2023屆浙江溫州十五校聯(lián)盟高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第1頁
2023屆浙江溫州十五校聯(lián)盟高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第2頁
2023屆浙江溫州十五校聯(lián)盟高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第3頁
2023屆浙江溫州十五校聯(lián)盟高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第4頁
2023屆浙江溫州十五校聯(lián)盟高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,長方體中,,,點(diǎn)T在棱上,若平面.則()A.1 B. C.2 D.2.已知雙曲線的左、右焦點(diǎn)分別為,,P是雙曲線E上的一點(diǎn),且.若直線與雙曲線E的漸近線交于點(diǎn)M,且M為的中點(diǎn),則雙曲線E的漸近線方程為()A. B. C. D.3.已知集合,將集合的所有元素從小到大一次排列構(gòu)成一個(gè)新數(shù)列,則()A.1194 B.1695 C.311 D.10954.已知,是雙曲線的兩個(gè)焦點(diǎn),過點(diǎn)且垂直于軸的直線與相交于,兩點(diǎn),若,則△的內(nèi)切圓的半徑為()A. B. C. D.5.若集合,,則()A. B. C. D.6.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點(diǎn),則異面直線與所成角的余弦值為()A. B. C. D.7.設(shè)為拋物線的焦點(diǎn),,,為拋物線上三點(diǎn),若,則().A.9 B.6 C. D.8.已知點(diǎn)P不在直線l、m上,則“過點(diǎn)P可以作無數(shù)個(gè)平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件9.已知為等比數(shù)列,,,則()A.9 B.-9 C. D.10.函數(shù)的圖像大致為().A. B.C. D.11.在平行四邊形中,若則()A. B. C. D.12.的展開式中的一次項(xiàng)系數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點(diǎn)為,其準(zhǔn)線與坐標(biāo)軸交于點(diǎn),過的直線與拋物線交于兩點(diǎn),若,則直線的斜率________.14.定義在封閉的平面區(qū)域內(nèi)任意兩點(diǎn)的距離的最大值稱為平面區(qū)域的“直徑”.已知銳角三角形的三個(gè)點(diǎn),,,在半徑為的圓上,且,分別以各邊為直徑向外作三個(gè)半圓,這三個(gè)半圓和構(gòu)成平面區(qū)域,則平面區(qū)域的“直徑”的最大值是__________.15.在中,已知,,是邊的垂直平分線上的一點(diǎn),則__________.16.從集合中隨機(jī)取一個(gè)元素,記為,從集合中隨機(jī)取一個(gè)元素,記為,則的概率為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知A是拋物線E:y2=2px(p>0)上的一點(diǎn),以點(diǎn)A和點(diǎn)B(2,0)為直徑兩端點(diǎn)的圓C交直線x=1于M,N兩點(diǎn).(1)若|MN|=2,求拋物線E的方程;(2)若0<p<1,拋物線E與圓(x﹣5)2+y2=9在x軸上方的交點(diǎn)為P,Q,點(diǎn)G為PQ的中點(diǎn),O為坐標(biāo)原點(diǎn),求直線OG斜率的取值范圍.18.(12分)設(shè)函數(shù),,其中,為正實(shí)數(shù).(1)若的圖象總在函數(shù)的圖象的下方,求實(shí)數(shù)的取值范圍;(2)設(shè),證明:對任意,都有.19.(12分)已知與有兩個(gè)不同的交點(diǎn),其橫坐標(biāo)分別為().(1)求實(shí)數(shù)的取值范圍;(2)求證:.20.(12分)每年的寒冷天氣都會帶熱“御寒經(jīng)濟(jì)”,以交通業(yè)為例,當(dāng)天氣太冷時(shí),不少人都會選擇利用手機(jī)上的打車軟件在網(wǎng)上預(yù)約出租車出行,出租車公司的訂單數(shù)就會增加.下表是某出租車公司從出租車的訂單數(shù)據(jù)中抽取的5天的日平均氣溫(單位:℃)與網(wǎng)上預(yù)約出租車訂單數(shù)(單位:份);日平均氣溫(℃)642網(wǎng)上預(yù)約訂單數(shù)100135150185210(1)經(jīng)數(shù)據(jù)分析,一天內(nèi)平均氣溫與該出租車公司網(wǎng)約訂單數(shù)(份)成線性相關(guān)關(guān)系,試建立關(guān)于的回歸方程,并預(yù)測日平均氣溫為時(shí),該出租車公司的網(wǎng)約訂單數(shù);(2)天氣預(yù)報(bào)未來5天有3天日平均氣溫不高于,若把這5天的預(yù)測數(shù)據(jù)當(dāng)成真實(shí)的數(shù)據(jù),根據(jù)表格數(shù)據(jù),則從這5天中任意選取2天,求恰有1天網(wǎng)約訂單數(shù)不低于210份的概率.附:回歸直線的斜率和截距的最小二乘法估計(jì)分別為:21.(12分)a,b,c分別為△ABC內(nèi)角A,B,C的對邊.已知a=3,,且B=60°.(1)求△ABC的面積;(2)若D,E是BC邊上的三等分點(diǎn),求.22.(10分)已知(1)當(dāng)時(shí),判斷函數(shù)的極值點(diǎn)的個(gè)數(shù);(2)記,若存在實(shí)數(shù),使直線與函數(shù)的圖象交于不同的兩點(diǎn),求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

