形成解法例題講解、熟練運(yùn)算

鞏固練習(xí)、內(nèi)化升華回顧反思、進(jìn)行小結(jié)達(dá)標(biāo)測試、反饋情況

作業(yè)布置、反饋情況。

教學(xué)目標(biāo):

1、知識(shí)與技能:(1)通過分析實(shí)際問題中的數(shù)量關(guān)系,建立方程解決實(shí)際問題,進(jìn)一步認(rèn)識(shí)方程模型的重要性;(2)、掌握移項(xiàng)方法,學(xué)會(huì)解“a·+b=c·+d”的一元一次方程,理解解方程的目標(biāo),體會(huì)解法中蘊(yùn)涵的化歸思想。

2、過程與方法:通過解形如“a·+b=c·+d”形式的方程,體驗(yàn)數(shù)學(xué)的建模思想。

3、情感、態(tài)度與價(jià)值觀:通過合作探究,培養(yǎng)學(xué)生積極思考、勇于探索的精神。

教學(xué)重點(diǎn):建立方程解決實(shí)際問題,會(huì)解“a·+b=c·+d”類型的一元一次方程。

教學(xué)難點(diǎn):分析實(shí)際問題中的相等關(guān)系,列出方程。

教學(xué)方法:先學(xué)后教,當(dāng)堂訓(xùn)練。

教學(xué)準(zhǔn)備:多媒體課件等。

預(yù)習(xí)要求:要求學(xué)生自學(xué)教材第88——89頁的課文內(nèi)容。然后根據(jù)自己的理解分析問題2及例2;并試著進(jìn)行嘗試練習(xí)。找出自學(xué)中存在的問題,以便課堂學(xué)習(xí)中解決。

教學(xué)過程:

一、準(zhǔn)備階段:

1、知識(shí)回顧:

(1)、用合并同類項(xiàng)的方法解一元一次方程的步驟是什么?

(2)、解下列方程:

①-3·-2·=10②

2、創(chuàng)設(shè)問題情境,導(dǎo)入新課。

問題:

把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個(gè)班有多少人?

如何解決這個(gè)問題呢?

二、導(dǎo)學(xué)階段:

(一)、出示本節(jié)課的學(xué)習(xí)目標(biāo):

1、通過分析實(shí)際問題中的數(shù)量關(guān)系,建立用方程解決問題的建模思想和方法;

2、掌握移項(xiàng)方法,學(xué)會(huì)解“a·+b=c·+d”類型的一元一次方程,理解解方程的目標(biāo),體會(huì)解法中蘊(yùn)涵的化歸思想。

(二)、合作交流,探究新知

1、分析解決課前提出的問題。

問題:把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個(gè)班有多少人?

分析:設(shè)這個(gè)班有·名學(xué)生.

每人分3本,共分出___本,加上剩余的20本,這批書共____________本.

每人分4本,需要______本,減去缺的25本,這批書共____________本.

這批書的總數(shù)有幾種表示法?它們之間有什么關(guān)系?本題哪個(gè)相等關(guān)系可作為列方程的依據(jù)呢?

這批書的總數(shù)是一個(gè)定值,表示它的兩個(gè)式子應(yīng)相等,

即表示同一個(gè)量的兩個(gè)不同的式子相等.

根據(jù)這一相等關(guān)系列得方程:

方程的兩邊都有含·的項(xiàng)(3·和4·)和不含字母的常數(shù)項(xiàng)(20與-25),怎樣才能使它向·=a(常數(shù))的形式轉(zhuǎn)化呢?

方法過程:

2、總結(jié)移項(xiàng)的概念。

像上面這樣把等式一邊的某項(xiàng)變號(hào)后移到另一邊,叫做“移項(xiàng)”.

3、思考:上面解方程中“移項(xiàng)”起到了什么作用?

4、例題學(xué)習(xí)

運(yùn)用移項(xiàng)的方法解下列方程:

三、課堂練習(xí):

運(yùn)用移項(xiàng)的方法解下列方程:

四、課堂小結(jié):

本節(jié)課,我們學(xué)習(xí)了哪些知識(shí)?你還有哪些困惑?

五、達(dá)標(biāo)測試:

運(yùn)用移項(xiàng)的方法解下列方程:(25′×4=100′)

六、預(yù)習(xí)作業(yè):

1、預(yù)習(xí)作業(yè):自學(xué)課本第90頁的課文內(nèi)容及例4,完成第90頁練習(xí)2題;

2、課后作業(yè):(1)

七年級(jí)上冊數(shù)學(xué)《有理數(shù)的加減》教案篇8

第一課時(shí)

平面圖形的認(rèn)識(shí)

教學(xué)目標(biāo):通過復(fù)習(xí)使同學(xué)進(jìn)一步理解角、垂直與平行、三角形和四邊形的概念,掌握它們的特征和性質(zhì),以和各圖形的聯(lián)系。‘

教學(xué)過程:

直線、射線、線段。

提問:1)分別說一說什么叫直線、射線、線段?

直線、射線和線段有什么區(qū)別?

完成123頁上面的“做一做”。(同學(xué)筆做)

提問:1)什么叫做角?

2)角的大小與什么有關(guān)?

整理:把表中的空格填寫完整。

完成123頁下面“做一做”的1題、2題。

銳角

直角

鈍角

平角

周角

大于0°

小于90°

垂直與平行

提問:

1)在同一平面內(nèi),兩條直線的相互位置有哪幾種情況?

2)什么樣的兩條直線叫做互相垂直?

什么樣的兩條直線叫做互相平行?

回答:下面幾組直線中,哪組的兩條直線互相垂直?哪組的兩條直線互相平

完成教材124頁的“做一做”

三角形。

提問:

1)什么叫做三角形?

2)在下面的三角形中,頂點(diǎn)A的對邊是指哪一條邊?

