版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年江西省景德鎮(zhèn)市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線3.∫-11(3x2+sin5x)dx=()。A.-2B.-1C.1D.2
4.
5.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)
6.
7.A.A.1
B.
C.
D.1n2
8.
9.在下列函數(shù)中,在指定區(qū)間為有界的是()。
A.f(x)=22z∈(一∞,0)
B.f(x)=lnxz∈(0,1)
C.
D.f(x)=x2x∈(0,+∞)
10.當(dāng)x→0時(shí),sinx是sinx的等價(jià)無(wú)窮小量,則k=()A.0B.1C.2D.3
11.
12.函數(shù)在(-3,3)內(nèi)展開成x的冪級(jí)數(shù)是()。
A.
B.
C.
D.
13.設(shè)x2是f(x)的一個(gè)原函數(shù),則f(x)=A.A.2x
B.x3
C.(1/3)x3+C
D.3x3+C
14.
15.設(shè)f(x)為連續(xù)的奇函數(shù),則等于().A.A.2af(x)
B.
C.0
D.f(a)-f(-a)
16.
17.剛體上A、B、C、D四點(diǎn)組成一個(gè)平行四邊形,如在其四個(gè)頂點(diǎn)作用四個(gè)力,此四個(gè)邊恰好組成封閉的力多邊形。則()
A.力系平衡
B.力系有合力
C.力系的合力偶矩等于平行四邊形ABCD的面積
D.力系的合力偶矩等于負(fù)的平行四邊形ABCD的面積的2倍
18.
19.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x
20.
二、填空題(20題)21.級(jí)數(shù)的收斂區(qū)間為______.
22.
23.
24.函數(shù)f(x)=2x2+4x+2的極小值點(diǎn)為x=_________。
25.26.27.
28.
29.
30.
31.
32.
33.過M0(1,-1,2)且垂直于平面2x-y+3z-1=0的直線方程為______.34.設(shè)x2為f(x)的一個(gè)原函數(shù),則f(x)=_____35.
36.設(shè)f(x)=e5x,則f(x)的n階導(dǎo)數(shù)f(n)(x)=__________.
37.38.
39.
40.
三、計(jì)算題(20題)41.
42.43.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).44.證明:
45.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
46.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則47.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.48.求微分方程的通解.49.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
50.
51.求微分方程y"-4y'+4y=e-2x的通解.
52.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.53.求曲線在點(diǎn)(1,3)處的切線方程.54.
55.
56.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.57.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.58.將f(x)=e-2X展開為x的冪級(jí)數(shù).59.60.
四、解答題(10題)61.將函數(shù)f(x)=lnx展開成(x-1)的冪級(jí)數(shù),并指出收斂區(qū)間。
62.(本題滿分8分)設(shè)y=x+arctanx,求y.
63.將周長(zhǎng)為12的矩形繞其一邊旋轉(zhuǎn)得一圓柱體,問繞邊長(zhǎng)為多少的邊旋轉(zhuǎn)才能使圓柱體的體積最大?
64.求垂直于直線2x-6y+1=0且與曲線y=x3+3x2-5相切的直線方程.
65.
66.(本題滿分8分)
67.
68.
69.70.五、高等數(shù)學(xué)(0題)71.x→0時(shí),1一cos2x與
等價(jià),則a=__________。
六、解答題(0題)72.(本題滿分10分)求由曲線y=3-x2與y=2x,y軸所圍成的平面圖形的面積及該封閉圖形繞x軸旋轉(zhuǎn)-周所成旋轉(zhuǎn)體的體積.
參考答案
1.B
2.D本題考查了曲線的漸近線的知識(shí)點(diǎn),
3.D
4.D
5.A
6.D
7.C本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.
因此選C.
8.C
9.A∵0<2x<1x∈(一∞,0)∴f(x)=2x在區(qū)間(一∞,0)內(nèi)為有界函數(shù)。
10.B由等價(jià)無(wú)窮小量的概念,可知=1,從而k=1,故選B。也可以利用等價(jià)無(wú)窮小量的另一種表述形式,由于當(dāng)x→0時(shí),有sinx~x,由題設(shè)知當(dāng)x→0時(shí),kx~sinx,從而kx~x,可知k=1。
11.B解析:
12.B
13.A由于x2為f(x)的一個(gè)原函數(shù),由原函數(shù)的定義可知f(x)=(x2)'=2x,故選A。
14.A解析:
15.C本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱性.
由定積分的對(duì)稱性質(zhì)可知:若f(x)為[-a,a]上的連續(xù)的奇函數(shù),則
可知應(yīng)選C.
16.A
17.D
18.B
19.D
20.B21.(-1,1)本題考查的知識(shí)點(diǎn)為求冪級(jí)數(shù)的收斂區(qū)間.
所給級(jí)數(shù)為不缺項(xiàng)情形.
可知收斂半徑,因此收斂區(qū)間為
(-1,1).
注:《綱》中指出,收斂區(qū)間為(-R,R),不包括端點(diǎn).
