2023年安徽省亳州市渦陽縣王元中學數(shù)學八下期末達標檢測試題含解析_第1頁
2023年安徽省亳州市渦陽縣王元中學數(shù)學八下期末達標檢測試題含解析_第2頁
2023年安徽省亳州市渦陽縣王元中學數(shù)學八下期末達標檢測試題含解析_第3頁
2023年安徽省亳州市渦陽縣王元中學數(shù)學八下期末達標檢測試題含解析_第4頁
2023年安徽省亳州市渦陽縣王元中學數(shù)學八下期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年八下數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.甲、乙兩班舉行電腦漢字輸入比賽,參賽學生每分鐘輸入漢字個數(shù)的統(tǒng)計結果如下表:班級參加人數(shù)平均數(shù)中位數(shù)方差甲55135149191乙55135151110某同學分析上表后得出如下結論:①甲、乙兩班學生的平均成績相同;②乙班優(yōu)秀的人數(shù)多于甲班優(yōu)秀的人數(shù)(每分鐘輸入漢字≥150個為優(yōu)秀);③甲班成績的波動比乙班大.上述結論中,正確的是()A.①② B.②③ C.①③ D.①②③2.如圖是一次函數(shù)(、是常數(shù))的圖象,則不等式的解集是()A. B.C. D.3.如圖,已知四邊形是平行四邊形,、分別為和邊上的一點,增加以下條件不能得出四邊形為平行四邊形的是()A. B. C. D.4.用反證法證明命題“在中,若,則”時,可以先假設()A. B. C. D.5.方程x(x-2)=0的根是()A.x=0 B.x=2 C.x1=0,x2=2 D.x1=0,x2=-26.如圖,在?ABCD中,AB=3,AD=5,∠BCD的平分線交BA的延長線于點E,則AE的長為()A.3 B.2.5 C.2 D.1.57.服裝店為了解某品牌外套銷售情況,對各種碼數(shù)銷量進行統(tǒng)計店主最應關注的統(tǒng)計量是()A.平均數(shù) B.中位數(shù) C.方差 D.眾數(shù)8.已知a,b,c是△ABC的三邊長,且滿足關系,則△ABC的形狀為()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等邊三角形9.如圖,直線和直線相交于點,則不等式的解集為()A. B. C. D.10.如圖,在△ABC中,D、E分別為AC、BC的中點,AF平分∠CAB,交DE于點F,若DF=3,則AC的長為()A. B. C. D.11.無論a取何值,關于x的函數(shù)y=﹣x+a2+1的圖象都不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.不等式組的解集是x>1,則m的取值范圍是()A.m≥1 B.m≤1 C.m≥0 D.m≤0二、填空題(每題4分,共24分)13.如圖,矩形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B'處,當△CEB'為直角三角形時,BE的長為14.把拋物線沿軸向上平移1個單位,得到的拋物線解析式為______.15.如圖,將矩形ABCD的四個角向內(nèi)翻折后,恰好拼成一個無縫隙無重疊的四邊形EFGH,EH=6cm,GH=8cm,則邊AB的長是__________16.甲、乙兩人進行射擊測試,每人射擊10次.射擊成績的平均數(shù)相同,射擊成績的方差分別為S甲2=5,S乙2=3.5,則射擊成績比較穩(wěn)定的是_____(填“甲”或“乙“).17.若點在軸上,則點的坐標為__________.18.如圖所示,把同樣大小的黑色棋子擺放在正多邊形的邊上,按照這樣的規(guī)律擺下去,則第n個圖形需要黑色棋子的個數(shù)是.三、解答題(共78分)19.(8分)先化簡,再求值:÷(x﹣),其中x=+1.20.(8分)如圖,在△ABC中,∠ACB=90°,D是BC的中點,DE⊥BC,CE∥AD.(1)求證:四邊形ACED是平行四邊形;(2)若AC=2,CE=4,求四邊形ACEB的周長.21.(8分)某校為獎勵學習之星,準備在某商店購買A、B兩種文具作為獎品,已知一件A種文具的價格比一件B種文具的價格便宜5元,且用600元買A種文具的件數(shù)是用400元買B種文具的件數(shù)的2倍.(1)求一件A種文具的價格;(2)根據(jù)需要,該校準備在該商店購買A、B兩種文具共150件.①求購買A、B兩種文具所需經(jīng)費W與購買A種文具的件數(shù)a之間的函數(shù)關系式;②若購買A種文具的件數(shù)不多于B種文具件數(shù)的2倍,且計劃經(jīng)費不超過2750元,求有幾種購買方案,并找出經(jīng)費最少的方案,及最少需要多少元?22.(10分)一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),設客車離甲地的距離為y1千米,出租車離甲地的距離為y2千米,兩車行駛的時間為x小時,y1、y2關于x的函數(shù)圖像如下圖所示:(1)根據(jù)圖像,直接寫出y1、y2關于x的函數(shù)關系式;(2)若兩車之間的距離為S千米,請寫出S關于x的函數(shù)關系式;(3)甲、乙兩地間有A、B兩個加油站,相距200千米,若客車進入A加油站時,出租車恰好進入B加油站,求A加油站離甲地的距離.23.(10分)我們知道平行四邊形有很多性質(zhì),現(xiàn)在如果我們把平行四邊形沿著它的一條對角線翻折,會發(fā)現(xiàn)這其中還有更多的結論.(發(fā)現(xiàn)與證明)中,,將沿翻折至,連結.結論1:與重疊部分的圖形是等腰三角形;結論2:.試證明以上結論.(應用與探究)在中,已知,,將沿翻折至,連結.若以、、、為頂點的四邊形是正方形,求的長.(要求畫出圖形)24.(10分)某文化用品店用2000元購進一批學生書包,面市后發(fā)現(xiàn)供不應求,商店又購進第二批同樣的書包,所購數(shù)量是第一批購進數(shù)量的3倍,但單價貴了4元,結果第二批用了6300元。求第一批書包的單價。25.(12分)為了了解江城中學學生的身高情況,隨機對該校男生、女生的身高進行抽樣調(diào)查,已知抽取的樣本中,男生、女生的人數(shù)相同,根據(jù)所得數(shù)據(jù)繪制成如下所示的統(tǒng)計表和如圖所示的統(tǒng)計圖.組別身高(cm)Ax<150B150≤x<155C155≤x<160D160≤x<165Ex≥165根據(jù)圖表中提供的信息,回答下列問題:(1)女生身高在B組的有________人;(2)在樣本中,身高在150≤x<155之間的共有________人,身高人數(shù)最多的在________組(填組別序號);(3)已知該校共有男生500人,女生480人,請估計身高在155≤x<165之間的學生有多少人.26.如圖,在平行四邊形OABC中,已知點A、C兩點的坐標為A(,),C(2,0).(1)求點B的坐標.(2)將平行四邊形OABC向左平移個單位長度,求所得四邊形A′B′C′O′四個頂點的坐標.(3)求平行四邊形OABC的面積.