先筆做:以頂點(diǎn)A的對邊為底,畫出三角形的高,并標(biāo)出底和高。(前頁一幅圖)

在下面的表中填寫三角形的名稱和各自的特征。

名稱

圖形

特征

回答:銳角三角形、直角三角形、鈍角三角形的聯(lián)系與區(qū)別。

四邊形

提問:什么叫四邊形?

回答:看圖說出下面各圖的特點(diǎn),再說一說圖中各字母表示什么

想一想:為什么說長方形、正方形都是特殊的平行四邊形?為什么說正方形是特殊的長方形?

完成125頁“做一做”中的1、2題。

七年級(jí)上冊數(shù)學(xué)《有理數(shù)的加減》教案篇9

教學(xué)目標(biāo)

1.知識(shí)與技能

(1)能從現(xiàn)實(shí)物體中抽象得出幾何圖形,正確區(qū)分立體圖形與平面圖形;

(2)能把一些立體圖形的問題,轉(zhuǎn)化為平面圖形進(jìn)行研究和處理,•探索平面圖形與立體圖形之間的關(guān)系.

2.過程與方法

(1)經(jīng)歷探索平面圖形與立體圖形之間的關(guān)系,發(fā)展空間觀念,•培養(yǎng)提高觀察、分析、抽象、概括的能力,培養(yǎng)動(dòng)手操作能力.

(2)經(jīng)歷問題解決的過程,提高解決問題的能力.

3.情感態(tài)度與價(jià)值觀

(1)積極參與教學(xué)活動(dòng)過程,形成自覺、認(rèn)真的學(xué)習(xí)態(tài)度,•培養(yǎng)敢于面對學(xué)習(xí)困難的精神,感受幾何圖形的美感;

(2)倡導(dǎo)自主學(xué)習(xí)和小組合作精神,在獨(dú)立思考的基礎(chǔ)上,•能從小組交流中獲益,并對學(xué)習(xí)過程進(jìn)行正確評(píng)價(jià),體會(huì)合作學(xué)習(xí)的重要性.

重、難點(diǎn)與關(guān)鍵

1.重點(diǎn):從現(xiàn)實(shí)物體中抽象出幾何圖形,•把立體圖形轉(zhuǎn)化為平面圖形是重點(diǎn).

2.難點(diǎn):立體圖形與平面圖形之間的轉(zhuǎn)化是難點(diǎn).

3.關(guān)鍵:從現(xiàn)實(shí)情境出發(fā),通過動(dòng)手操作進(jìn)行實(shí)驗(yàn),•結(jié)合小組交流學(xué)習(xí)是關(guān)鍵.

教具準(zhǔn)備

長方體、正方體、球、圓柱、圓錐等幾何體模型,墨水瓶包裝盒(每個(gè)學(xué)生都準(zhǔn)備一個(gè))教學(xué)掛圖

教學(xué)過程

一、引入新課

1.打開課本,看第117頁城市的現(xiàn)代化建筑,學(xué)生認(rèn)真觀看.

2.提出問題:有哪些是我們熟悉的幾何圖形?

二、新授

1.學(xué)生在回顧剛才所看的圖后,充分發(fā)表自己的意見,并通過小組交流,補(bǔ)充自己的意見,積累小組活動(dòng)經(jīng)驗(yàn).

2.指定一名學(xué)生回答問題,并能正確說出這些幾何圖形的名稱.學(xué)生回答:有圓柱、長方體、正方體等等.

教師活動(dòng):糾正學(xué)生所說幾何圖形名稱中的錯(cuò)誤,并出示相應(yīng)的幾何體模型讓學(xué)生觀察它們的特征.

3.立體圖形的概念.

(1)長方體、正方體、球、圓柱、圓錐等都是立體圖形.

(2)學(xué)生活動(dòng):看課本圖4.1-3后學(xué)生思考:這些物體給我們什么樣的立體圖形的形象?(棱柱和棱錐)

(3)用教學(xué)掛圖展示圖4.1-4

(4)提出問題:在掛圖中中,包含哪些簡單的平面圖形?

(5)探索解決問題的方法.

①學(xué)生進(jìn)行小組交流,教師對各小組進(jìn)行指導(dǎo),通過交流,得出問題的答案.

②學(xué)生回答:包含的平面圖形有長方形、圓、正方形、多邊形和三角形等.

4.平面圖形的概念.

長方形、正方形、三角形、圓等都是我們十分熟悉的平面圖形.注:對立體圖形和平面圖形的概念,不要求給出完整的定義,只要求學(xué)生能夠正確區(qū)分立體圖形和平面圖形.

5.立體圖形和平面圖形的轉(zhuǎn)化.

(1)從不同方向看:出示課本圖4.1-7(1)中所示工件模型,•讓學(xué)生從不同方向看.

(2)提出問題.

從正面看,從左面看,從上面看,你們會(huì)得出什么樣的平面圖形?能把看到的平面圖形畫出來嗎?

(3)探索解決問題的方法.

①學(xué)生活動(dòng):讓學(xué)生從不同方向看工件模型,獨(dú)立畫出得到的各種平面圖形.

②進(jìn)行小組交流,評(píng)價(jià)各自獲得的結(jié)論,得出正確結(jié)論.③指定三名學(xué)生,板書畫出的圖形.

6.思考并動(dòng)手操作.

七年級(jí)上冊數(shù)學(xué)《有理數(shù)的加減》教案篇10

【學(xué)習(xí)目標(biāo)】

1、理解什么是一元一次方程。

2、理解什么是方程的解及解方程,學(xué)會(huì)檢驗(yàn)一個(gè)數(shù)值是不是方程的解的方法。

【重點(diǎn)難點(diǎn)】能驗(yàn)證一個(gè)數(shù)是否是一個(gè)方程的解。

【導(dǎo)學(xué)指導(dǎo)】

一、溫故知新

1:前面學(xué)過有關(guān)方程的一些知識(shí),同學(xué)們能說出什么是方程嗎?

