![2023年湖南省重點(diǎn)高考數(shù)學(xué)四模試卷含解析_第1頁](http://file4.renrendoc.com/view/10c6a8cddda56572140bb87d74702793/10c6a8cddda56572140bb87d747027931.gif)
![2023年湖南省重點(diǎn)高考數(shù)學(xué)四模試卷含解析_第2頁](http://file4.renrendoc.com/view/10c6a8cddda56572140bb87d74702793/10c6a8cddda56572140bb87d747027932.gif)
![2023年湖南省重點(diǎn)高考數(shù)學(xué)四模試卷含解析_第3頁](http://file4.renrendoc.com/view/10c6a8cddda56572140bb87d74702793/10c6a8cddda56572140bb87d747027933.gif)
![2023年湖南省重點(diǎn)高考數(shù)學(xué)四模試卷含解析_第4頁](http://file4.renrendoc.com/view/10c6a8cddda56572140bb87d74702793/10c6a8cddda56572140bb87d747027934.gif)
![2023年湖南省重點(diǎn)高考數(shù)學(xué)四模試卷含解析_第5頁](http://file4.renrendoc.com/view/10c6a8cddda56572140bb87d74702793/10c6a8cddda56572140bb87d747027935.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)等比數(shù)列的前項(xiàng)和為,則“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要2.已知數(shù)列對任意的有成立,若,則等于()A. B. C. D.3.已知,則的大小關(guān)系是()A. B. C. D.4.已知全集為,集合,則()A. B. C. D.5.羽毛球混合雙打比賽每隊(duì)由一男一女兩名運(yùn)動員組成.某班級從名男生,,和名女生,,中各隨機(jī)選出兩名,把選出的人隨機(jī)分成兩隊(duì)進(jìn)行羽毛球混合雙打比賽,則和兩人組成一隊(duì)參加比賽的概率為()A. B. C. D.6.函數(shù)的圖象大致為A. B. C. D.7.若,則()A. B. C. D.8.下列函數(shù)中既關(guān)于直線對稱,又在區(qū)間上為增函數(shù)的是()A.. B.C. D.9.在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)的共軛復(fù)數(shù)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.設(shè)拋物線的焦點(diǎn)為F,拋物線C與圓交于M,N兩點(diǎn),若,則的面積為()A. B. C. D.11.水平放置的,用斜二測畫法作出的直觀圖是如圖所示的,其中,則繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體的表面積為()A. B. C. D.12.已知等差數(shù)列中,,則()A.20 B.18 C.16 D.14二、填空題:本題共4小題,每小題5分,共20分。13.己知雙曲線的左、右焦點(diǎn)分別為,直線是雙曲線過第一、三象限的漸近線,記直線的傾斜角為,直線,,垂足為,若在雙曲線上,則雙曲線的離心率為_______14.《九章算術(shù)》中,將四個面都為直角三角形的四面體稱為鱉臑,如圖,在鱉臑中,平面,,且,過點(diǎn)分別作于點(diǎn),于點(diǎn),連接,則三棱錐的體積的最大值為__________.15.在中,內(nèi)角所對的邊分別為,若,的面積為,則_______,_______.16.在正方體中,為棱的中點(diǎn),是棱上的點(diǎn),且,則異面直線與所成角的余弦值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知三棱柱中,,是的中點(diǎn),,.(1)求證:;(2)若側(cè)面為正方形,求直線與平面所成角的正弦值.18.(12分)在,角、、所對的邊分別為、、,已知.(1)求的值;(2)若,邊上的中線,求的面積.19.(12分)如圖,是正方形,點(diǎn)在以為直徑的半圓弧上(不與,重合),為線段的中點(diǎn),現(xiàn)將正方形沿折起,使得平面平面.(1)證明:平面.(2)三棱錐的體積最大時,求二面角的余弦值.20.(12分)已知拋物線的焦點(diǎn)為,準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,直線與拋物線交于另一點(diǎn).