參考答案一、選擇題(每題4分,共48分)1、D【解析】分析:根據(jù)平均數(shù)、中位數(shù)、方差的定義即可判斷;詳解:由表格可知,甲、乙兩班學生的成績平均成績相同;根據(jù)中位數(shù)可以確定,乙班優(yōu)秀的人數(shù)多于甲班優(yōu)秀的人數(shù);根據(jù)方差可知,甲班成績的波動比乙班大.故①②③正確,故選D.點睛:本題考查平均數(shù)、中位數(shù)、方差等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.2、B【解析】

根據(jù)一次函數(shù)圖像與不等式的性質(zhì)即可求解.【詳解】∵一次函數(shù)與x軸的交點橫坐標為-2,∴不等式的解集為故選B.【點睛】此題主要考查一次函數(shù)的圖像,解題的關鍵是熟知一次函數(shù)與不等式的關系.3、B【解析】

逐項根據(jù)平行四邊形的判定進行證明即可解題.【詳解】解:∵四邊形是平行四邊形,∴AB∥CD,AD∥BC,∠A=∠C,∠ABC=∠ADC,AB=CD,AD=BC,A.若,易證ED=BF,∵ED∥BF,∴四邊形為平行四邊形,B.若,由于條件不足,無法證明四邊形為平行四邊形,C.若,∴,易證△ABE≌△CDF,∴AE=CF,接下來的證明步驟同選項A,D.若,易證△ABE≌△CDF,∴AE=CF,接下來的證明步驟同選項A,故選B【點睛】本題考查了平行四邊形的判定與性質(zhì),可以針對各種平行四邊形的判定方法,給出條件,本題可通過構造條件證△AEB≌△CFD來解題.4、B【解析】

根據(jù)反證法的第一步是假設結論不成立進而解答即可.【詳解】解:用反證法證明命題“△ABC中,若∠A>∠B+∠C,則∠A>90°”時,應先假設∠A≤90°.故選:B.【點睛】本題考查的是反證法,解此題關鍵要懂得反證法的意義及步驟.反證法的步驟是:(1)假設結論不成立;(2)從假設出發(fā)推出矛盾;(3)假設不成立,則結論成立.5、C【解析】試題分析:∵x(x-1)=0∴x=0或x-1=0,解得:x1=0,x1=1.故選C.考點:解一元二次方程-因式分解法.6、C【解析】

