2022年安徽省巢湖市普通高校對口單招數(shù)學自考預測試題(含答案)_第1頁
2022年安徽省巢湖市普通高校對口單招數(shù)學自考預測試題(含答案)_第2頁
2022年安徽省巢湖市普通高校對口單招數(shù)學自考預測試題(含答案)_第3頁
2022年安徽省巢湖市普通高校對口單招數(shù)學自考預測試題(含答案)_第4頁
2022年安徽省巢湖市普通高校對口單招數(shù)學自考預測試題(含答案)_第5頁
免費預覽已結束,剩余23頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022年安徽省巢湖市普通高校對口單招數(shù)學自考預測試題(含答案)學校:________班級:________姓名:________考號:________

一、單選題(20題)1.cos240°=()A.1/2

B.-1/2

C./2

D.-/2

2.若logmn=-1,則m+3n的最小值是()A.

B.

C.2

D.5/2

3.A.B.C.D.

4.如圖,在長方體ABCD—A1B1C1D1中,AB=AD=3cm,AA1=2cm,則四棱錐A—BB1D1D的體積為()cm3.A.5B.6C.7D.8

5.在等差數(shù)列{an}中,a5=9,則S9等于()A.95B.81C.64D.45

6.下列函數(shù)是奇函數(shù)的是A.y=x+3

B.C.D.

7.在正方體ABCD-A1B1C1D1中,二面角D1-AB-D的大小是()A.30°B.60°C.45°D.90°

8.“x=1”是“x2-1=0”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件

9.過點M(2,1)的直線與x軸交與P點,與y軸交與交與Q點,且|MP|=|MQ|,則此直線方程為()A.x-2y+3=0B.2x-y-3=0C.2x+y-5=0D.x+2y-4=0

10.函數(shù)y=3sin+4cos的周期是()A.2πB.3πC.5πD.6π

11.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c已知a=,c=2,cosA=2/3,則b=()A.

B.

C.2

D.3

12.A≠ф是A∩B=ф的()A.充分條件B.必要條件C.充要條件D.無法確定

13.直線:y+4=0與圓(x-2)2+(y+l)2=9的位置關系是()

A.相切B.相交且直線不經(jīng)過圓心C.相離D.相交且直線經(jīng)過圓心

14.已知sin(5π/2+α)=1/5,那么cosα=()A.-2/5B.-1/5C.1/5D.2/5

15.已知,則sin2α-cos2α的值為()A.-1/8B.-3/8C.1/8D.3/8

16.函數(shù)y=f(x)存在反函數(shù),若f(2)=-3,則函數(shù)y=f-1(x)的圖像經(jīng)過點()A.(-3,2)B.(1,3)C.(-2,2)D.(-3,3)

17.若sinα與cosα同號,則α屬于()A.第一象限角B.第二象限角C.第一、二象限角D.第一、三象限角

18.A.偶函數(shù)B.奇函數(shù)C.既不是奇函數(shù),也不是偶函數(shù)D.既是奇函數(shù),也是偶函數(shù)

19.不等式4-x2<0的解集為()A.(2,+∞)B.(-∞,2)C.(-2,2)D.(―∞,一2)∪(2,+∞)

20.已知全集U={1,2,3,4,5},集合A={1,2,5},={1,3,5},則A∩B=()A.{5}B.{2}C.{1,2,4,5}D.{3,4,5}

二、填空題(10題)21.已知圓柱的底面半徑為1,母線長與底面的直徑相等,則該圓柱的表面積為_____.

22.

23.

24.雙曲線x2/4-y2/3=1的離心率為___.

25.

26.

27.己知0<a<b<1,則0.2a

0.2b。

28.若直線的斜率k=1,且過點(0,1),則直線的方程為

。

29.已知_____.

30.某工廠生產(chǎn)A、B、C三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:4,現(xiàn)用分層抽樣方法抽出一個容量為n的樣本,樣本中A種型號產(chǎn)品有6件,那么n=

。

三、計算題(10題)31.己知{an}為等差數(shù)列,其前n項和為Sn,若a3=6,S3=12,求公差d.

32.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。

33.已知函數(shù)f(x)的定義域為{x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.