根據(jù)線面垂直的性質(zhì),可知;結(jié)合即可證明,進(jìn)而求得.由線段關(guān)系及平面向量數(shù)量積定義即可求得.【詳解】長方體中,,點(diǎn)T在棱上,若平面.則,則,所以,則,所以,故選:D.【點(diǎn)睛】本題考查了直線與平面垂直的性質(zhì)應(yīng)用,平面向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.2、C【解析】

由雙曲線定義得,,OM是的中位線,可得,在中,利用余弦定理即可建立關(guān)系,從而得到漸近線的斜率.【詳解】根據(jù)題意,點(diǎn)P一定在左支上.由及,得,,再結(jié)合M為的中點(diǎn),得,又因?yàn)镺M是的中位線,又,且,從而直線與雙曲線的左支只有一個(gè)交點(diǎn).在中.——①由,得.——②由①②,解得,即,則漸近線方程為.故選:C.【點(diǎn)睛】本題考查求雙曲線漸近線方程,涉及到雙曲線的定義、焦點(diǎn)三角形等知識,是一道中檔題.3、D【解析】

確定中前35項(xiàng)里兩個(gè)數(shù)列中的項(xiàng)數(shù),數(shù)列中第35項(xiàng)為70,這時(shí)可通過比較確定中有多少項(xiàng)可以插入這35項(xiàng)里面即可得,然后可求和.【詳解】時(shí),,所以數(shù)列的前35項(xiàng)和中,有三項(xiàng)3,9,27,有32項(xiàng),所以.故選:D.【點(diǎn)睛】本題考查數(shù)列分組求和,掌握等差數(shù)列和等比數(shù)列前項(xiàng)和公式是解題基礎(chǔ).解題關(guān)鍵是確定數(shù)列的前35項(xiàng)中有多少項(xiàng)是中的,又有多少項(xiàng)是中的.4、B【解析】

設(shè)左焦點(diǎn)的坐標(biāo),由AB的弦長可得a的值,進(jìn)而可得雙曲線的方程,及左右焦點(diǎn)的坐標(biāo),進(jìn)而求出三角形ABF2的面積,再由三角形被內(nèi)切圓的圓心分割3個(gè)三角形的面積之和可得內(nèi)切圓的半徑.【詳解】由雙曲線的方程可設(shè)左焦點(diǎn),由題意可得,由,可得,所以雙曲線的方程為:所以,所以三角形ABF2的周長為設(shè)內(nèi)切圓的半徑為r,所以三角形的面積,所以,解得,故選:B【點(diǎn)睛】本題考查求雙曲線的方程和雙曲線的性質(zhì)及三角形的面積的求法,內(nèi)切圓的半徑與三角形長周長的一半之積等于三角形的面積可得半徑的應(yīng)用,屬于中檔題.5、A【解析】

用轉(zhuǎn)化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.【點(diǎn)睛】本題考查了并集及其運(yùn)算,分式不等式的解法,熟練掌握并集的定義是解本題的關(guān)鍵.屬于基礎(chǔ)題.6、B【解析】

由題意建立空間直角坐標(biāo)系,表示出各點(diǎn)坐標(biāo)后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標(biāo)系,由題意:,,,,,為的中點(diǎn),.,,,異面直線與所成角的余弦值為即為.故選:B.【點(diǎn)睛】本題考查了空間向量的應(yīng)用,考查了空間想象能力,屬于基礎(chǔ)題.7、C【解析】

設(shè),,,由可得,利用定義將用表示即可.【詳解】設(shè),,,由及,得,故,所以.故選:C.【點(diǎn)睛】本題考查利用拋物線定義求焦半徑的問題,考查學(xué)生等價(jià)轉(zhuǎn)化的能力,是一道容易題.8、C【解析】