本題一些考生填1,這是誤將收斂區(qū)間看作收斂半徑,多數(shù)是由于考試時(shí)過于緊張而導(dǎo)致的錯(cuò)誤.
22.(1/3)ln3x+C
23.2
24.-1
25.
26.27.1/2
本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.
其積分區(qū)域如圖1—1陰影區(qū)域所示.
可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.
解法1
解法2化為先對(duì)y積分,后對(duì)x積分的二次積分.
作平行于y軸的直線與區(qū)域D相交,沿Y軸正向看,人口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此
x≤y≤1.
區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此
0≤x≤1.
可得知
解法3化為先對(duì)x積分,后對(duì)y積分的二次積分.
作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y(tǒng),作為積分上限,因此
0≤x≤y.
區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此
0≤y≤1.
可得知
28.y=1y=1解析:
29.(12)(01)
30.31.1/2本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.
32.1/(1-x)2
33.本題考查的知識(shí)點(diǎn)為直線方程的求解.
由于所求直線與平面垂直,因此直線的方向向量s可取為已知平面的法向量n=(2,-1,3).由直線的點(diǎn)向式方程可知所求直線方程為
34.由原函數(shù)的概念可知
35.
36.37.本題考查的知識(shí)點(diǎn)為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問題。
38.解析:
39.1
40.
41.
42.
43.
列表:
說(shuō)明
44.
45.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%46.由等價(jià)無(wú)窮小量的定義可知
47.
48.
49.
50.
51.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
52.函數(shù)的定義域?yàn)?/p>
注意
53.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
54.
則
55.56.由二重積分物理意義知
57.
58.
59.60.由一階線性微分方程通解公式有
61.
62.
63.64.由于直線2x-6y+1=0的斜率k=1/3,與其垂直的直線的斜率k1=-1/k=-3.對(duì)于y=x3+3x25,y'=3x2+6x.由題意應(yīng)有3x2+6x=-3,因此x2+2x+1=0,x=-1,此時(shí)y=(-1)3+3(-1)2-5=-3.即切點(diǎn)為(-1,-3).切線方程為y+3=-3(x+1),或?qū)憺?x+y+6=0.本題考查的知識(shí)點(diǎn)為求曲線的切線方程.
求曲線y=f(x,y)的切線方程,通常要找出切點(diǎn)及函數(shù)在切點(diǎn)處的導(dǎo)數(shù)值.所給問題沒有給出切點(diǎn),因此依已給條件找出切點(diǎn)是首要問題.得出切點(diǎn)、切線的斜率后,可依直線的點(diǎn)斜式方程求出切線方程.
65.
66.【解析】
67.
68.69.本題考查的知識(shí)點(diǎn)為:描述函數(shù)幾何性態(tài)的綜合問題。
極小值點(diǎn)為x=一1,極小值為曲線的凹區(qū)間為(一2,+∞);曲線的凸區(qū)間為(一∞,一2);70.本題考查的知識(shí)點(diǎn)為兩個(gè)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 年會(huì)先進(jìn)員工頒獎(jiǎng)
- 腦卒中護(hù)理查房
- 2024個(gè)人簡(jiǎn)易租房合同
- 2024《施工合同范本》
- 2024個(gè)人室內(nèi)裝修合同范本
- 企業(yè)安全文化建設(shè)與評(píng)價(jià)考核試卷
- 蘇州科技大學(xué)天平學(xué)院《江南絲竹》2022-2023學(xué)年第一學(xué)期期末試卷
- 蘇州科技大學(xué)天平學(xué)院《合唱與指揮一》2021-2022學(xué)年第一學(xué)期期末試卷
- 養(yǎng)老職業(yè)規(guī)劃
- 蘇州科技大學(xué)天平學(xué)院《鋼橋與組合結(jié)構(gòu)橋梁》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年新改版人教版三年級(jí)上冊(cè)道德與法治全冊(cè)知識(shí)點(diǎn)
- 2024年高壓電工特種作業(yè)考試初審復(fù)審訓(xùn)練題庫(kù)及答案(共333題)
- 2022電動(dòng)汽車充電設(shè)施建設(shè)技術(shù)導(dǎo)則
- 落實(shí)《中小學(xué)德育工作指南》制定的實(shí)施方案(pdf版)
- 中國(guó)軟件行業(yè)基準(zhǔn)數(shù)據(jù)報(bào)告(SSM-BK-202409)
- 專題09 完形填空 考點(diǎn)2 生活哲理類2024年中考英語(yǔ)真題分類匯編
- 抖音短視頻年度打包服務(wù)合作協(xié)議2024年
- 人教版體育與健康八年級(jí)9武術(shù)《健身南拳》參考教學(xué)設(shè)計(jì)
- 亮化工程項(xiàng)目管理組織機(jī)構(gòu)架設(shè)
- 2024年四川成都鐵路局招聘1015人歷年(高頻重點(diǎn)提升專題訓(xùn)練)共500題附帶答案詳解
- 打印耗材供貨協(xié)議
評(píng)論
0/150
提交評(píng)論