版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,在矩形中,,,過對角線交點作交于點,交于點,則的長是()A.1 B. C.2 D.2.如圖,二次函數y=ax1+bx+c的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,1)與(0,3)之間(不包括這兩點),對稱軸為直線x=1.下列結論:abc<0;②9a+3b+c>0;③若點M(,y1),點N(,y1)是函數圖象上的兩點,則y1<y1;④﹣<a<﹣.其中正確結論有()A.1個 B.1個 C.3個 D.4個3.使得關于的不等式組有解,且使分式方程有非負整數解的所有的整數的和是()A.-8 B.-10 C.-16 D.-184.已知x=1是一元二次方程mx2–2=0的一個解,則m的值是().A. B.2 C. D.1或25.在中,,,,那么的值等于()A. B. C. D.6.已知△ABC∽△DEF,∠A=85°;∠F=50°,那么cosB的值是()A.1 B. C. D.7.下列圖形中,既是中心對稱圖形又是軸對稱圖形的有幾個()A.4個 B.3個 C.2個 D.1個8.一個不透明的盒子中裝有5個紅球和1個白球,它們除顏色外都相同.若從中任意摸出一個球,則下列敘述正確的是()A.摸到紅球是必然事件B.摸到白球是不可能事件C.摸到紅球與摸到白球的可能性相等D.摸到紅球比摸到白球的可能性大9.如圖,這個幾何體的左視圖是()A. B. C. D.10.如圖,⊙O是△ABC的外接圓,∠BAC=60°,若⊙O的半徑OC為2,則弦BC的長為()A.1 B. C.2 D.二、填空題(每小題3分,共24分)11.在一個不透明的盒子中裝有a個除顏色外完全相同的球,其中只有6個白球.若每次將球充分攪勻后,任意摸出1個球記下顏色后再放回盒子,通過大量重復試驗后,發(fā)現摸到白球的頻率穩(wěn)定在20%左右,則a的值約為_____.12.如圖,直線交x軸于點A,交y軸于點B,點P是x軸上一動點,以點P為圓心,以1個單位長度為半徑作⊙P,當⊙P與直線AB相切時,點P的坐標是______.13.太原市某學校門口的欄桿如圖所示,欄桿從水平位置繞定點旋轉到位置,已知欄桿的長為的長為點到的距離為.支柱的高為,則欄桿端離地面的距離為__________.14.拋物線y=﹣x2+bx+c的部分圖象如圖所示,已知關于x的一元二次方程﹣x2+bx+c=0的一個解為x1=1,則該方程的另一個解為x2=_____.15.已知圓錐的底面半徑為3,母線長為7,則圓錐的側面積是_____.16.中,若,,,則的面積為________.17.已知非負數a、b、c滿足a+b=2,,,則d的取值范圍為____.18.方程的解是__________.三、解答題(共66分)19.(10分)裝潢公司要給邊長為6米的正方形墻面ABCD進行裝潢,設計圖案如圖所示(四周是四個全等的矩形,用材料甲進行裝潢;中心區(qū)是正方形MNPQ,用材料乙進行裝潢).兩種裝潢材料的成本如下表:材料甲乙價格(元/米2)5040設矩形的較短邊AH的長為x米,裝潢材料的總費用為y元.(1)MQ的長為米(用含x的代數式表示);(2)求y關于x的函數解析式;(3)當中心區(qū)的邊長不小于2米時,預備資金1760元購買材料一定夠用嗎?請說明理由.20.(6分)如下圖1,將三角板放在正方形上,使三角板的直角頂點與正方形的頂點重合,三角板的一邊交于點.另一邊交的延長線于點.(1)觀察猜想:線段與線段的數量關系是;(2)探究證明:如圖2,移動三角板,使頂點始終在正方形的對角線上,其他條件不變,(1)中的結論是否仍然成立?若成立,請給予證明:若不成立.請說明理由:(3)拓展延伸:如圖3,將(2)中的“正方形”改為“矩形”,且使三角板的一邊經過點,其他條件不變,若、,求的值.21.