(1)設(shè)直線,的斜率分別為,,求證:常數(shù);(2)①設(shè)的內(nèi)切圓圓心為的半徑為,試用表示點(diǎn)的橫坐標(biāo);②當(dāng)?shù)膬?nèi)切圓的面積為時,求直線的方程.21.(12分)已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求實(shí)數(shù)x的取值范圍.22.(10分)曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)過原點(diǎn)且傾斜角為的射線與曲線分別交于兩點(diǎn)(異于原點(diǎn)),求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
首先根據(jù)等比數(shù)列分別求出滿足,的基本量,根據(jù)基本量的范圍即可確定答案.【詳解】為等比數(shù)列,若成立,有,因?yàn)楹愠闪?,故可以推出且,若成立,?dāng)時,有,當(dāng)時,有,因?yàn)楹愠闪?,所以有,故可以推出,,所以“”是“”的充分不必要條件.故選:A.【點(diǎn)睛】本題主要考查了等比數(shù)列基本量的求解,充分必要條件的集合關(guān)系,屬于基礎(chǔ)題.2.B【解析】
觀察已知條件,對進(jìn)行化簡,運(yùn)用累加法和裂項(xiàng)法求出結(jié)果.【詳解】已知,則,所以有,,,,兩邊同時相加得,又因?yàn)?,所?故選:【點(diǎn)睛】本題考查了求數(shù)列某一項(xiàng)的值,運(yùn)用了累加法和裂項(xiàng)法,遇到形如時就可以采用裂項(xiàng)法進(jìn)行求和,需要掌握數(shù)列中的方法,并能熟練運(yùn)用對應(yīng)方法求解.3.B【解析】
利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對數(shù)運(yùn)算性質(zhì)比較a,c進(jìn)而可得結(jié)論.【詳解】依題意,函數(shù)與函數(shù)關(guān)于直線對稱,則,即,又,所以,.故選:B.【點(diǎn)睛】本題主要考查對數(shù)、指數(shù)的大小比較,屬于基礎(chǔ)題.4.D【解析】
對于集合,求得函數(shù)的定義域,再求得補(bǔ)集;對于集合,解得一元二次不等式,再由交集的定義求解即可.【詳解】,,.故選:D【點(diǎn)睛】本題考查集合的補(bǔ)集、交集運(yùn)算,考查具體函數(shù)的定義域,考查解一元二次不等式.5.B【解析】
根據(jù)組合知識,計(jì)算出選出的人分成兩隊(duì)混合雙打的總數(shù)為,然后計(jì)算和分在一組的數(shù)目為,最后簡單計(jì)算,可得結(jié)果.【詳解】由題可知:分別從3名男生、3名女生中選2人:將選中2名女生平均分為兩組:將選中2名男生平均分為兩組:則選出的人分成兩隊(duì)混合雙打的總數(shù)為:和分在一組的數(shù)目為所以所求的概率為故選:B【點(diǎn)睛】本題考查排列組合的綜合應(yīng)用,對平均分組的問題要掌握公式,比如:平均分成組,則要除以,即,審清題意,細(xì)心計(jì)算,考驗(yàn)分析能力,屬中檔題.6.D【解析】
由題可得函數(shù)的定義域?yàn)?,因?yàn)椋院瘮?shù)為奇函數(shù),排除選項(xiàng)B;又,,所以排除選項(xiàng)A、C,故選D.7.D【解析】
直接利用二倍角余弦公式與弦化切即可得到結(jié)果.【詳解】∵,∴,故選D【點(diǎn)睛】本題考查的知識要點(diǎn):三角函數(shù)關(guān)系式的恒等變變換,同角三角函數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.8.C【解析】
根據(jù)函數(shù)的對稱性和單調(diào)性的特點(diǎn),利用排除法,即可得出答案.【詳解】A中,當(dāng)時,,所以不關(guān)于直線對稱,則錯誤;B中,,所以在區(qū)間上為減函數(shù),則錯誤;D中,,而,則,所以不關(guān)于直線對稱,則錯誤;故選:C.【點(diǎn)睛】本題考查函數(shù)基本性質(zhì),根據(jù)函數(shù)的解析式判斷函數(shù)的對稱性和單調(diào)性,屬于基礎(chǔ)題.9.D【解析】
將復(fù)數(shù)化簡得,,即可得到對應(yīng)的點(diǎn)為,即可得出結(jié)果.【詳解】,對應(yīng)的點(diǎn)位于第四象限.故選:.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,考查共軛復(fù)數(shù)和復(fù)數(shù)與平面內(nèi)點(diǎn)的對應(yīng),難度容易.10.B【解析】