答:叫做方程。

2:判斷下列是不是方程,是打“√”,不是打“×”:

①;()②3+4=7;()

③;()④;()

⑤;()⑥;()

二、自主探究

1.一元一次方程的概念

觀察下面方程的特點(diǎn)

(1)4=24;(2)1700+150=2450

(3)0.52`-(1-0.52`)=80

小結(jié):象上面方程,它們都含有個(gè)未知數(shù)(元),未知數(shù)的次數(shù)都是,這樣的方程叫做一元一次方程。

(即方程的一邊或兩邊含有未知數(shù))

2.方程的解

如何求出使方程左右兩邊相等的未知數(shù)的值?

如方程=4中,=?

方程中的呢?

請用小學(xué)所學(xué)過的逆運(yùn)算嘗試解決上面的問題。

解方程就是求出使方程中等號(hào)左右兩邊相等的未知數(shù)的值,這個(gè)值就是方程的解。

例檢驗(yàn)2和-3是否為方程的解。

解:當(dāng)`=2時(shí),

左邊==,

右邊==,

∵左邊右邊(填=或≠)

∴`=2方程的解(填是或不是)

當(dāng)`=時(shí),

左邊==,

右邊==,

∵左邊右邊(填=或≠)

∴`=3方程的解(填是或不是)

【課堂練習(xí)】

1.判斷下列是不是一元一次方程,是打“√”,不是打“×”:

①=4;()②;()

③;()④;()

⑤;()⑥3+4=7;()

2.檢驗(yàn)3和-1是否為方程的解。

3.`=1是下列方程()的解:

(A),(B),

(C)),(D)

4、已知方程是關(guān)于`的一元一次方程,則a=。

【要點(diǎn)歸納】:

1.這節(jié)課我們學(xué)習(xí)了什么內(nèi)容?

2.什么是方程的解?如何檢驗(yàn)一個(gè)數(shù)是否是方程的解?

【拓展訓(xùn)練】:

1.檢驗(yàn)2和是否為方程的解。

2.老師要求把一篇有20__字的文章輸入電腦,小明輸入了700字,剩下的讓小華輸入,小華平均每分鐘能輸入50個(gè)字,問:小華要多少分鐘才能完成?(請?jiān)O(shè)未知數(shù)列出方程,并嘗試求出方程的解)

七年級(jí)上冊數(shù)學(xué)《有理數(shù)的加減》教案篇11

1、內(nèi)容結(jié)構(gòu)分析

《九年義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)》七年級(jí)上冊第四章是“幾何圖形初步”.這一章是義務(wù)教育第三學(xué)段“空間與圖形”領(lǐng)域的起始章,在這一章,將在前面兩個(gè)學(xué)段學(xué)習(xí)的“空間與圖形”內(nèi)容的基礎(chǔ)上,讓學(xué)生進(jìn)一步欣賞豐富多彩的圖形世界,看到更多的立體圖形與平面圖形,初步了解立體圖形與平面圖形之間的關(guān)系,并通過線段和角認(rèn)識(shí)一些簡單的圖形,并能初步進(jìn)行應(yīng)用.

2、教學(xué)重點(diǎn)與難點(diǎn):

教學(xué)重點(diǎn):

⑴數(shù)學(xué)與我們的成長密切相關(guān);

⑵數(shù)學(xué)伴隨著人類的進(jìn)步與發(fā)展,人類離不開數(shù)學(xué);

⑶人人都能學(xué)會(huì)數(shù)學(xué),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;

⑷將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題;

⑸積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性及數(shù)學(xué)規(guī)律的準(zhǔn)確性.

教學(xué)難點(diǎn):

⑴體會(huì)數(shù)學(xué)與我們的成長密切相關(guān);

⑵學(xué)生剪圖拼圖的具體操作;

⑶嘗試發(fā)現(xiàn),提出并解決數(shù)學(xué)問題,體會(huì)與人合作交流的重要性.

3、教學(xué)目標(biāo):

⑴知識(shí)與技能:

直觀認(rèn)識(shí)立體圖形,掌握平面圖形的基本知識(shí);畫出簡單立體圖形的三視圖及平面展開圖,根據(jù)三視圖畫出一些簡單的實(shí)物圖;進(jìn)行線段的簡單計(jì)算,正確區(qū)分線段、射線、直線.掌握角的基本概念,進(jìn)行相關(guān)運(yùn)算;鞏固對角得度量及運(yùn)算知識(shí)的掌握,能解決一些實(shí)際問題.

⑵過程與方法:

通過對本章的學(xué)習(xí),學(xué)會(huì)在具體的2情境中,抽象概括出數(shù)學(xué)原理;學(xué)會(huì)在解決問題的過程中,進(jìn)行合理的想象,進(jìn)行簡單的、有條理的思考;通過小組合作、動(dòng)手操作、實(shí)驗(yàn)驗(yàn)證的方法解決數(shù)學(xué)問題.

⑶情感、態(tài)度與價(jià)值觀:

在探索知識(shí)之間的相互聯(lián)系及應(yīng)用的過程中,體驗(yàn)推理的意義,獲取學(xué)習(xí)的經(jīng)驗(yàn).