根據(jù)直線和平面平行的性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】點(diǎn)不在直線、上,若直線、互相平行,則過點(diǎn)可以作無數(shù)個(gè)平面,使得直線、都與這些平面平行,即必要性成立,若過點(diǎn)可以作無數(shù)個(gè)平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過點(diǎn)只能作一個(gè)平面同時(shí)和兩條直線平行,則與條件矛盾,即充分性成立則“過點(diǎn)可以作無數(shù)個(gè)平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合空間直線和平面平行的性質(zhì)是解決本題的關(guān)鍵.9、C【解析】

根據(jù)等比數(shù)列的下標(biāo)和性質(zhì)可求出,便可得出等比數(shù)列的公比,再根據(jù)等比數(shù)列的性質(zhì)即可求出.【詳解】∵,∴,又,可解得或設(shè)等比數(shù)列的公比為,則當(dāng)時(shí),,∴;當(dāng)時(shí),,∴.故選:C.【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.10、A【解析】

本題采用排除法:由排除選項(xiàng)D;根據(jù)特殊值排除選項(xiàng)C;由,且無限接近于0時(shí),排除選項(xiàng)B;【詳解】對于選項(xiàng)D:由題意可得,令函數(shù),則,;即.故選項(xiàng)D排除;對于選項(xiàng)C:因?yàn)?故選項(xiàng)C排除;對于選項(xiàng)B:當(dāng),且無限接近于0時(shí),接近于,,此時(shí).故選項(xiàng)B排除;故選項(xiàng):A【點(diǎn)睛】本題考查函數(shù)解析式較復(fù)雜的圖象的判斷;利用函數(shù)奇偶性、特殊值符號的正負(fù)等有關(guān)性質(zhì)進(jìn)行逐一排除是解題的關(guān)鍵;屬于中檔題.11、C【解析】

由,,利用平面向量的數(shù)量積運(yùn)算,先求得利用平行四邊形的性質(zhì)可得結(jié)果.【詳解】如圖所示,

平行四邊形中,,

,,,

因?yàn)?

所以

,

,所以,故選C.【點(diǎn)睛】本題主要考查向量的幾何運(yùn)算以及平面向量數(shù)量積的運(yùn)算法則,屬于中檔題.向量的運(yùn)算有兩種方法:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).12、B【解析】

根據(jù)多項(xiàng)式乘法法則得出的一次項(xiàng)系數(shù),然后由等差數(shù)列的前項(xiàng)和公式和組合數(shù)公式得出結(jié)論.【詳解】由題意展開式中的一次項(xiàng)系數(shù)為.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,應(yīng)用多項(xiàng)式乘法法則可得展開式中某項(xiàng)系數(shù).同時(shí)本題考查了組合數(shù)公式.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求出拋物線焦點(diǎn)坐標(biāo),由,結(jié)合向量的坐標(biāo)運(yùn)算得,直線方程為,代入拋物線方程后應(yīng)用韋達(dá)定理得,,從而可求得,得斜率.【詳解】由得,即聯(lián)立得解得或,∴.故答案為:.【點(diǎn)睛】本題考查直線與拋物線相交,考查向量的線性運(yùn)算的坐標(biāo)表示.直線方程與拋物線方程聯(lián)立后消元,應(yīng)用韋達(dá)定理是解決直線與拋物線相交問題的常用方法.14、【解析】

先找到平面區(qū)域內(nèi)任意兩點(diǎn)的最大值為,再利用三角恒等變換化簡即可得到最大值.【詳解】由已知及正弦定理,得,所以,,取AB中點(diǎn)E,AC中點(diǎn)F,BC中點(diǎn)G,如圖所示顯然平面區(qū)域任意兩點(diǎn)距離最大值為,而,當(dāng)且僅當(dāng)時(shí),等號成立.故答案為:.【點(diǎn)睛】本題考查正弦定理在平面幾何中的應(yīng)用問題,涉及到距離的最值問題,在處理這類問題時(shí),一定要數(shù)形結(jié)合,本題屬于中檔題.15、【解析】

作出圖形,設(shè)點(diǎn)為線段的中點(diǎn),可得出且,進(jìn)而可計(jì)算出的值.【詳解】設(shè)點(diǎn)為線段的中點(diǎn),則,,,.故答案為:.【點(diǎn)睛】本題考查平面向量數(shù)量積的計(jì)算,涉及平面向量數(shù)量積運(yùn)算律的應(yīng)用,解答的關(guān)鍵就是選擇合適的基底表示向量,考查計(jì)算能力,屬于中等題.16、【解析】

先求出隨機(jī)抽取a,b的所有事件數(shù),再求出滿足的事件數(shù),根據(jù)古典概型公式求出結(jié)果.【詳解】解:從集合中隨機(jī)取一個(gè)元素,記為,從集合中隨機(jī)取一個(gè)元素,記為,則的事件數(shù)為9個(gè),即為,,,其中滿足的有,,,共有8個(gè),故的概率為.【點(diǎn)睛】本題考查了古典概型的計(jì)算,解題的關(guān)鍵是準(zhǔn)確列舉出所有事件數(shù).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)【解析】