由平行四邊形ABCD中,CE平分∠BCD,可證得△BCE是等腰三角形,繼而利用AE=BE-AB,求得答案.【詳解】∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC=5,∴∠E=∠ECD,∵CE平分∠BCD,∴∠BCE=∠ECD,∴∠E=∠BCE,∴BE=BC=5,∴AE=BE-AB=5-3=2.故選C.【點睛】此題考查了平行四邊形的性質(zhì)以及等腰三角形的判定與性質(zhì).能證得△BCE是等腰三角形是解此題的關鍵.7、D【解析】

根據(jù)題意,應該關注哪種尺碼銷量最多.【詳解】由于眾數(shù)是數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),故應該關注這組數(shù)據(jù)中的眾數(shù).故選D【點睛】本題考查了數(shù)據(jù)的選擇,根據(jù)題意分析,即可完成。屬于基礎題.8、C【解析】試題解析:∵+|a?b|=0,∴c2-a2-b2=0,a-b=0,解得:a2+b2=c2,a=b,∴△ABC的形狀為等腰直角三角形;故選C.【點睛】此題主要考查了勾股定理逆定理以及非負數(shù)的性質(zhì),關鍵是掌握勾股定理的逆定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.9、C【解析】

寫出直線y=kx(k≠0)在直線y=mx+n(m≠0)上方部分的x的取值范圍即可.【詳解】解:由圖可知,不等式kx≥mx+n的解集為x≥2;故選:C.【點睛】本題考查了一次函數(shù)與一元一次不等式,此類題目,利用數(shù)形結合的思想求解是解題的關鍵.10、C【解析】

首先根據(jù)條件D、E分別是AC、BC的中點可得DE∥AB,再求出∠2=∠3,根據(jù)角平分線的定義推知∠1=∠3,則∠1=∠2,所以由等角對等邊可得到DA=DF=AC.【詳解】如圖,∵D、E分別為AC、BC的中點,∴DE∥AB,∴∠2=∠3,又∵AF平分∠CAB,∴∠1=∠3,∴∠1=∠2,∴AD=DF=3,∴AC=2AD=1.故選C.【點睛】本題考查了三角形中位線定理,等腰三角形的判定與性質(zhì).三角形中位線的定理是:三角形的中位線平行于第三邊且等于第三邊的一半.11、C【解析】

根據(jù)題目中的函數(shù)解析式和一次函數(shù)的性質(zhì)可以解答本題.【詳解】解:∵y=﹣x+a2+1,k=﹣1<0,a2+1≥1>0,∴函數(shù)y=﹣x+a2+1經(jīng)過第一、二、四象限,不經(jīng)過第三象限,故選:C.【點睛】本題考查一次函數(shù)的性質(zhì),解答本題的關鍵是明確題意,利用一次函數(shù)的性質(zhì)解答.12、D【解析】

表示出不等式組中兩不等式的解集,根據(jù)已知不等式組的解集確定出m的范圍即可.【詳解】解:不等式整理得:,由不等式組的解集為x>1,得到m+1≤1,解得:m≤0.故選D.【點睛】本題考查了不等式組的解集的確定.二、填空題(每題4分,共24分)13、1或32【解析】

當△CEB′為直角三角形時,有兩種情況:

①當點B′落在矩形內(nèi)部時,如答圖1所示.

連結AC,先利用勾股定理計算出AC=5,根據(jù)折疊的性質(zhì)得∠AB′E=∠B=90°,而當△CEB′為直角三角形時,只能得到∠EB′C=90°,所以點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,則EB=EB′,AB=AB′=1,可計算出CB′=2,設BE=x,則EB′=x,CE=4-x,然后在Rt△CEB′中運用勾股定理可計算出x.

②當點B′落在AD邊上時,如答圖2所示.此時ABEB′為正方形.【詳解】當△CEB′為直角三角形時,有兩種情況:

①當點B′落在矩形內(nèi)部時,如答圖1所示.

連結AC,

在Rt△ABC中,AB=1,BC=4,

∴AC=42+32=5,

∵∠B沿AE折疊,使點B落在點B′處,

∴∠AB′E=∠B=90°,

當△CEB′為直角三角形時,只能得到∠EB′C=90°,

∴點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,

∴EB=EB′,AB=AB′=1,

∴CB′=5-1=2,

設BE=x,則EB′=x,CE=4-x,

在Rt△CEB′中,

∵EB′2+CB′2=CE2,

∴x2+22=(4-x)2,解得x=32,

∴BE=32;

②當點B′落在AD邊上時,如答圖2所示.