(6分)如圖,正方形網格中,△ABC為格點三角形(即三角形的頂點都在格點上).(1)把△ABC沿BA方向平移后,點A移到點A1,在網格中畫出平移后得到的△A1B1C1;(1)把△A1B1C1繞點A1按逆時針方向旋轉90°,得到△A1B1C1,在網格中畫出旋轉后的△A1B1C1.22.(8分)如圖,已知AD?AC=AB?AE,∠DAE=∠BAC.求證:△DAB∽△EAC.23.(8分)如圖,在平面直角坐標系中,點O為坐標原點,A點的坐標為(3,0),以OA為邊作等邊三角形OAB,點B在第一象限,過點B作AB的垂線交x軸于點C.動點P從O點出發(fā)沿著OC向點C運動,動點Q從B點出發(fā)沿著BA向點A運動,P,Q兩點同時出發(fā),速度均為1個單位/秒.當其中一個點到達終點時,另一個點也隨之停止.設運動時間為t秒.(1)求線段BC的長;(2)過點Q作x軸垂線,垂足為H,問t為何值時,以P、Q、H為頂點的三角形與△ABC相似;(3)連接PQ交線段OB于點E,過點E作x軸的平行線交線段BC于點F.設線段EF的長為m,求m與t之間的函數關系式,并直接寫出自變量t的取值范圍.24.(8分)解一元二次方程:x2﹣5x+6=1.25.(10分)(1)解方程:(配方法)(2)已知二次函數:與軸只有一個交點,求此交點坐標.26.(10分)如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.(1)求證:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.
參考答案一、選擇題(每小題3分,共30分)1、B【分析】連接,由矩形的性質得出,,,,由線段垂直平分線的性質得出,設,則,在中,由勾股定理得出方程,解方程即可.【詳解】如圖:連接,∵四邊形是矩形,∴,,,,∵,∴,設,則,在中,由勾股定理得:,解得:,即;故選B.【點睛】本題考查了矩形的性質、線段垂直平分線的性質、勾股定理;熟練掌握矩形的性質,由勾股定理得出方程是解題的關鍵.2、D【分析】根據二次函數的圖象與系數的關系即可求出答案.【詳解】①由開口可知:a<0,∴對稱軸x=?>0,∴b>0,由拋物線與y軸的交點可知:c>0,∴abc<0,故①正確;②∵拋物線與x軸交于點A(-1,0),對稱軸為x=1,∴拋物線與x軸的另外一個交點為(5,0),∴x=3時,y>0,∴9a+3b+c>0,故②正確;③由于<1<,且(,y1)關于直線x=1的對稱點的坐標為(,y1),∵<,∴y1<y1,故③正確,④∵?=1,∴b=-4a,∵x=-1,y=0,∴a-b+c=0,∴c=-5a,∵1<c<3,∴1<-5a<3,∴-<a<-,故④正確故選D.【點睛】本題考查二次函數的圖象與性質,解題的關鍵是熟練運用圖象與系數的關系,本題屬于中等題型.3、D【分析】根據不等式組的解集的情況,得出關于m的不等式,求得m的取值范圍,再解分式方程得出x,根據x是非負整數,得出m所有值的和.【詳解】解:∵關于的不等式組有解,則,∴,又∵分式方程有非負整數解,∴為非負整數,∵,∴-10,-6,-2由,故答案選D.【點睛】本題考查含參數的不等式組及含參數的分式方程,能夠準確解出不等式組及方程是解題的關鍵.4、B【分析】根據一元二次方程的解的定義,把x=1代入mx2–2=0可得關于m的一元一次方程,解方程求出m的值即可得答案.【詳解】∵x=1是一元二次方程mx2–2=0的一個解,∴m-2=0,解得:m=2,故選:B.【點睛】本題考查一元二次方程的解的定義,把求未知系數的問題轉化為方程求解的問題,能夠使方程左右兩邊相等的未知數的值叫做方程的解;熟練掌握定義是解題關鍵.5、A【解析】在直角三角形中,銳角的正切等于對邊比鄰邊,由此可得.【詳解】解:如圖,.故選:A.【點睛】本題主要考查了銳角三角函數中的正切,熟練掌握正切的表示是解題的關鍵.6、C【分析】由題意首先根據相似三角形求得∠B的度數,然后根據特殊角的三角函數值確定正確的選項即可.