34.己知直線l與直線y=2x+5平行,且直線l過點(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.

35.有語文書3本,數(shù)學書4本,英語書5本,書都各不相同,要把這些書隨機排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語書不挨著排的概率P。

36.某小組有6名男生與4名女生,任選3個人去參觀某展覽,求(1)3個人都是男生的概率;(2)至少有兩個男生的概率.

37.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。

38.甲、乙兩人進行投籃訓練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.

39.近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應的垃圾箱,為調查居民生活垃圾的正確分類投放情況,現(xiàn)隨機抽取了該市四類垃圾箱總計100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。

40.設函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.

四、簡答題(10題)41.在ABC中,AC丄BC,ABC=45°,D是BC上的點且ADC=60°,BD=20,求AC的長

42.求到兩定點A(-2,0)(1,0)的距離比等于2的點的軌跡方程

43.某籃球運動員進行投籃測驗,每次投中的概率是0.9,假設每次投籃之間沒有影響(1)求該運動員投籃三次都投中的概率(2)求該運動員投籃三次至少一次投中的概率

44.證明上是增函數(shù)

45.已知函數(shù).(1)求f(x)的定義域;(2)判斷f(x)的奇偶性,并加以證明;(3)a>1時,判斷函數(shù)的單調性并加以證明。

46.如圖:在長方體從中,E,F(xiàn)分別為和AB和中點。(1)求證:AF//平面。(2)求與底面ABCD所成角的正切值。

47.如圖,四棱錐P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求證:BC丄平面PAC。(2)求點B到平面PCD的距離。

48.某商場經(jīng)銷某種商品,顧客可采用一次性付款或分期付款購買,根據(jù)以往資料統(tǒng)計,顧客采用一次性付款的概率是0.6,求3為顧客中至少有1為采用一次性付款的概率。

49.已知a是第二象限內(nèi)的角,簡化

50.數(shù)列的前n項和Sn,且求(1)a2,a3,a4的值及數(shù)列的通項公式(2)a2+a4+a6++a2n的值

五、解答題(10題)51.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為DD1,CC1的中點.求證:(1)AC⊥BD1;(2)AE//平面BFD1.

52.

53.如圖,在正方體ABCD—A1B1C1D1中,E,F(xiàn)分別為棱AD,AB的中點.(1)求證:EF//平面CB1D1;(2)求證:平面CAA1C1丄平面CB1D1

54.已知橢圓的兩焦點為F1(-1,0),F2(1,0),P為橢圓上的一點,且2|F1F2|PF1|+|PF2|.(1)求此橢圓的標準方程;(2)若點P在第二象限,∠F2F1P=120°,求△PF1F2的面積.

55.某化工廠生產(chǎn)的某種化工產(chǎn)品,當年產(chǎn)量在150噸至250噸之內(nèi),其年生產(chǎn)的總成本:y(萬元)與年產(chǎn)量x(噸)之間的關系可近似地表示為y=x2/10-30x+400030x+4000.(1)當年產(chǎn)量為多少噸時,每噸的平均成本最低,并求每噸最低平均成本;(2)若每噸平均出廠價為16萬元,求年生產(chǎn)多少噸時,可獲得最大的年利潤,并求最大年利潤.

56.

57.如圖,一輛汽車在一條水平的公路上向正西行駛,在A處時測得公路北側一山頂D在西偏北30°的方向上,行駛600m后到達B處,測得此山頂在西偏北75°的方向上,仰角為30°,求此山的高度CD。

58.

59.已知數(shù)列{an}是首項和公差相等的等差數(shù)列,其前n項和為Sn,且S10=55.(1)求an和Sn(2)設=bn=1/Sn,數(shù)列{bn}的前n項和為T=n,求Tn的取值范圍.

60.A.90B.100C.145D.190

六、單選題(0題)61.AB>0是a>0且b>0的()A.充分條件B.必要條件C.充要條件D.既不充分也不必要條件

參考答案

1.B誘導公式的運用.cos240°=cos(60°+180°)=-cos60°=-1/2

2.B對數(shù)性質及基本不等式求最值.由㏒mn=-1,得m-1==n,則mn=1.由于m>0,n>0,∴m+3n≥2.