此時ABEB′為正方形,∴BE=AB=1.

綜上所述,BE的長為32或14、【解析】

拋物線圖像向上平移一個單位,即縱坐標減1,然后整理即可完成解答.【詳解】解:由題意得:,即【點睛】本題主要考查了函數(shù)圖像的平移規(guī)律,即“左右橫,上下縱,正減負加”的理解和應用是解題的關鍵.15、.【解析】

利用三個角是直角的四邊形是矩形易證四邊形EFGH為矩形,那么由折疊可得GE的長,進而求出HM,AB即為邊2HM的長.【詳解】解:∵∠HEM=∠HEB,∠GEF=∠CEF,∴∠HEF=∠HEM+∠GEF=∠BEG+∠GEC=×180°=90°,同理可得:∠EHG=∠HGF=∠EFG=90°,∴四邊形EFGH為矩形,∵EH=6cm,GH=8cm,∴GE=10由折疊可知,HM⊥GE,AH=HM,BH=HM,∵,∴AB=AH+BH=2HM=2×=.故答案為.【點睛】此題主要考查了翻折變換的性質(zhì)以及勾股定理等知識,得出四邊形EFGH為矩形是解題關鍵.16、乙.【解析】

根據(jù)方差反應了數(shù)據(jù)的波動情況,即可完成作答。【詳解】解:因為S甲2=5>S乙2=3.5,即乙比較穩(wěn)定,故答案為:乙。【點睛】本題考查了方差在數(shù)據(jù)統(tǒng)計中的作用,即方差是反映數(shù)據(jù)波動大小的量。17、【解析】

根據(jù)x軸上點的縱坐標等于1,可得m值,根據(jù)有理數(shù)的加法,可得點P的坐標.【詳解】解:因為點P(m+1,m-2)在x軸上,

所以m-2=1,解得m=2,

當m=2時,點P的坐標為(3,1),

故答案為(3,1).【點睛】本題主要考查了點的坐標.坐標軸上點的坐標的特點:x軸上點的縱坐標為1,y軸上的橫坐標為1.18、n2+2n【解析】試題分析:第1個圖形是2×3﹣3,第2個圖形是3×4﹣4,第3個圖形是4×5﹣5,按照這樣的規(guī)律擺下去,則第n個圖形需要黑色棋子的個數(shù)是(n+1)(n+2)﹣(n+2)=n2+2n.解:第n個圖形需要黑色棋子的個數(shù)是n2+2n.故答案為:n2+2n.三、解答題(共78分)19、.【解析】

先算括號里面的,再算除法,把分式化為最簡公式,把x的值代入進行計算即可【詳解】原式===,當x=+1時,原式=.【點睛】此題考查分式的化簡求值,掌握運算法則是解題關鍵20、(1)詳見解析;(1)10+1.【解析】

(1)先根據(jù)垂直于同一條直線的兩直線平行,得AC∥DE,又CE∥AD,所以四邊形ACED是平行四邊形;(1)四邊形ACED是平行四邊形,可得DE=AC=1.由勾股定理和中線的定義可求AB和EB的長,從而求出四邊形ACEB的周長.【詳解】(1)∵∠ACB=90°,DE⊥BC,∴AC∥DE又∵CE∥AD∴四邊形ACED是平行四邊形;(1)∵四邊形ACED是平行四邊形.∴DE=AC=1.在Rt△CDE中,由勾股定理得CD=,∵D是BC的中點,∴BC=1CD=4,在△ABC中,∠ACB=90°,由勾股定理得AB=,∵D是BC的中點,DE⊥BC,∴EB=EC=4,∴四邊形ACEB的周長=AC+CE+EB+BA=10+1.【點睛】本題考查了平行四邊形的判定與性質(zhì),垂直平分線的性質(zhì)定理,勾股定理,注意尋找求AB和EB的長的方法和途徑是解題的關鍵.21、(1)一件A種文具的價格為15元;(2)①W=-5a+3000;②有51種購買方案,經(jīng)費最少的方案購買A種玩具100件,B種玩具50件,最低費用為2500元.【解析】