【詳解】解:△ABC∽△DEF,∠A=85°,∠F=50°,∴∠C=∠F=50°,∴∠B=180°-∠A-∠C=180°-85°-50°=45°,∴cosB=cos45°=.故選:C.【點睛】本題主要考查相似三角形的性質以及三角函數相關,解題的關鍵是熟練掌握相似三角形的對應角相等.7、D【分析】根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:第一個圖形是軸對稱圖形,不是中心對稱圖形;第二個圖形是軸對稱圖形,是中心對稱圖形;第三個圖形是軸對稱圖形,不是中心對稱圖形;第四個圖形不是軸對稱圖形,是中心對稱圖形;既是中心對稱圖形又是軸對稱圖形的有1個,故選:D.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.8、D【解析】根據可能性的大小,以及隨機事件的判斷方法,逐項判斷即可.【詳解】∵摸到紅球是隨機事件,∴選項A不符合題意;∵摸到白球是隨機事件,∴選項B不符合題意;
∵紅球比白球多,∴摸到紅球比摸到白球的可能性大,∴選項C不符合題意,D符合題意.故選:D.【點睛】此題主要考查了可能性的大小,以及隨機事件的判斷,要熟練掌握,解答此題的關鍵是要明確:在一定條件下,可能發(fā)生也可能不發(fā)生的事件,稱為隨機事件.9、B【解析】根據三視圖概念即可解題.【詳解】解:因為物體的左側高,所以會將右側圖形完全遮擋,看不見的直線要用虛線代替,故選B.【點睛】本題考查了三視圖的識別,屬于簡單題,熟悉三視圖的概念是解題關鍵.10、D【分析】先由圓周角定理求出∠BOC的度數,再過點O作OD⊥BC于點D,由垂徑定理可知CD=BC,∠DOC=∠BOC=×120°=60°,再由銳角三角函數的定義即可求出CD的長,進而可得出BC的長.【詳解】解:∵∠BAC=60°,∴∠BOC=2∠BAC=2×60°=120°,過點O作OD⊥BC于點D,∵OD過圓心,∴CD=BC,∠DOC=∠BOC=×120°=60°,∴CD=OC×sin60°=2×=,∴BC=2CD=2.故選D.【點睛】本題考查的是圓周角定理、垂徑定理及銳角三角函數的定義,根據題意作出輔助線,構造出直角三角形是解答此題的關鍵.二、填空題(每小題3分,共24分)11、1.【分析】在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從摸到白球的頻率穩(wěn)定在20%左右得到比例關系,列出方程求解即可.【詳解】由題意可得,×100%=20%,解得,a=1.故答案為1.【點睛】本題利用了用大量試驗得到的頻率可以估計事件的概率.關鍵是根據紅球的頻率得到相應的等量關系.12、或【分析】先求出點A(-4,0),B(0,-3),利用勾股定理得到AB=5,過點P作PC⊥AB于點C,則PC=1,證明△PAC∽△BAO,得到,求出PA=,再分點P在點A的左側和右側兩種情況分別求出OP,即可得到點P的坐標.【詳解】令中x=0,得y=-3;令y=0,得x=-4,∴A(-4,0),B(0,-3),∴OA=4,OB=3,∴AB=5,過點P作PC⊥AB于點C,則PC=1,∴∠PCA=∠AOB=90°,∵∠PAC=∠BAO,∴△PAC∽△BAO,∴,∴,∴PA=,當點P在點A左側時,PO=PA+OA=+4=,∴點P的坐標為(-,0);當點P在點A的右側時,PO=OA-PA=4-=,∴點P的坐標為(-,0),故答案為:或.【點睛】此題考查一次函數與x軸、y軸的交點坐標,勾股定理,圓的切線的性質定理,相似三角形的判定及性質,解題中注意運用分類討論的思想.13、【分析】作DF⊥ABCG⊥AB,根據題意得△ODF∽△OCB,,得出DF,D端離地面的距離為DF+OE,即可求出.【詳解】解:如圖作DF⊥AB垂足為F,CG⊥AB垂足為G;∴∠DFO=∠CGO=90°∵∠DOA=∠COB∴△DFO∽△CGO則∵CG=0.3mOD=OA=3mOC=OB=3.5-3=0.5m∴DF=1.8m則D端離地面的距離=DF+OE=1.8+0.5=2.3m【點睛】此題主要考查了相似三角形的應用,熟練掌握相似三角形的判定與性質是解題的關鍵.14、﹣1【分析】函數的對稱軸為:x=-1,由拋物線與x軸交點是關于對稱軸的對稱即可得到答案.【詳解】解:函數的對稱軸為:x=-1,其中一個交點坐標為(1,0),