4、課時(shí)分配

4.1幾何圖形4課時(shí)

4.2直線、射線、線段3課時(shí)

4.3角2課時(shí)

4.4課題學(xué)習(xí)2課時(shí)

小結(jié)3課時(shí)

單元測試與評(píng)講3課時(shí)

七年級(jí)上冊數(shù)學(xué)《有理數(shù)的加減》教案篇12

【第一部分】知識(shí)點(diǎn)分布

1、一元一次方程的解(重點(diǎn))

2、一元一次方程的應(yīng)用(難點(diǎn))

3、求解一元一次方程及其在實(shí)際問題中的應(yīng)用(考點(diǎn))

【第二部分】關(guān)于一元一次方程

一、一元一次方程

(1)含有未知數(shù)的等式是方程。

(2)只含有一個(gè)未知數(shù)(元),未知數(shù)的次數(shù)都是1的方程叫做一元一次方程。

(3)分析實(shí)際問題中的數(shù)量關(guān)系,利用其中的等量關(guān)系列出方程,是用數(shù)學(xué)解決實(shí)際問題的一種方法。

(4)列方程解決實(shí)際問題的步驟:①設(shè)未知數(shù);②找等量關(guān)系列方程。

(5)求出使方程左右兩邊的值相等的未知數(shù)的值,叫做方程的解。

(6)求方程的解的過程,叫做解方程。

二、等式的性質(zhì)

(1)用等號(hào)“=”表示相等關(guān)系的式子叫做等式。

(2)等式的性質(zhì)1:等式兩邊加(或減)同一個(gè)數(shù)(或式子),結(jié)果仍相等。

如果a=b,那么a±c=b±c.

(3)等式的性質(zhì)2:等式兩邊乘同一個(gè)數(shù),或除以一個(gè)不為0的數(shù),結(jié)果仍相等。

【第一部分】知識(shí)點(diǎn)分布

1、一元一次方程的解(重點(diǎn))

2、一元一次方程的應(yīng)用(難點(diǎn))

3、求解一元一次方程及其在實(shí)際問題中的應(yīng)用(考點(diǎn))

【第二部分】關(guān)于一元一次方程

一、一元一次方程

(1)含有未知數(shù)的等式是方程。

(2)只含有一個(gè)未知數(shù)(元),未知數(shù)的次數(shù)都是1的方程叫做一元一次方程。

(3)分析實(shí)際問題中的數(shù)量關(guān)系,利用其中的等量關(guān)系列出方程,是用數(shù)學(xué)解決實(shí)際問題的一種方法。

(4)列方程解決實(shí)際問題的步驟:①設(shè)未知數(shù);②找等量關(guān)系列方程。

(5)求出使方程左右兩邊的值相等的未知數(shù)的值,叫做方程的解。

(6)求方程的解的過程,叫做解方程。

二、等式的性質(zhì)

(1)用等號(hào)“=”表示相等關(guān)系的式子叫做等式。

(2)等式的性質(zhì)1:等式兩邊加(或減)同一個(gè)數(shù)(或式子),結(jié)果仍相等。

如果a=b,那么a±c=b±c.

(3)等式的性質(zhì)2:等式兩邊乘同一個(gè)數(shù),或除以一個(gè)不為0的數(shù),結(jié)果仍相等。

如果a=b,那么ac=bc;

如果a=b且c≠0,那么

(4)運(yùn)用等式的性質(zhì)時(shí)要注意三點(diǎn):

①等式兩邊都要參加運(yùn)算,并且是作同一種運(yùn)算;

②等式兩邊加或減,乘或除以的數(shù)一定是同一個(gè)數(shù)或同一個(gè)式子;

③等式兩邊不能都除以0,即0不能作除數(shù)或分母。

三、一元一次方程的解

1、解一元一次方程——合并同類項(xiàng)與移項(xiàng)

(1)合并同類項(xiàng)的依據(jù):乘法分配律。合并同類項(xiàng)的作用:是一種恒等變形,起到“化簡”的作用,它使方程變得簡單,更接近·=a(a常數(shù))的形式。

(2)把等式一邊的某項(xiàng)變號(hào)后移到另一邊,叫做移項(xiàng)。

(3)移項(xiàng)依據(jù):等式的性質(zhì)1.移項(xiàng)的作用:通過移項(xiàng),使含未知數(shù)的項(xiàng)與常數(shù)項(xiàng)分別位于方程左右兩邊,使方程更接近于·=a(a是常數(shù))的形式。

2、解一元一次方程——去括號(hào)與去分母

(1)方程兩邊都乘以各分母的最小公倍數(shù),使方程不在含有分母,這樣的變形叫做去分母。

(2)順流速度=靜水速度+水流速度;逆流速度=靜水速度-水流速度。

(3)工作總量=工作效率×工作時(shí)間。

(4)工作量=人均效率×人數(shù)×時(shí)間。

四、實(shí)際問題與一元一次方程

(1)售價(jià)指商品賣出去時(shí)的的實(shí)際售價(jià)。

(2)進(jìn)價(jià)指的是商家從批發(fā)部或廠家批發(fā)來的價(jià)格。進(jìn)價(jià)指商品的買入價(jià),也稱成本價(jià)。

(3)標(biāo)價(jià)指的是商家所標(biāo)出的每件物品的原價(jià)。它與售價(jià)不同,它指的是原價(jià)。

(4)打折指的是原價(jià)乘以十分之幾或百分之幾,則稱將標(biāo)價(jià)打了幾折。

(5)盈虧問題:利潤=售價(jià)-成本;售價(jià)=進(jìn)價(jià)+利潤;售價(jià)=進(jìn)價(jià)+進(jìn)價(jià)×利潤率;

(6)產(chǎn)油量=油菜籽畝產(chǎn)量×含油率×種植面積。

(7)應(yīng)用:行程問題:路程=時(shí)間×速度;

工程問題:工作總量=工作效率×時(shí)間;

儲(chǔ)蓄利潤問題:利息=本金×利率×時(shí)間;

本息和=本金+利息。

(4)運(yùn)用等式的性質(zhì)時(shí)要注意三點(diǎn):

①等式兩邊都要參加運(yùn)算,并且是作同一種運(yùn)算;

②等式兩邊加或減,乘或除以的數(shù)一定是同一個(gè)數(shù)或同一個(gè)式子;

③等式兩邊不能都除以0,即0不能作除數(shù)或分母。

三、一元一次方程的解

1、解一元一次方程——合并同類項(xiàng)與移項(xiàng)

