2023年廣東省惠州市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第1頁
2023年廣東省惠州市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第2頁
2023年廣東省惠州市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第3頁
2023年廣東省惠州市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第4頁
2023年廣東省惠州市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年廣東省惠州市成考專升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.

3.設(shè)函數(shù)Y=e-x,則Y'等于().A.A.-ex

B.ex

C.-e-xQ258

D.e-x

4.

5.

6.設(shè)z=x2y,則等于()。A.2yx2y-1

B.x2ylnx

C.2x2y-1lnx

D.2x2ylnx

7.

A.

B.

C.

D.

8.設(shè)直線,ι:x/0=y/2=z/1=z/1,則直線ιA.A.過原點(diǎn)且平行于x軸B.不過原點(diǎn)但平行于x軸C.過原點(diǎn)且垂直于x軸D.不過原點(diǎn)但垂直于x軸9.設(shè)y=2x,則dy=A.A.x2x-1dx

B.2xdx

C.(2x/ln2)dx

D.2xln2dx

10.

11.

12.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。

A.vC=2uB

B.uC=θBα

C.vC=uB+θBα

D.vC=vB

13.設(shè)y=lnx,則y″等于().

A.1/x

B.1/x2

C.-1/x

D.-1/x2

14.A.0B.2C.2f(-1)D.2f(1)

15.

16.如圖所示,在半徑為R的鐵環(huán)上套一小環(huán)M,桿AB穿過小環(huán)M并勻速繞A點(diǎn)轉(zhuǎn)動(dòng),已知轉(zhuǎn)角φ=ωt(其中ω為一常數(shù),φ的單位為rad,t的單位為s),開始時(shí)AB桿處于水平位置,則當(dāng)小環(huán)M運(yùn)動(dòng)到圖示位置時(shí)(以MO為坐標(biāo)原點(diǎn),小環(huán)Md運(yùn)動(dòng)方程為正方向建立自然坐標(biāo)軸),下面說法不正確的一項(xiàng)是()。

A.小環(huán)M的運(yùn)動(dòng)方程為s=2Rωt

B.小環(huán)M的速度為

C.小環(huán)M的切向加速度為0

D.小環(huán)M的法向加速度為2Rω2

17.若f(x)為[a,b]上的連續(xù)函數(shù),()。A.小于0B.大于0C.等于0D.不確定

18.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是

A.

B.f(x)=(x-4)2,x∈[-2,4]

C.

D.f(x)=|x|,x∈[-1,1]

19.

20.A.A.-3/2B.3/2C.-2/3D.2/3二、填空題(20題)21.設(shè)y1(x)、y2(x)是二階常系數(shù)線性微分方程y″+py′+qy=0的兩個(gè)線性無關(guān)的解,則它的通解為______.

22.

23.

24.

25.過原點(diǎn)且與直線垂直的平面方程為______.

26.

27.28.設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,則該切線方程為.29.y=x3-27x+2在[1,2]上的最大值為______.

30.

31.函數(shù)f(x)=2x2+4x+2的極小值點(diǎn)為x=_________。

32.設(shè)函數(shù)y=y(x)由方程x2y+y2x+2y=1確定,則y'=______.33.冪級(jí)數(shù)的收斂半徑為________。34.微分方程y=x的通解為________。35.過點(diǎn)(1,-1,0)且與直線平行的直線方程為______。

36.

37.微分方程y"+y=0的通解為______.38.39.

40.y''-2y'-3y=0的通解是______.三、計(jì)算題(20題)41.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).42.43.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

44.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.45.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則46.47.證明:48.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.49.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.50.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.51.將f(x)=e-2X展開為x的冪級(jí)數(shù).

52.求微分方程y"-4y'+4y=e-2x的通解.

53.

54.求微分方程的通解.

55.

56.求曲線在點(diǎn)(1,3)處的切線方程.

57.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

58.

59.

60.四、解答題(10題)61.

62.63.64.

65.

66.

67.

68.

69.求二元函數(shù)z=x2-xy+y2+x+y的極值。

70.將函數(shù)f(x)=lnx展開成(x-1)的冪級(jí)數(shù),并指出收斂區(qū)間。

五、高等數(shù)學(xué)(0題)71.曲線y=lnx在點(diǎn)_________處的切線平行于直線y=2x一3。

六、解答題(0題)72.在第Ⅰ象限內(nèi)的曲線上求一點(diǎn)M(x,y),使過該點(diǎn)的切線被兩坐標(biāo)軸所截線段的長度為最?。?/p>

參考答案

1.A

2.A

3.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.

由復(fù)合函數(shù)的導(dǎo)數(shù)鏈?zhǔn)椒▌t知

可知應(yīng)選C.

4.A

5.A

6.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。對(duì)于z=x2y,求的時(shí)候,要將z認(rèn)定為x的冪函數(shù),從而可知應(yīng)選A。

7.B本題考查的知識(shí)點(diǎn)為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。

8.C將原點(diǎn)(0,0,0)代入直線方程成等式,可知直線過原點(diǎn)(或由直線方程x/m=y/n=z/p表示過原點(diǎn)的直線得出上述結(jié)論)。直線的方向向量為(0,2,1),又與x軸同方向的單位向量為(1,0,0),且

(0,2,1)*(1,0,0)=0,

可知所給直線與x軸垂直,因此選C。

9.Dy=2x,y'=2xln2,dy=y'dx=2xln2dx,故選D。

10.A

11.B

12.C

13.D由于Y=lnx,可得知,因此選D.

