2022-2023學(xué)年江西省景德鎮(zhèn)市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁
2022-2023學(xué)年江西省景德鎮(zhèn)市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁
2022-2023學(xué)年江西省景德鎮(zhèn)市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁
2022-2023學(xué)年江西省景德鎮(zhèn)市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁
2022-2023學(xué)年江西省景德鎮(zhèn)市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年江西省景德鎮(zhèn)市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(20題)1.A.2/5B.0C.-2/5D.1/2

2.A.A.f(2)-f(0)

B.

C.

D.f(1)-f(0)

3.微分方程y+y=0的通解為().A.A.

B.

C.

D.

4.已知作用在簡支梁上的力F與力偶矩M=Fl,不計桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。

A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同

5.當(dāng)x→0時,3x2+2x3是3x2的()。A.高階無窮小B.低階無窮小C.同階無窮小但不是等價無窮小D.等價無窮小

6.如圖所示,在半徑為R的鐵環(huán)上套一小環(huán)M,桿AB穿過小環(huán)M并勻速繞A點(diǎn)轉(zhuǎn)動,已知轉(zhuǎn)角φ=ωt(其中ω為一常數(shù),φ的單位為rad,t的單位為s),開始時AB桿處于水平位置,則當(dāng)小環(huán)M運(yùn)動到圖示位置時(以MO為坐標(biāo)原點(diǎn),小環(huán)Md運(yùn)動方程為正方向建立自然坐標(biāo)軸),下面說法不正確的一項是()。

A.小環(huán)M的運(yùn)動方程為s=2Rωt

B.小環(huán)M的速度為

C.小環(huán)M的切向加速度為0

D.小環(huán)M的法向加速度為2Rω2

7.

8.

9.

10.

11.

12.A.A.∞B.1C.0D.-1

13.

A.2x-2B.2y+4C.2x+2y+2D.2y+4+x2-2x14.設(shè)二元函數(shù)z=xy,則點(diǎn)P0(0,0)A.為z的駐點(diǎn),但不為極值點(diǎn)B.為z的駐點(diǎn),且為極大值點(diǎn)C.為z的駐點(diǎn),且為極小值點(diǎn)D.不為z的駐點(diǎn),也不為極值點(diǎn)

15.

16.

17.

18.

19.A.

B.

C.

D.

20.曲線y=1nx在點(diǎn)(e,1)處切線的斜率為().A.A.e2

B.eC.1D.1/e二、填空題(20題)21.若f'(x0)=1,f(x0)=0,則22.23.過點(diǎn)(1,-1,0)且與直線平行的直線方程為______。24.

25.

26.

27.

28.二元函數(shù)z=x2+3xy+y2+2x,則=______.

29.

30.

31.

32.

33.

34.

35.設(shè),則y'=________。

36.

37.

38.設(shè)y=sin2x,則y'______.

39.過點(diǎn)M0(1,2,-1)且與平面x-y+3z+1=0垂直的直線方程為_________。

40.過點(diǎn)M0(1,-2,0)且與直線垂直的平面方程為______.三、計算題(20題)41.求微分方程y"-4y'+4y=e-2x的通解.

42.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.43.求曲線在點(diǎn)(1,3)處的切線方程.44.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.45.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則

46.

47.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.48.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.49.

50.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?

51.將f(x)=e-2X展開為x的冪級數(shù).52.

53.求微分方程的通解.54.證明:55.56.

57.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).58.

59.

60.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

四、解答題(10題)61.設(shè)函數(shù)f(x)=x3-3x2-9x,求f(x)的極大值。62.63.

64.(本題滿分10分)

65.

66.

67.

68.求,其中D為y=x-4,y2=2x所圍成的區(qū)域。

69.

70.

五、高等數(shù)學(xué)(0題)71.f(x)=lnx,則f[f(x)]=__________。六、解答題(0題)72.將f(x)=1/3-x展開為(x+2)的冪級數(shù),并指出其收斂區(qū)間。

參考答案

1.A本題考查了定積分的性質(zhì)的知識點(diǎn)

2.C本題考查的知識點(diǎn)為牛頓一萊布尼茨公式和不定積分的性質(zhì).