(1)合并同類項(xiàng)的依據(jù):乘法分配律。合并同類項(xiàng)的作用:是一種恒等變形,起到“化簡”的作用,它使方程變得簡單,更接近·=a(a常數(shù))的形式。

(2)把等式一邊的某項(xiàng)變號(hào)后移到另一邊,叫做移項(xiàng)。

(3)移項(xiàng)依據(jù):等式的性質(zhì)1.移項(xiàng)的作用:通過移項(xiàng),使含未知數(shù)的項(xiàng)與常數(shù)項(xiàng)分別位于方程左右兩邊,使方程更接近于·=a(a是常數(shù))的形式。

2、解一元一次方程——去括號(hào)與去分母

(1)方程兩邊都乘以各分母的最小公倍數(shù),使方程不在含有分母,這樣的變形叫做去分母。

(2)順流速度=靜水速度+水流速度;逆流速度=靜水速度-水流速度。

(3)工作總量=工作效率×工作時(shí)間。

(4)工作量=人均效率×人數(shù)×時(shí)間。

四、實(shí)際問題與一元一次方程

(1)售價(jià)指商品賣出去時(shí)的的實(shí)際售價(jià)。

(2)進(jìn)價(jià)指的是商家從批發(fā)部或廠家批發(fā)來的價(jià)格。進(jìn)價(jià)指商品的買入價(jià),也稱成本價(jià)。

(3)標(biāo)價(jià)指的是商家所標(biāo)出的每件物品的原價(jià)。它與售價(jià)不同,它指的是原價(jià)。

(4)打折指的是原價(jià)乘以十分之幾或百分之幾,則稱將標(biāo)價(jià)打了幾折。

(5)盈虧問題:利潤=售價(jià)-成本;售價(jià)=進(jìn)價(jià)+利潤;售價(jià)=進(jìn)價(jià)+進(jìn)價(jià)×利潤率;

(6)產(chǎn)油量=油菜籽畝產(chǎn)量×含油率×種植面積。

(7)應(yīng)用:行程問題:路程=時(shí)間×速度;

工程問題:工作總量=工作效率×時(shí)間;

儲(chǔ)蓄利潤問題:利息=本金×利率×時(shí)間;

本息和=本金+利息。

七年級(jí)上冊數(shù)學(xué)《有理數(shù)的加減》教案篇13

教學(xué)目標(biāo)和要求:

1.理解同類項(xiàng)的概念,在具體情景中,認(rèn)識(shí)同類項(xiàng)。

2.通過小組討論、合作學(xué)習(xí)等方式,經(jīng)歷概念的形成過程,培養(yǎng)學(xué)生自主探索知識(shí)和合作交流的能力。

3.初步體會(huì)數(shù)學(xué)與人類生活的密切聯(lián)系。

教學(xué)重點(diǎn)和難點(diǎn):

重點(diǎn):理解同類項(xiàng)的概念。

難點(diǎn):根據(jù)同類項(xiàng)的概念在多項(xiàng)式中找同類項(xiàng)。

教學(xué)方法:

分層次教學(xué),講授、練習(xí)相結(jié)合。

教學(xué)過程:

一、復(fù)習(xí)引入:

1、創(chuàng)設(shè)問題情境

⑴5個(gè)人+8個(gè)人=

⑵5只羊+8只羊=

⑶5個(gè)人+8只羊=

(數(shù)學(xué)教學(xué)要緊密聯(lián)系學(xué)生的生活實(shí)際、學(xué)習(xí)實(shí)際,這是新課程標(biāo)準(zhǔn)所賦予的任務(wù)。學(xué)生嘗試按種類、顏色等多種方法進(jìn)行分類,一方面可提供學(xué)生主動(dòng)參與的機(jī)會(huì),把學(xué)生的注意力和思維活動(dòng)調(diào)節(jié)到積極狀態(tài);另一方面可培養(yǎng)學(xué)生思維的靈活性,同時(shí)體現(xiàn)分類的思想方法。)

2、觀察下列各單項(xiàng)式,把你認(rèn)為相同類型的式子歸為一類。

8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,0.4mn2,,2xy2。

由學(xué)生小組討論后,按不同標(biāo)準(zhǔn)進(jìn)行多種分類,教師巡視后把不同的分類方法投影顯示。

要求學(xué)生觀察歸為一類的式子,思考它們有什么共同的特征?

請學(xué)生說出各自的分類標(biāo)準(zhǔn),并且肯定每一位學(xué)生按不同標(biāo)準(zhǔn)進(jìn)行的分類。

(充分讓學(xué)生自己觀察、自己發(fā)現(xiàn)、自己描述,進(jìn)行自主學(xué)習(xí)和合作交流,可極大的激發(fā)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,滿足學(xué)生的表現(xiàn)欲和探究欲,使學(xué)生學(xué)得輕松愉快,充分體現(xiàn)課堂教學(xué)的開放性。)

二、講授新課:

1.同類項(xiàng)的定義:

我們常常把具有相同特征的事物歸為一類。8x2y與-x2y可以歸為一類,2xy2與-可以歸為一類,-mn2、7mn2與0.4mn2可以歸為一類,5a與9a可以歸為一類,還有、0與也可以歸為一類。8x2y與-x2y只有系數(shù)不同,各自所含的字母都是x、y,并且x的指數(shù)都是2,y的指數(shù)都是1;同樣地,2xy2與-也只有系數(shù)不同,各自所含的字母都是x、y,并且x的指數(shù)都是1,y的指數(shù)都是2。

像這樣,所含字母相同,并且相同字母的指數(shù)也分別相等的項(xiàng)叫做同類項(xiàng)(similarterms)。另外,所有的常數(shù)項(xiàng)都是同類項(xiàng)。比如,前面提到的、0與也是同類項(xiàng)。

通過特征的講述,選擇所含字母相同,并且相同字母的指數(shù)也分別相等的項(xiàng)作為研究對象,并稱它們?yōu)橥愴?xiàng)。(板書課題:同類項(xiàng)。)