(1)根據(jù)題意可以得到相應的分式方程,從而可以求得一件A種文具的價格;(2)①根據(jù)題意,可以直接寫出W與a之間的函數(shù)關系式;②根據(jù)題意可以求得a的取值范圍,再根據(jù)W與a的函數(shù)關系式,可以得到W的最小值,本題得以解決.【詳解】(1)設一件A種文具的價格為x元,則一件B種玩具的價格為(x+5)元,解得,x=15,經(jīng)檢驗,x=15是原分式方程的解,答:一件A種文具的價格為15元;(2)①由題意可得,W=15a+(15+5)(150-a)=-5a+3000,即購買A、B兩種文具所需經(jīng)費W與購買A種文具的件數(shù)a之間的函數(shù)關系式是W=-5a+3000;②∵購買A種文具的件數(shù)不多于B種文具件數(shù)的2倍,且計劃經(jīng)費不超過2750元,∴,解得,50≤a≤100,∵a為整數(shù),∴共有51種購買方案,∵W=-5a+3000,∴當a=100時,W取得最小值,此時W=2500,150-a=100,答:有51種購買方案,經(jīng)費最少的方案購買A種玩具100件,B種玩具50件,最低費用為2500元.【點睛】本題考查一次函數(shù)的應用、分式方程的應用、一元一次不等式的應用,解答本題的關鍵是明確題意,利用一次函數(shù)的性質(zhì)、不等式的性質(zhì)和分式方程的知識解答,注意分式方程要檢驗.22、(1)(0≤x≤10);(0≤x≤6)(2)(3)A加油站到甲地距離為150km或300km【解析】

(1)直接運用待定系數(shù)法就可以求出y1、y2關于x的函數(shù)圖關系式;(2)分別根據(jù)當0≤x<時,當≤x<6時,當6≤x≤10時,求出即可;(3)分A加油站在甲地與B加油站之間,B加油站在甲地與A加油站之間兩種情況列出方程求解即可.【詳解】(1)設y1=k1x,由圖可知,函數(shù)圖象經(jīng)過點(10,600),∴10k1=600,解得:k1=60,∴y1=60x(0≤x≤10),設y2=k2x+b,由圖可知,函數(shù)圖象經(jīng)過點(0,600),(6,0),則,解得:∴y2=-100x+600(0≤x≤6);(2)由題意,得60x=-100x+600x=,當0≤x<時,S=y2-y1=-160x+600;當≤x<6時,S=y1-y2=160x-600;當6≤x≤10時,S=60x;即;(3)由題意,得①當A加油站在甲地與B加油站之間時,(-100x+600)-60x=200,解得x=,此時,A加油站距離甲地:60×=150km,②當B加油站在甲地與A加油站之間時,60x-(-100x+600)=200,解得x=5,此時,A加油站距離甲地:60×5=300km,綜上所述,A加油站到甲地距離為150km或300km.23、【發(fā)現(xiàn)與證明】結論1:見解析,結論1:見解析;【應用與探究】AC的長為或1.【解析】

【發(fā)現(xiàn)與證明】由平行四邊形的性質(zhì)得出∠EAC=∠ACB,由翻折的性質(zhì)得出∠ACB=∠ACB′,證出∠EAC=∠ACB′,得出AE=CE;得出DE=B′E,證出∠CB′D=∠B′DA=(180°-∠B′ED),由∠AEC=∠B′ED,得出∠ACB′=∠CB′D,即可得出B′D∥AC;【應用與探究】:分兩種情況:①由正方形的性質(zhì)得出∠CAB′=90°,得出∠BAC=90°,再由三角函數(shù)即可求出AC;②由正方形的性質(zhì)和已知條件得出AC=BC=1.【詳解】【發(fā)現(xiàn)與證明】:∵四邊形ABCD是平行四邊形,∴AD=BC,AD∥BC,∴∠EAC=∠ACB,∵△ABC≌△AB′C,∴∠ACB=∠ACB′,BC=B′C,∴∠EAC=∠ACB′,∴AE=CE,即△ACE是等腰三角形;∴DE=B′E,∴∠CB′D=∠B′DA=11(180°?∠B′ED),∵∠AEC=∠B′ED,∴∠ACB′=∠CB′D,∴B′D∥AC;【應用與探究】:分兩種情況:①如圖1所示:∵四邊形ACDB′是正方形,∴∠CAB′=90°,∴∠BAC=90°,∵∠B=45°,∴AC=;②如圖1所示:AC=BC=1;綜上所述:AC的長為或1.【點睛】本題考查平行四邊形的性質(zhì),正方形的性質(zhì),翻折變換(折疊問題).【發(fā)現(xiàn)與證明】對于結論1,要證明三角形是等腰三角形,只需要證明它的兩條邊相等,而在同一個三角形內(nèi)要證明兩條線段相等只需要證明它們所對應的角相等(即用等角對等邊證明).結論1:要證明兩條線段平行,本題用到了內(nèi)錯角相等,兩直線平行.所以解決【發(fā)現(xiàn)與證明】的關鍵是根據(jù)已知條件找到對應角之間的關系.【應用與探究

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論