可知應(yīng)選C.

3.D本題考查的知識點(diǎn)為-階微分方程的求解.

可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作-階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解.

解法1將方程認(rèn)作可分離變量方程.

解法2將方程認(rèn)作-階線性微分方程.由通解公式可得

解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:

特征方程為r+1=0,

特征根為r=-1,

4.D

5.D本題考查的知識點(diǎn)為無窮小階的比較。

由于,可知點(diǎn)x→0時3x2+2x3與3x2為等價無窮小,故應(yīng)選D。

6.D

7.B

8.B

9.D

10.A

11.D

12.C本題考查的知識點(diǎn)為導(dǎo)數(shù)的幾何意義.

13.B解析:

14.A

15.D解析:

16.D

17.A解析:

18.A

19.A本題考查的知識點(diǎn)為偏導(dǎo)數(shù)的計算。由于故知應(yīng)選A。

20.D本題考查的知識點(diǎn)為導(dǎo)數(shù)的幾何意義.

由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點(diǎn)x0處可導(dǎo),則曲線),y=f(x)在點(diǎn)(x0,f(x0))處必定存在切線,且切線的斜率為f(x0).

由于y=lnx,可知可知應(yīng)選D.21.-1

22.23.本題考查的知識點(diǎn)為直線的方程和直線與直線的關(guān)系。由于兩條直線平行的充分必要條件為它們的方向向量平行,因此可取所求直線的方向向量為(2,1,-1).由直線的點(diǎn)向式方程可知所求直線方程為

24.

25.

26.-2/π本題考查了對由參數(shù)方程確定的函數(shù)求導(dǎo)的知識點(diǎn).

27.

解析:28.2x+3y+2本題考查的知識點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù)運(yùn)算.

29.3x2siny3x2siny解析:

30.1

31.本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識點(diǎn)。

32.(01]

33.發(fā)散

34.

35.

36.[-11)

37.5/238.2sinxcosx本題考查的知識點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)運(yùn)算.

39.40.3(x-1)-(y+2)+z=0(或3x-y+z=5)本題考查的知識點(diǎn)為平面與直線的方程.

由題設(shè)條件可知應(yīng)該利用點(diǎn)法式方程來確定所求平面方程.

所給直線l的方向向量s=(3,-1,1).若所求平面π垂直于直線l,則平面π的法向量n∥s,不妨取n=s=(3,-1,1).則由平面的點(diǎn)法式方程可知

3(x-1)-[y-(-2)]+(z-0)=0,

即3(x-1)-(y+2)+z=0

為所求平面方程.

或?qū)憺?x-y+z-5=0.

上述兩個結(jié)果都正確,前者3(x-1)-(y+2)z=0稱為平面的點(diǎn)法式方程,而后者3x-y+z-5=0稱為平面的一般式方程.

41.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

42.

43.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

44.函數(shù)的定義域為

注意

45.由等價無窮小量的定義可知

46.47.由二重積分物理意義知

48.

49.

50.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時,價格上漲1%需求量減少2.5%

51.52.由一階線性微分方程通解公式有

53.

54.

55.

56.

57.

列表:

說明

58.

59.

60.

61.62.本題考查的知識點(diǎn)為計算二重積分;選擇積分次序或利用極坐標(biāo)計算.

積分區(qū)域D如圖2—1所示.

解法1利用極坐標(biāo)系.

D可以表示為

解法2利用直角坐標(biāo)系.

如果利用直角坐標(biāo)計算,區(qū)域D的邊界曲線關(guān)于x,y地位等同,因此選擇哪種積分次序應(yīng)考慮被積函數(shù)的特點(diǎn).注意

可以看出,兩種積分次序下的二次積分都可以進(jìn)行計算,但是若先對x積分,后對y積分,將簡便些.

本題中考生出現(xiàn)的較普遍的錯誤為,利用極坐標(biāo)將二重

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論