(教師為了讓學(xué)生理解同類項(xiàng)概念,可設(shè)問同類項(xiàng)必須滿足什么條件,讓學(xué)生歸納總結(jié)。)

板書由學(xué)生歸納總結(jié)得出的同類項(xiàng)概念以及所有的常數(shù)項(xiàng)都是同類項(xiàng)。

2.例題:

例1:判斷下列說法是否正確,正確地在括號(hào)內(nèi)打“√”,錯(cuò)誤的打“×”。

(1)3x與3mx是同類項(xiàng)。()(2)2ab與-5ab是同類項(xiàng)。()

(3)3x2y與-yx2是同類項(xiàng)。()(4)5ab2與-2ab2c是同類項(xiàng)。()

(5)23與32是同類項(xiàng)。()

(這組判斷題能使學(xué)生清楚地理解同類項(xiàng)的概念,其中第(3)題滿足同類項(xiàng)的條件,只要運(yùn)用乘法交換律即可;第(5)題兩個(gè)都是常數(shù)項(xiàng)屬于同類項(xiàng)。一部分學(xué)生可能會(huì)單看指數(shù)不同,誤認(rèn)為不是同類項(xiàng)。)

例2:游戲:

規(guī)則:一學(xué)生說出一個(gè)單項(xiàng)式后,指定一位同學(xué)回答它的兩個(gè)同類項(xiàng)。[來源:學(xué)|科|網(wǎng)Z|X|X|K]

要求出題同學(xué)盡可能使自己的題目與眾不同。

可請回答正確的同學(xué)向大家介紹寫一個(gè)單項(xiàng)式同類項(xiàng)的經(jīng)驗(yàn),從而揭示同類項(xiàng)的本質(zhì)特征,透徹理解同類項(xiàng)的概念。

(學(xué)生自行編題是一種創(chuàng)造性的思維活動(dòng),它可以改變一味由教師出題的程式化做法,并由編題學(xué)生指定某位同學(xué)回答,可使課堂氣氛活躍,學(xué)生透徹理解知識(shí),這種形式適合初中生的年齡特征。學(xué)生通過一定的嘗試后,能得出只要改變單項(xiàng)式的系數(shù),即可得到其同類項(xiàng),實(shí)際是抓住了同類項(xiàng)概念中的兩個(gè)“相同”,從而深刻揭示了概念的內(nèi)涵。)

例3:指出下列多項(xiàng)式中的同類項(xiàng):

(1)3x-2y+1+3y-2x-5;(2)3x2y-2xy2+xy2-yx2。

解:(1)3x與-2x是同類項(xiàng),-2y與3y是同類項(xiàng),1與-5是同類項(xiàng)。

(2)3x2y與-yx2是同類項(xiàng),-2xy2與xy2是同類項(xiàng)。

例4:k取何值時(shí),3xky與-x2y是同類項(xiàng)?

解:要使3xky與-x2y是同類項(xiàng),這兩項(xiàng)中x的次數(shù)必須相等,即k=2。所以當(dāng)k=2時(shí),3xky與-x2y是同類項(xiàng)。

例5:若把(s+t)、(s-t)分別看作一個(gè)整體,指出下面式子中的同類項(xiàng)。

(1)(s+t)-(s-t)-(s+t)+(s-t);

(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t。

解:略。

(組織學(xué)生口頭回答上面三個(gè)例題,例3多項(xiàng)式中的同類項(xiàng)可由教師標(biāo)出不同的下劃線,并運(yùn)用投影儀打出書面解答,為合并同類項(xiàng)作準(zhǔn)備。例4讓學(xué)生明確同類項(xiàng)中相同字母的指數(shù)也相同。例5必須把(s-t)、(s+t)分別看作一個(gè)整體。)

(通過變式訓(xùn)練,可進(jìn)一步明晰“同類項(xiàng)”的意義,在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識(shí)與技能、提高識(shí)別能力。)

6.五分鐘測試:

1、請寫出2ab2c3的一個(gè)同類項(xiàng).你能寫出多少個(gè)?它本身是自己的同類項(xiàng)嗎?

(學(xué)生先在課本上解答,再回答,若有錯(cuò)誤請其他同學(xué)及時(shí)糾正。)

三、課堂小結(jié):[

①理解同類項(xiàng)的概念,會(huì)在多項(xiàng)式中找出同類項(xiàng),會(huì)寫出一個(gè)單項(xiàng)式的同類項(xiàng),會(huì)判斷同類項(xiàng)。

②這堂課運(yùn)用到分類思想和整體思想等數(shù)學(xué)思想方法。

③學(xué)習(xí)同類項(xiàng)的用途是為了簡化多項(xiàng)式,為下一課的合并同類項(xiàng)打下基礎(chǔ)。

(課堂小結(jié)不僅僅是知識(shí)點(diǎn)的羅列,應(yīng)使知識(shí)條理化、系統(tǒng)化,應(yīng)上升到數(shù)學(xué)思想方法的總結(jié)與運(yùn)用.采用學(xué)生相互補(bǔ)充完善,教師適時(shí)點(diǎn)撥的課堂小結(jié)方式,可訓(xùn)練學(xué)生的歸納能力和表達(dá)能力,提高學(xué)生學(xué)習(xí)的積極性和主動(dòng)性。)

四、課堂作業(yè):

若2amb2m+3n與a2n-3b8的和仍是一個(gè)單項(xiàng)式,則m與n的值分別是______。

板書設(shè)計(jì):

教學(xué)后記:

建立在學(xué)生的認(rèn)知發(fā)展水平上,從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),通過小組討論,把一些實(shí)物進(jìn)行分類,從而引出同類項(xiàng)這個(gè)概念,并通過練習(xí)、游戲、合作交流等學(xué)習(xí)活動(dòng)讓學(xué)生更清楚地認(rèn)識(shí)同類項(xiàng)。在整堂課的教學(xué)活動(dòng)中充分體現(xiàn)學(xué)生的主體性,向?qū)W生提供充分參與數(shù)學(xué)活動(dòng)的機(jī)會(huì),幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識(shí)與技能,培養(yǎng)學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦的能力和學(xué)生的合作交流能力。

七年級(jí)上冊數(shù)學(xué)《有理數(shù)的加減》教案篇14

(一)教材所處的地位

人教版《數(shù)學(xué)》七年級(jí)上冊第二章,本章由數(shù)到式,承前啟后,既是有理數(shù)的概括與抽象,又是整式乘除和其他代數(shù)式運(yùn)算的基礎(chǔ),也是學(xué)習(xí)方程、不等式和函數(shù)的基礎(chǔ)。

(二)單元教學(xué)目標(biāo)

(1)理解并掌握單項(xiàng)式、多項(xiàng)式、整式等概念,弄清它們之間的區(qū)別與聯(lián)系。

(2)理解同類項(xiàng)概念,掌握合并同類項(xiàng)的方法,掌握去括號(hào)時(shí)符號(hào)的變化規(guī)律,能正確地進(jìn)行同類項(xiàng)的合并和去括號(hào)。在準(zhǔn)確判斷、正確合并同類項(xiàng)的基礎(chǔ)上,進(jìn)行整式的加減運(yùn)算。

(3)理解整式中的字母表示數(shù),整式的加減運(yùn)算建立在數(shù)的運(yùn)算基礎(chǔ)上;理解合并同類項(xiàng)、去括號(hào)的依據(jù)是分配律;理解數(shù)的運(yùn)算律和運(yùn)算律性質(zhì)在整式的加減運(yùn)算中仍然成立。

(4)能分析實(shí)際問題中的數(shù)量關(guān)系,并列出整式表示.體會(huì)用字母表示數(shù)后,從算術(shù)到代數(shù)的進(jìn)步。

(5)滲透數(shù)學(xué)知識(shí)來源于生活,又要為生活而服務(wù)的辯證觀點(diǎn);通過由數(shù)的加減過渡到整式的加減的過程,培養(yǎng)學(xué)生由特殊到一般的思維;體會(huì)整式的加減實(shí)質(zhì)上就是去括號(hào),合并同類項(xiàng),結(jié)果總是比原來簡潔,體現(xiàn)了數(shù)學(xué)的簡潔美。

(三)單元教學(xué)的重難點(diǎn)

(1)重點(diǎn):理解單項(xiàng)式、多項(xiàng)式的相關(guān)概念;熟練進(jìn)行合并同類項(xiàng)和去括號(hào)的運(yùn)算。

(2)難點(diǎn):準(zhǔn)確地進(jìn)行合并同類項(xiàng),準(zhǔn)確地處理去括號(hào)時(shí)的符號(hào)。

(四)單元教學(xué)思路及策略

(1)注意與小學(xué)相關(guān)內(nèi)容的銜接。

(2)加強(qiáng)與實(shí)際的聯(lián)系。

(3)類比“數(shù)”學(xué)習(xí)“式”,加強(qiáng)知識(shí)的內(nèi)在聯(lián)系,重視數(shù)學(xué)思想方法的滲透。

(4)抓住重難點(diǎn)、加強(qiáng)練習(xí)。

(五)學(xué)生學(xué)習(xí)易錯(cuò)點(diǎn)分析:

(1)忽視單項(xiàng)式的定義,誤認(rèn)為式子是單項(xiàng)式。

(2)忽視單項(xiàng)式系數(shù)的定義,誤認(rèn)為的系數(shù)是4.

(3)忽視單項(xiàng)式的次數(shù)的定義,誤認(rèn)為3a的次數(shù)是0.

(4)忽視多項(xiàng)式的定義,誤認(rèn)為是單項(xiàng)式。

(5)忽視多項(xiàng)式的定義,誤認(rèn)為的次數(shù)是7.

(6)忽視多項(xiàng)式的項(xiàng)的定義,誤認(rèn)為多項(xiàng)式的項(xiàng)分別為.

(7)把多項(xiàng)式的各項(xiàng)重新排列時(shí),忽視要帶它前面的符號(hào)。

(8)忽視同類項(xiàng)的定義,誤認(rèn)為2x3y4與-y4x3不是同類項(xiàng)。

(9)合并同類項(xiàng)時(shí),誤把字母的指數(shù)也相加。

(10)去括號(hào)時(shí)符號(hào)的處理。

(11)兩整式相減時(shí),忽略加括號(hào)。

(六)教學(xué)建議:

(1)了解整式并學(xué)好合并同類項(xiàng)的關(guān)鍵是什么?

整式的加減法,實(shí)際上就是合并同類項(xiàng),同類項(xiàng)的概念以及合并同類項(xiàng)的方法,是本章的重點(diǎn),而同類項(xiàng)及其合并是以單項(xiàng)式為基礎(chǔ)的,所以,單項(xiàng)式的概念或意義是完成合并的關(guān)鍵。

(2)單項(xiàng)式與多項(xiàng)式有什么聯(lián)系與區(qū)別?