14.C本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)。

15.A

16.D

17.C

18.C

19.C

20.A21.由二階線性常系數(shù)微分方程解的結(jié)構(gòu)可知所給方程的通解為

其中C1,C2為任意常數(shù).

22.

23.ee解析:

24.[01)∪(1+∞)25.2x+y-3z=0本題考查的知識(shí)點(diǎn)為平面方程和平面與直線的關(guān)系.

由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y-3z=0

26.22解析:

27.28.y=f(1).

本題考查的知識(shí)點(diǎn)有兩個(gè):-是導(dǎo)數(shù)的幾何意義,二是求切線方程.

設(shè)切點(diǎn)為(x0,f(x0)),則曲線y=f(x)過該點(diǎn)的切線方程為

y-f(x0)=f(x0)(x-x0).

由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f(x0)=0,故所求切線方程為

y—f(1)=0.

本題中考生最常見的錯(cuò)誤為:將曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程寫為

y-f(x0)=f(x)(x-x0)

而導(dǎo)致錯(cuò)誤.本例中錯(cuò)誤地寫為

y-f(1)=f(x)(x-1).

本例中由于f(x)為抽象函數(shù),-些考生不習(xí)慣于寫f(1),有些人誤寫切線方程為

y-1=0.29.-24本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.

若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),??梢岳脤?dǎo)數(shù)判定f(x)在[a,b]上的最值:

(1)求出f'(x).

(2)求出f(x)在(a,b)內(nèi)的駐點(diǎn)x1,…,xk.

(3)比較f(x1),f(x2),…,f(xk),f(a),f(b).其中最大(小)值為f(x)在[a,b]上的最大(小)值,相應(yīng)的點(diǎn)x為f(x)的最大(小)值點(diǎn).

y=x3-27x+2,

則y'=3x2-27=3(x-3)(x+3),

令y'=0得y的駐點(diǎn)x1=-3,x2=3,可知這兩個(gè)駐點(diǎn)都不在(1,2)內(nèi).

由于f(1)=-24,f(2)=-44,可知y=x3-27x+2在[1,2]上的最大值為-24.

本題考生中出現(xiàn)的錯(cuò)誤多為求出駐點(diǎn)x1=-3,x2=3之后,直接比較

f(-3)=56,f(3)=-52,f(1)=-24,f(2)=-44,

得出y=x3-27x+2在[1,2]上的最大值為f(-3)=56.其錯(cuò)誤的原因是沒有判定駐點(diǎn)x1=-3,x2=3是否在給定的區(qū)間(1,2)內(nèi),這是值得考生注意的問題.在模擬試題中兩次出現(xiàn)這類問題,目的就是希望能引起考生的重視.

本題還可以采用下列解法:注意到y(tǒng)'=3(x-3)(x+3),在區(qū)間[1,2]上有y'<0,因此y為單調(diào)減少函數(shù)??芍?/p>

x=2為y的最小值點(diǎn),最小值為y|x=2=-44.

x=1為y的最大值點(diǎn),最大值為y|x=1=-24.

30.

31.-1

32.

;本題考查的知識(shí)點(diǎn)為隱函數(shù)的求導(dǎo).

將x2y+y2x+2y=1兩端關(guān)于x求導(dǎo),(2xy+x2y')+(2yy'x+y2)+2y'=0,(x2+2xy+2)y'+(2xy+y2)=0,因此y'=33.因?yàn)榧?jí)數(shù)為,所以用比值判別法有當(dāng)<1時(shí)收斂,即x2<2。收斂區(qū)間為,故收斂半徑R=。34.本題考查可分離變量的微分方程.分離變量得dy=xdx,兩端分別積分,∫dy=∫xdx,35.本題考查的知識(shí)點(diǎn)為直線的方程和直線與直線的關(guān)系。由于兩條直線平行的充分必要條件為它們的方向向量平行,因此可取所求直線的方向向量為(2,1,-1).由直線的點(diǎn)向式方程可知所求直線方程為

36.37.y=C1cosx+C2sinx本題考查的知識(shí)點(diǎn)為二階線性常系數(shù)齊次微分方程的求解.

特征方程為r2+1=0,特征根為r=±i,因此所給微分方程的通解為y=C1cosx+C2sinx.38.本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.所給級(jí)數(shù)為缺項(xiàng)情形,由于

39.40.y=C1e-x+C2e3x由y''-2y'-3y=0的特征方程為r2-2r-3=0,得特征根為r1=3,r2=-1,所以方程的通解為y=C1e-x+C2e3x.

41.

列表:

說明

42.

43.

44.函數(shù)的定義域?yàn)?/p>

注意

45.由等價(jià)無窮小量的定義可知

46.

47.

48.

49.

50.由二重積分物理意義知

51.

52.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

53.由一階線性微分方程通解公式有

54.

55.56.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

57.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

58.

59.

60.

61.

62.

63.64.本題考查的知識(shí)點(diǎn)為用洛必達(dá)法則求未定型極限.

65.

66.解如圖

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論