數(shù)理統(tǒng)計(jì)試題目_第1頁
數(shù)理統(tǒng)計(jì)試題目_第2頁
數(shù)理統(tǒng)計(jì)試題目_第3頁
數(shù)理統(tǒng)計(jì)試題目_第4頁
數(shù)理統(tǒng)計(jì)試題目_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

/四川中學(xué)教育情況簡(jiǎn)析研究目的:通過對(duì)四川某中學(xué)2010學(xué)年年度成績(jī)調(diào)查,粗略探討四川中學(xué)現(xiàn)目前的國中教育情況.數(shù)據(jù)說明:數(shù)據(jù)取自四川某中學(xué)2010學(xué)年年度的平均成績(jī),共計(jì)440名學(xué)生.四川某中學(xué)2010學(xué)年年度成績(jī)考號(hào)成績(jī)考號(hào)成績(jī)考號(hào)姓名考號(hào)成績(jī)30101783033676306017430827763010281303377230602703082872301038030338783060384308297830104783033977306047630830773010587303406730605753083167301067730341763060669308327630107823034278306078030833783010881303436730608663083467301097930344643060971308356430110823034530306108130836303011180303469030611823083790301127830347673061278308386730113803034867306138130839673011481303497930614703084079301158230401673061584308416730116793040281306166430842813011780304039030617823084360301187830404873061879308448730119793040572306197630845723012083304068630620683084686301217930407763062173308477630122793040876306227830848763012383304097830623783084978301247830410753062476308507530125833041190306257830851903012678304128230626783090182301277830413803062790309028030128793041472306287430903723012979304158130629723090481301308630416793063070309057930131833041771306316730906713013279304188330632713090783301337830419783063378309087830134813042081306347030909813013576304216730635783091067301368230422843063666309118430137833042357306377830912573013882304248530638703091385302017630425763063979309147630202793042672306407530915723020370304278730641713091687302047430428953064276309179530205743042987306437630918873020671304307830644793091978302077730431763064576309207630208783043290306466730921703020974304337830647753092268302107530434733070186309237330211793043567307027230924673021265304366730703673092567302137130437763070480309267630214743043875307056730927753021573304397630706673092876302167530440763070783309297630217743044184307085630930843021874304427430709683093174302197630443613071071309326130220753044478307116830933783022168304457830712733093478302227230446673071387309356730223733050178307148730936783022483305026730715943093767302257330503783071676309387830226723050486307179830939663022770305056730718793094067302287530506753071987309417530229723050745307207830942453023068305086730721813094367302317230509643072267309446430232713051067307237630945673023374305117830724763100178302347230512683072569310026830235743051367307267831003673023672305147630727783100476302377230515763072867310057630301743051672307296831006723030278305177130730843100771303037730518713073175310087130304763051978307328731009783030576305207430733673101074303067830521733073485310117330307703052268307357331012683030873305237330736783101373303097230524783073778310147830310713052577308017131015773031173305267130802673101671303126630527783080380310177830313683052879308047031018793031472305297830805673101978303156730530663080667310206630316783053178308076431021783031776305327530808673102275303188030533753080967310237530319733053464308106731024643032072305358730811873102587303217830536763081284310267630322703053764308138331027643032374305387030814793102870303246730539673081567310296730325763054056308167231030563032673305417230817783103172303277030542653081873310326530328673054380308196531033803032974305448930820873103489303307230545903082187310359030331703054687308227331036673033268305476130823783103761303337230548633082466310386330334683054964308257631039643033572305508930826783104090實(shí)證研究:想對(duì)整個(gè)樣本做描述性統(tǒng)計(jì),檢驗(yàn)是否符合正太分布,結(jié)果如下EmpiricalDistributionTestforAHypothesis:NormalDate:01/06/12Time:01:48Sample:1440Includedobservations:440MethodValue

Adj。ValueProbabilityLilliefors(D)0.066623NA0.0001Cramer—vonMises(W2)0.3698890.3703090。0001Watson(U2)0.3547070.3551100。0000Anderson-Darling(A2)2.4739732.4782180。0000Method:MaximumLikelihood-d.f.corrected(ExactSolution)ParameterValue

Std.Errorz—Stat(yī)isticProb.

MU74.422730。351043212。00440.0000SIGMA7。3635460.24850829.631060.0000Loglikelihood-1502。311

Meandependentvar.74.42273No。ofCoefficients2

S。D.dependentvar。7。363546?可以看出,樣本總體是成正太分布的。將數(shù)據(jù)等分成2組樣本,前220組數(shù)據(jù)為一組,計(jì)為OBJ1,后220組數(shù)據(jù)位一組,計(jì)為OBJ2。分別用描述性檢驗(yàn)檢驗(yàn)是否為正太分布,結(jié)果如下EmpiricalDistributionTestforOBJ1Hypothesis:NormalDate:01/06/12Time:01:52Sample:1220Includedobservations:220MethodValue

Adj.ValueProbabilityLilliefors(D)0。086601NA0。0004Cramer-vonMises(W2)0.1903170。1907490.0071Watson(U2)0.1554220.1557750。0131Anderson-Darling(A2)1.2675051。2718850。0026Method:MaximumLikelihood—d.f.corrected(ExactSolution)ParameterValue

Std.Errorz-Stat(yī)isticProb.

MU74。409090.422224176。23150.0000SIGMA6。2625880。29923820.928450。0000Loglikelihood—715。2771

Meandependentvar。74.40909No.ofCoefficients2

S。D.dependentvar。6.262588

EmpiricalDistributionTestforOBJ2Hypothesis:NormalDate:01/06/12Time:01:52Sample:1220Includedobservations:220MethodValue

Adj.ValueProbabilityLilliefors(D)0.084488NA0。0006Cramer—vonMises(W2)0.2917240.2923870.0004Watson(U2)0.2908140。2914750.0002Anderson—Darling(A2)1。9275181.9341790.0001Method:MaximumLikelihood—d。f。corrected(ExactSolution)ParameterValue

Std。Errorz-Stat(yī)isticProb。

MU74.436360.561940132.46320.0000SIGMA8.3349160.39825820。928450.0000Loglikelihood-778。1662

Meandependentvar.74。43636No.ofCoefficients2

S。D.dependentvar。8.334916?可以看出,在顯著性水平為5%的情況下,2個(gè)樣本都是成正太分布的。對(duì)其樣本均值做相等檢驗(yàn),結(jié)果如下。TestforEqualityofMeansBetwee(cuò)nSeriesDat(yī)e:01/06/12Time:01:55Sample:1220Includedobservat(yī)ions:220MethoddfValueProbabilityt-test438-0。0388010。9691Satterthwaite-Welcht-test*406.5109—0.0388010.9691AnovaF-test(1,438)0.0015060.9691WelchF-test*(1,406.511)0.0015060.9691*TestallowsforunequalcellvariancesAnalysisofVarianceSourceofVariat(yī)iondfSumofSq.MeanSq。Between10。0818180.081818Within43823803。2954.34541Total43923803.3754.22181CategoryStat(yī)isticsStd。Err.VariableCountMeanStd。Dev。ofMeanOBJ122074。409096.2625880。422224OBJ222074.436368。3349160.561940All44074。422737.3635460。351043?可以看出,P=0。9691,在α=1%、5%、10%情況下都可以認(rèn)為兩個(gè)樣本均值都相等,其中OBJ1的均值為74.40909,OBJ2的均值為74。43636對(duì)其樣本方差做相等檢驗(yàn),結(jié)果如下TestforEqualityofVariancesBetw

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論