由圓過原點(diǎn),知中有一點(diǎn)與原點(diǎn)重合,作出圖形,由,,得,從而直線傾斜角為,寫出點(diǎn)坐標(biāo),代入拋物線方程求出參數(shù),可得點(diǎn)坐標(biāo),從而得三角形面積.【詳解】由題意圓過原點(diǎn),所以原點(diǎn)是圓與拋物線的一個交點(diǎn),不妨設(shè)為,如圖,由于,,∴,∴,,∴點(diǎn)坐標(biāo)為,代入拋物線方程得,,∴,.故選:B.【點(diǎn)睛】本題考查拋物線與圓相交問題,解題關(guān)鍵是發(fā)現(xiàn)原點(diǎn)是其中一個交點(diǎn),從而是等腰直角三角形,于是可得點(diǎn)坐標(biāo),問題可解,如果僅從方程組角度研究兩曲線交點(diǎn),恐怕難度會大大增加,甚至沒法求解.11.B【解析】
根據(jù)斜二測畫法的基本原理,將平面直觀圖還原為原幾何圖形,可得,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,圓錐的側(cè)面展開圖是扇形根據(jù)扇形面積公式即可求得組合體的表面積.【詳解】根據(jù)“斜二測畫法”可得,,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,它的表面積為.故選:【點(diǎn)睛】本題考查斜二測畫法的應(yīng)用及組合體的表面積求法,難度較易.12.A【解析】
設(shè)等差數(shù)列的公差為,再利用基本量法與題中給的條件列式求解首項(xiàng)與公差,進(jìn)而求得即可.【詳解】設(shè)等差數(shù)列的公差為.由得,解得.所以.故選:A【點(diǎn)睛】本題主要考查了等差數(shù)列的基本量求解,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由,則,所以點(diǎn),因?yàn)椋傻?,點(diǎn)坐標(biāo)化簡為,代入雙曲線的方程求解.【詳解】設(shè),則,即,解得,則,所以,即,代入雙曲線的方程可得,所以所以解得.故答案為:【點(diǎn)睛】本題主要考查了直線與雙曲線的位置關(guān)系,及三角恒等變換,還考查了運(yùn)算求解的能力和數(shù)形結(jié)合的思想,屬于中檔題.14.【解析】
由已知可得△AEF、△PEF均為直角三角形,且AF=2,由基本不等式可得當(dāng)AE=EF=2時,△AEF的面積最大,然后由棱錐體積公式可求得體積最大值.【詳解】由PA⊥平面ABC,得PA⊥BC,又AB⊥BC,且PA∩AB=A,∴BC⊥平面PAB,則BC⊥AE,又PB⊥AE,則AE⊥平面PBC,于是AE⊥EF,且AE⊥PC,結(jié)合條件AF⊥PC,得PC⊥平面AEF,∴△AEF、△PEF均為直角三角形,由已知得AF=2,而S△AEF=(AE2+EF2)=AF2=2,當(dāng)且僅當(dāng)AE=EF=2時,取“=”,此時△AEF的面積最大,三棱錐P﹣AEF的體積的最大值為:VP﹣AEF===.故答案為【點(diǎn)睛】本題主要考查直線與平面垂直的判定,基本不等式的應(yīng)用,同時考查了空間想象能力、計(jì)算能力和邏輯推理能力,屬于中檔題.15.【解析】
由已知及正弦定理,三角函數(shù)恒等變換的應(yīng)用可得,從而求得,結(jié)合范圍,即可得到答案運(yùn)用余弦定理和三角形面積公式,結(jié)合完全平方公式,即可得到答案【詳解】由已知及正弦定理可得,可得:解得,即,由面積公式可得:,即由余弦定理可得:即有解得【點(diǎn)睛】本題主要考查了運(yùn)用正弦定理、余弦定理和面積公式解三角形,題目較為基礎(chǔ),只要按照題意運(yùn)用公式即可求出答案16.【解析】
根據(jù)題意畫出幾何題,建立空間直角坐標(biāo)系,寫個各個點(diǎn)的坐標(biāo),并求得.由空間向量的夾角求法即可求得異面直線與所成角的余弦值.【詳解】根據(jù)題意畫出幾何圖形,以為原點(diǎn)建立空間直角坐標(biāo)系:設(shè)正方體的棱長為1,則所以所以,所以異面直線與所成角的余弦值為,故答案為:.【點(diǎn)睛】本題考查了異面直線夾角的求法,利用空間向量求異面直線夾角,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【解析】
(1)取的中點(diǎn),連接,,證明平面得出,再得出;(2)建立空間坐標(biāo)系,求出平面的法向量,計(jì)算,即可得出答案.【詳解】(1)證明:取的中點(diǎn),連接,,,,,,,故,又,,平面,平面,,,分別是,的中點(diǎn),,.(2)解:四邊形是正方形,,又,,平面,平面,在平面內(nèi)作直線的垂線,以為原點(diǎn),以,,為所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系,則,0,,,1,,,2,,,0,,,1,,,2,,,1,,設(shè)平面的法向量為,,,則,即,令可得:,,,,.直線與平面所成角的正弦值為,.【點(diǎn)睛】本題主要考查了線面垂直的判定與性質(zhì),考查空間向量與空間角的計(jì)算,屬于中檔題.18.(1)(2)答案不唯一,見解析【解析】