(1)設(shè)A的坐標(biāo)為A(x0,y0),由題意可得圓心C的坐標(biāo),求出C到直線x=1的距離.由半個(gè)弦長,圓心到直線的距離及半徑構(gòu)成直角三角形可得p的值,進(jìn)而求出拋物線的方程;(2)將拋物線的方程與圓的方程聯(lián)立可得韋達(dá)定理,進(jìn)而求出中點(diǎn)G的坐標(biāo),再求出直線OG的斜率的表達(dá)式,換元可得斜率的取值范圍.【詳解】(1)設(shè)A(x0,y0)且y02=2px0,則圓心C(),圓C的直徑|AB|,圓心C到直線x=1的距離d=|1|=||,因?yàn)閨MN|=2,所以()2+d2=()2,即1,y02=2px0,整理可得(2p﹣4)x0=0,所以p=2,所以拋物線的方程為:y2=4x;(2)聯(lián)立拋物線與圓的方程整理可得x2﹣2(5﹣p)x+16=0,△>0,設(shè)P(x1,y1),Q(x2,y2),則x1+x2=2(5﹣p),x1x2=16,所以中點(diǎn)G的橫坐標(biāo)xG=5﹣p,yG(),所以kOG(0<P<1),令t=5﹣p(t∈(4,5)),則kOG(),解得0<kOG,所以直線OG斜率的取值范圍(0,).【點(diǎn)睛】本題考查拋物線的性質(zhì)及直線與拋物線的綜合,換元方法的應(yīng)用,屬于中檔題.18、(1)(2)證明見解析【解析】

(1)據(jù)題意可得在區(qū)間上恒成立,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,從而求出滿足不等式的的取值范圍;(2)不等式整理為,由(1)可知當(dāng)時(shí),,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性從而證明在區(qū)間上成立,從而證明對任意,都有.【詳解】(1)解:因?yàn)楹瘮?shù)的圖象恒在的圖象的下方,所以在區(qū)間上恒成立.設(shè),其中,所以,其中,.①當(dāng),即時(shí),,所以函數(shù)在上單調(diào)遞增,,故成立,滿足題意.②當(dāng),即時(shí),設(shè),則圖象的對稱軸,,,所以在上存在唯一實(shí)根,設(shè)為,則,,,所以在上單調(diào)遞減,此時(shí),不合題意.綜上可得,實(shí)數(shù)的取值范圍是.(2)證明:由題意得,因?yàn)楫?dāng)時(shí),,,所以.令,則,所以在上單調(diào)遞增,,即,所以,從而.由(1)知當(dāng)時(shí),在上恒成立,整理得.令,則要證,只需證.因?yàn)椋栽谏蠁握{(diào)遞增,所以,即在上恒成立.綜上可得,對任意,都有成立.【點(diǎn)睛】本題考查導(dǎo)數(shù)在研究函數(shù)中的作用,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性與求函數(shù)最值,利用導(dǎo)數(shù)證明不等式,屬于難題.19、(1);(2)見解析【解析】

(1)利用導(dǎo)數(shù)研究的單調(diào)性,分析函數(shù)性質(zhì),數(shù)形結(jié)合,即得解;(2)構(gòu)造函數(shù),可證得:,,分析直線,與從左到右交點(diǎn)的橫坐標(biāo),在,處的切線即得解.【詳解】(1)設(shè)函數(shù),,令,令故在單調(diào)遞減,在單調(diào)遞增,∴,∵時(shí);;時(shí).(2)①過點(diǎn),的直線為,則令,,,.②過點(diǎn),的直線為,則,在上單調(diào)遞增.③設(shè)直線,與從左到右交點(diǎn)的橫坐標(biāo)依次為,,由圖知.④在,處的切線分別為,,同理可以證得,.記直線與兩切線和從左到右交點(diǎn)的橫坐標(biāo)依次為,.【點(diǎn)睛】本題考查了函數(shù)與導(dǎo)數(shù)綜合,考查了學(xué)生數(shù)形結(jié)合,綜合分析,轉(zhuǎn)化劃歸,邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于較難題.20、(1),232;(2)【解析】

(1)根據(jù)公式代入求解;(2)先列出基本事件空間,再列出要求的事件,最后求概率即可.【詳解】解:(1)由表格可求出代入公式求出,所以,所以當(dāng)時(shí),.所以可預(yù)測日平均氣溫為時(shí)該出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論