則另外一個交點坐標為(-1,0),
故答案為-1.【點睛】本題考查了拋物線與x軸的交點,根據函數的對稱性即可求解.15、21π.【分析】利用圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形的面積公式計算.【詳解】解:圓錐的側面積=×2π×3×7=21π.故答案為21π.【點睛】本題考查圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.16、【分析】過點A作BC邊上的高交BC的延長線于點D,在中,利用三角函數求出AD長,再根據三角形面積公式求解即可.【詳解】解:如圖,作于點D,則,在中,所以的面積為故答案為:.【點睛】本題主要考查了三角函數,靈活添加輔助線利用三角函數求出三角形的高是解題的關鍵.17、5≤d≤1.【分析】用a表示出b、c并求出a的取值范圍,再代入d整理成關于a的函數形式,然后根據二次函數的增減性求出答案即可.【詳解】∵a+b=2,c-a=3,∴b=2-a,c=3+a,∵b,c都是非負數,∴,解不等式①得,a≤2,解不等式②得,a≥-3,∴-3≤a≤2,又∵a是非負數,∴0≤a≤2,∵d-a2-b-c=0∴d=a2+b+c=a2+(2-a)+3+a,=a2+5,∴對稱軸為直線a=0,∴a=0時,最小值=5,a=2時,最大值=22+5=1,∴5≤d≤1.故答案為:5≤d≤1.【點睛】本題考查了二次函數的最值問題,用a表示出b、c并求出a的取值范圍是解題的關鍵,難點在于整理出d關于a的函數關系式.18、【分析】先通過移項將等號右邊多項式移到左邊,再利用提公因式法因式分解,即可得出方程的根.【詳解】解:移項得:提公因式得:解得:;故答案為:.【點睛】本題考查一元二次方程因式分解的解法.在解一元二次方程的時候,一定要先觀察方程的形式,如果遇到了相同的因式,先將他們移到方程等號的一側,看能否利用提公因式解方程,觀察以及積累是快速解題的關鍵.三、解答題(共66分)19、(1)(6﹣1x);(1)y=﹣40x1+140x+2;(3)預備資金4元購買材料一定夠用,理由見解析【分析】(1)根據大正方形的邊長減去兩個小長方形的寬即可求解;
(1)根據總費用等于兩種材料的費用之和即可求解;
(3)利用二次函數的性質和最值解答即可.【詳解】解:(1)∵AH=GQ=x,AD=6,
∴MQ=6-1x;
故答案為:6-1x;(1)根據題意,得AH=x,AE=6﹣x,S甲=4S長方形AENH=4x(6﹣x)=14x﹣4x1,S乙=S正方形MNQP=(6﹣1x)1=36﹣14x+4x1.∴y=50(14x﹣4x1)+40(36﹣14x+4x1)=﹣40x1+140x+2.答:y關于x的函數解析式為y=﹣40x1+140x+2.(3)預備資金4元購買材料一定夠用.理由如下:∵y=﹣40x1+140x+2=﹣40(x-3)1+1800,由﹣40<0,可知拋物線開口向下,在對稱軸的左側,y隨x的增大而增大.由x-3=0可知,拋物線的對稱軸為直線x=3.∴當x<3時,y隨x的增大而增大.∵中心區(qū)的邊長不小于1米,即6﹣1x≥1,解得x≤1,又x>0,∴0<x≤1.當x=1時,y=﹣40(x-3)1+1800=﹣40(1-3)1+1800=4,∴當0<x≤1時,y≤4.∴預備資金4元購買材料一定夠用.答:預備資金4元購買材料一定夠用.