教材中先講單項(xiàng)式、后講多項(xiàng)式,然后概括為單項(xiàng)式、多項(xiàng)式統(tǒng)稱為整式,對于單項(xiàng)式的系數(shù),僅限于數(shù)字系數(shù)(單項(xiàng)式中的數(shù)字因數(shù)),這點(diǎn)務(wù)求仔細(xì)體會(huì),切不可加以引申,而多項(xiàng)式?jīng)]有系數(shù);對于次數(shù),單項(xiàng)式的次數(shù)指,所有字母的指數(shù)之和,而多項(xiàng)式的次數(shù)是多項(xiàng)式中次數(shù)最高的項(xiàng)(單項(xiàng)式)的次數(shù),需要加以注意的問題是:單項(xiàng)式的系數(shù),包括它前面的符號(hào),不要把常數(shù)作為字母,單項(xiàng)式x的系數(shù)是1,且單獨(dú)一個(gè)數(shù)(零次單項(xiàng)式)或一個(gè)字母,也是單項(xiàng)式,對于0也是一個(gè)單項(xiàng)式;多項(xiàng)式的每一項(xiàng)都應(yīng)包含它前面得符號(hào);單項(xiàng)式和多項(xiàng)式得分母中不能含有字母。

(3)學(xué)習(xí)合并同類項(xiàng)的方法;

先把同類項(xiàng)分別作上記號(hào),然后根據(jù)合并同類項(xiàng)的法則進(jìn)行合并,合并后把多項(xiàng)式按某一字母降冪或升冪排列;當(dāng)多項(xiàng)式中同類項(xiàng)的系數(shù)互為相反數(shù)時(shí),合并后為0;

(4)什么是合并同類項(xiàng)中要加以注意的“兩同”?

合并同類項(xiàng)是整式加減的基礎(chǔ),深入理解同類項(xiàng)的概念,又是掌握合并同類項(xiàng)的關(guān)鍵,教材中通過一個(gè)探究問題(三個(gè)填空題)的引入,進(jìn)行比較、歸納,從而得出判斷同類項(xiàng)的“兩同”標(biāo)準(zhǔn):所含字母相同,并且相同字母的指數(shù)也相同,這樣的項(xiàng)叫做同類項(xiàng)。幾個(gè)常數(shù)項(xiàng)也是同類項(xiàng),同類項(xiàng)至少有兩個(gè),單項(xiàng)式不叫同類項(xiàng)。

(5)其它注意事項(xiàng):

①整式中,只含一項(xiàng)的是單項(xiàng)式,否則是多項(xiàng)式。分母中含有字母的代數(shù)式不是整式,當(dāng)然也不是單項(xiàng)式或多項(xiàng)式。

②單項(xiàng)式的次數(shù)是所有字母的指數(shù)之和;多項(xiàng)式的次數(shù)是多項(xiàng)式中最高次項(xiàng)的次數(shù)。

③單項(xiàng)式的系數(shù)包括它前面的符號(hào),多項(xiàng)式中每一項(xiàng)的系數(shù)也包括它前面的符號(hào)。

④去括號(hào)時(shí),要特別注意括號(hào)前面是“-”號(hào)的情形。

(七)課時(shí)安排:

第1課時(shí)單項(xiàng)式

第2課時(shí)多項(xiàng)式

第3課時(shí)整式的加減(1)合并同類項(xiàng)

第4課時(shí)整式的加減(2)去括號(hào)

第5課時(shí)整式的加減(3)一般步驟

第6課時(shí)整式的加減(4)化簡求值

第7課時(shí)數(shù)學(xué)活動(dòng)

第8課時(shí)復(fù)習(xí)課

七年級(jí)上冊數(shù)學(xué)《有理數(shù)的加減》教案篇15

一、學(xué)情介紹

我本學(xué)期擔(dān)任初一七、八班的數(shù)學(xué)教學(xué)工作。初一(八)班共有學(xué)生55人,初一(七)班有學(xué)生56人。根據(jù)小學(xué)升初中考試的情況來分析學(xué)生的數(shù)學(xué)成績不算理想,總體的水平一般,往往對課程增多、課堂學(xué)習(xí)容量加大不適應(yīng),顧此失彼,精力分散,使聽課效率下降,因此要重視聽法的指導(dǎo)。學(xué)習(xí)離不開思維,善思則學(xué)得活,效率高,不善思則學(xué)得死,效果差。初一學(xué)生常常固守小學(xué)算術(shù)中的思維定勢,思路狹窄、呆滯,不利于后繼學(xué)習(xí),要重視對學(xué)生進(jìn)行思法指導(dǎo)。學(xué)生在解題時(shí),在書寫上往往存在著條理不清、邏輯混亂的問題,要重視對學(xué)生進(jìn)行寫法指導(dǎo)。學(xué)生是否掌握良好的記憶方法與其學(xué)業(yè)成績的好壞相關(guān),初一學(xué)生由于正處在初級(jí)的邏輯思維階段,識(shí)記知識(shí)時(shí)機(jī)械記憶的成份較多,理解記憶的成份較少,這就不能適應(yīng)初一教學(xué)的新要求,要重視對學(xué)生進(jìn)行記法指導(dǎo)。本學(xué)期的工作重點(diǎn)是扭轉(zhuǎn)學(xué)生的學(xué)習(xí)態(tài)度,培養(yǎng)學(xué)生的好的學(xué)習(xí)習(xí)慣、創(chuàng)新意識(shí),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情和興趣,培優(yōu)補(bǔ)差,同時(shí)強(qiáng)調(diào)對數(shù)學(xué)知識(shí)的靈活運(yùn)用,反對死記硬背,以推動(dòng)數(shù)學(xué)教學(xué)中學(xué)生素質(zhì)的培養(yǎng)。

二、教學(xué)措施

1、根據(jù)今年學(xué)校及教科室計(jì)劃,認(rèn)真構(gòu)建“雙思三環(huán)六步”課堂教學(xué)模式,努力提高課堂教學(xué)的有效性和實(shí)效性。雙思”是指教師反思教學(xué)、學(xué)生反思學(xué)習(xí);“三環(huán)”就是定向、內(nèi)化、發(fā)展;“六步”分別是指:提供資源(入境生趣)、了解學(xué)情(自學(xué)生疑)、弄清疑難(學(xué)習(xí)釋疑)、點(diǎn)難撥疑(練習(xí)解難)、反思教學(xué)(反思學(xué)習(xí))、引導(dǎo)實(shí)踐(遷移創(chuàng)新)。我

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論