3.C

4.B四棱錐的體積公式∵長方體底面ABCD是正方形,∴△ABD中BD=3cm,BD邊上的高是3/2cm,∴四棱錐A-BB1DD1的體積為去1/3×3×2×3/2=6

5.B

6.C

7.C

8.A充要條件的判斷.若x=1,則x2-1=0成立.x2-1=0,則x=1或x=-1,故x=1不-定成立.所以“x=1”是“x2-1=0”的充分不必要條件.

9.D

10.Dy=3sin(x/3)+4cos(x/3)=5[3/5sin(x/3)+4/5cos(x/3)]=5sin(x/3+α),所以最小正周期為6π。

11.D解三角形的余弦定理.由余弦定理,得5=b2+22-2×b×2×2/3,解得b=3(b=1/3舍去),

12.A

13.A直線與圓的位置關系.圓心(2,-1)到直線y=-4的距離為|-4-(-1)|=3,而圓的半徑為3,所以直線與圓相切,

14.C同角三角函數(shù)的計算sin(5π/2+α)=sin(π/2+α)=cosα=-1/5.

15.B三角函數(shù)的恒等變換,二倍角公式.sin2α-cos2α=-cos2α=2sin2α-1=-3/8

16.A由反函數(shù)定義可知,其圖像過點(-3,2).

17.D

18.A

19.D不等式的計算.4-x2<0,x2-4>0即(x-2)(x+2)>0,x>2或x<-2.

20.B集合的運算.由CuB={1,3,5}得B={2,4},故A∩B={2}.

21.6π圓柱的側面積計算公式.利用圓柱的側面積公式求解,該圓柱的側面積為27x1x2=4π,一個底面圓的面積是π,所以該圓柱的表面積為4π+27π=6π.

22.-4/5

23.{x|0<x<1/3}

24.e=雙曲線的定義.因為

25.5

26.

27.>由于函數(shù)是減函數(shù),因此左邊大于右邊。

28.3x-y+1=0因為直線斜率為k=1且過點(0,1),所以方程是y-2=3x,即3x-y+1=0。

29.

30.72

31.

32.

33.

34.解:(1)設所求直線l的方程為:2x-y+c=0∵直線l過點(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當x=0時,y=-4∴直線l在y軸上的截距為-4

35.

36.

37.

38.

39.

40.解:(1)因為f(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因為f(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2

41.在指數(shù)△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20則,則

42.

43.(1)P=0.9×0.9×0.9=0.729(2)P=1-0.1×0.1×0.1=0.999

44.證明:任取且x1<x2∴即∴在是增函數(shù)

45.(1)-1<x<1(2)奇函數(shù)(3)單調遞增函數(shù)

46.

47.證明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC則BC丄平面PAC(2)設點B到平面PCD的距離為hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1則△ADC為等邊三角形,且AC=1PA=

PD=PC=2

48.

49.

50.

51.(1)連接BD,由D1D⊥平面ABCD→D1D⊥AC又BD⊥AC,BD∩D1D=D,BD1,BD平面BDD1→AC⊥平面BDD1,又因為BD1包含于平面BDD1→AC⊥BD1.(2)連接EF,因為E,F(xiàn)分別為DD1,CC1的中點,所以EF//DC,且EF=DC,又DC//AB,且EF=AB所以四邊形EFBA是平行四邊形,所以AE//BF,又因為AE不包含平面BFD1,BF包含于平面BFD1,所以AE//平面BFD1

52.

53.(1)如圖,連接BD,在正方體AC1中,對角線BD//B1D1.又因為,E,F分別為棱AD,AB的中點,所以EF//BD,所以EF//B1D1,又因為B1D1包含于平面CB1D1,所以EF//平面CB1D1.

54.

55.(1)設每噸的平均成本為W(萬元/噸),ω=y/x=x/10+4000/x-30≥-30=10,當且僅當x/10=4000/x,x=200噸時每噸成本最低為10萬元.(2)設年利潤為u萬元u=16x-(x2/10-30x+4000)=-x2/10+46x-4000=-1/10(x-230)2+1290,當x=230時,umax=1290,故當年產(chǎn)量為230噸時,最大年利潤為1290萬元.

5

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論