【點睛】此題主要考查了二次函數的應用以及配方法求最值和正方形的性質等知識,正確得出各部分的邊長是解題關鍵.20、(1);(2)成立,證明過程見解析;(3).【分析】(1)利用三角形全等的判定定理與性質即可得;(2)如圖(見解析),過點分別作,垂足分別為,證明方法與題(1)相同;(3)如圖(見解析),過點分別作,垂足分別為,先同(2)求出,從而可證,由相似三角形的性質可得,再根據平行線的性質和相似三角形的性質求出的值,即可得出答案.【詳解】(1),理由如下:由直角三角板和正方形的性質得在和中,;(2)成立,證明如下:如圖,過點分別作,垂足分別為,則四邊形是矩形由正方形對角線的性質得,為的角平分線則在和中,;(3)如圖,過點分別作,垂足分別為同(2)可知,由長方形性質得:,即在和中,.【點睛】本題考查了正方形的性質、矩形的性質、三角形全等的判定定理與性質、相似三角形的判定定理與性質,較難的是題(3),通過作輔助線,構造兩個相似三角形是解題關鍵.21、(1)見解析;(1)見解析.【分析】圖形見詳解.【詳解】解:(1)如圖,△A1B1C1為所作;(1)如圖,△A1B1C1為所作.【點睛】本題考查了圖形的平移和旋轉,屬于簡單題,熟悉旋轉和平移的概念是解題關鍵.22、證明見解析【分析】根據相似三角形的判定定理即可證明△DAB∽△EAC.【詳解】證明:∵AD?AC=AB?AE,∴,∵∠DAE=∠BAC,∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,∴∠DAB=∠EAC,∴△DAB∽△EAC.【點睛】本題考查三角形相似的判定定理,正確理解三角形相似的判定定理是本題解題的關鍵.23、(2);(2)t=2或2;(3)().【分析】(2)由等邊三角形OAB得出∠ABC=92°,進而得出CO=OB=AB=OA=3,AC=6,求出BC即可;(2)需要分類討論:△PHQ∽△ABC和△QHP∽△ABC兩種情況;(3)過點Q作QN∥OB交x軸于點N,得出△AQN為等邊三角形,由OE∥QN,得出△POE∽△PNQ,以及,表示出OE的長,利用m=BE=OB﹣OE求出即可.【詳解】(2)如圖l,∵△AOB為等邊三角形,∴∠BAC=∠AOB=62,∵BC⊥AB,∴∠ABC=92°,∴∠ACB=32°,∠OBC=32°,∴∠ACB=∠OBC,∴CO=OB=AB=OA=3,∴AC=6,∴BC=AC=;(2)如圖2,過點Q作x軸垂線,垂足為H,則QH=AQ?sin62°=.需要分類討
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度大型運動會安防系統(tǒng)合同
- 2024年度大數據分析服務合同標的明細
- 2024年專用:租賃合同保證金條款匯編
- 2024年度居民住宅鋁合金門窗安裝工程合同
- 2024年廢舊物資回收協(xié)議
- 2024工程合規(guī)審查中的黑白合同問題探討
- 04版智能硬件研發(fā)與制造分包合同
- 2024年國際貨運代理及倉儲物流合作合同
- 2024年度5G基站建設與運營合作協(xié)議
- 2024年一年級數學老師家長會
- 3《歡歡喜喜慶國慶》(教學設計)2024-2025學年統(tǒng)編版道德與法治二年級上冊
- 2024糧改飼工作總結五篇
- 合作收款合同協(xié)議書
- 2024至2030年中國生物質能發(fā)電行業(yè)市場深度調研及發(fā)展前景分析報告
- 鐵路軌道鋪設工程合同三篇
- 2024–2025學年高二化學下學期期末考點大串講猜想01 原子結構與性質(8大題型)(解析版)
- 2024新滬教版英語初一上單詞表(英譯漢)
- 安徽省淮南市2023-2024學年高一上學期第二次月考數學試題2
- 高中體育校本教材
- JCT2088-2011 先張法預應力混凝土空心板梁
- 個人墊資合同范本
評論
0/150
提交評論