(1)由題意根據(jù)和差角的三角函數(shù)公式可得,再根據(jù)同角三角函數(shù)基本關(guān)系可得的值;(2)在中,由余弦定理可得,解方程分別由三角形面積公式可得答案.【詳解】解:(1)在中,因?yàn)?,又已知,所以,因?yàn)椋?,于?所以.(2)在中,由余弦定理得,得解得或,當(dāng)時,的面積,當(dāng)時,的面積.【點(diǎn)睛】本題考查正余弦定理理解三角形,涉及三角形的面積公式和分類討論思想,屬于中檔題.19.(1)見解析(2)【解析】
(1)利用面面垂直的性質(zhì)定理證得平面,由此證得,根據(jù)圓的幾何性質(zhì)證得,由此證得平面.(2)判斷出三棱錐的體積最大時點(diǎn)的位置.建立空間直角坐標(biāo)系,通過平面和平面的法向量,計(jì)算出二面角的余弦值.【詳解】(1)證明:因?yàn)槠矫嫫矫媸钦叫?,所以平?因?yàn)槠矫?,所?因?yàn)辄c(diǎn)在以為直徑的半圓弧上,所以.又,所以平面.(2)解:顯然,當(dāng)點(diǎn)位于的中點(diǎn)時,的面積最大,三棱錐的體積也最大.不妨設(shè),記中點(diǎn)為,以為原點(diǎn),分別以的方向?yàn)檩S、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,設(shè)平面的法向量為,則令,得.設(shè)平面的法向量為,則令,得,所以.由圖可知,二面角為銳角,故二面角的余弦值為.【點(diǎn)睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.20.(1)證明見解析;(2)①;②.【解析】
(1)設(shè)過的直線交拋物線于,,聯(lián)立,利用直線的斜率公式和韋達(dá)定理表示出,化簡即可;(2)由(1)知點(diǎn)在軸上,故,設(shè)出直線方程,求出交點(diǎn)坐標(biāo),因?yàn)閮?nèi)心到三角形各邊的距離相等且均為內(nèi)切圓半徑,列出方程組求解即可.【詳解】(1)設(shè)過的直線交拋物線于,,聯(lián)立方程組,得:.于是,有:,又,;(2)①由(1)知點(diǎn)在軸上,故,聯(lián)立的直線方程:.,又點(diǎn)在拋物線上,得,又,;②由題得,(解法一)所以直線的方程為(解法二)設(shè)內(nèi)切圓半徑為,則.設(shè)直線的斜率為,則:直線的方程為:代入直線的直線方程,可得于是有:得,又由(1)可設(shè)內(nèi)切圓的圓心為則,即:,解得:所以,直線的方程為:.【點(diǎn)睛】本題主要考查了拋物線的性質(zhì),直線與拋物線相關(guān)的綜合問題的求解,考查了學(xué)生的運(yùn)算求解與邏輯推理能力.21.≤x≤【解析】由題知,|x-1|+|x-2|≤恒成立,故|x-1|+|x-2|不大于的最小值.∵|a+b|+|a-b|≥|a+b+a-b|=2|a|,當(dāng)且僅當(dāng)(a+b)·(a-b)≥0時取等號,∴的最小值等于2.∴x的范圍即為不等式|x-1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 冀教版數(shù)學(xué)八年級上冊《SAS》聽評課記錄5
- 湘教版數(shù)學(xué)七年級下冊3.2.2《角的度量》聽評課記錄
- (湘教版)七年級數(shù)學(xué)下冊:2.1.4《多項(xiàng)式的乘法》聽評課記錄
- 七年級道德與法治上冊第三單元 師長情誼第六課師生之間第2框師生交往聽課評課記錄(新人教版)
- 人教版七年級數(shù)學(xué)上冊:4.1.2《點(diǎn)、線、面、體》聽評課記錄1
- 湘教版數(shù)學(xué)七年級上冊1.4.1《有理數(shù)的加法》聽評課記錄
- 部編版八年級道德與法治上冊聽課評課記錄《9.1認(rèn)識總體國家安全觀》
- 暑假小學(xué)一年級學(xué)習(xí)計(jì)劃
- 三年級下學(xué)期班主任工作計(jì)劃
- 出租房屋合同范本
- 2025中國移動安徽分公司春季社會招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 七年級英語下學(xué)期開學(xué)考試(深圳專用)-2022-2023學(xué)年七年級英語下冊單元重難點(diǎn)易錯題精練(牛津深圳版)
- 杭州市房地產(chǎn)經(jīng)紀(jì)服務(wù)合同
- 放射科護(hù)理常規(guī)
- 新時代中小學(xué)教師職業(yè)行為十項(xiàng)準(zhǔn)則
- 人教版八年級上冊英語1-4單元測試卷(含答案)
- 2024年大宗貿(mào)易合作共贏協(xié)議書模板
- 初中數(shù)學(xué)教學(xué)經(jīng)驗(yàn)分享
- 新聞記者證600道考試題-附標(biāo)準(zhǔn)答案
- 2024年公開招聘人員報名資格審查表
- TSG ZF001-2006《安全閥安全技術(shù)監(jiān)察規(guī)程》
評論
0/150
提交評論