版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線(xiàn)內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.點(diǎn)為的三條中線(xiàn)的交點(diǎn),且,,則的值為()A. B. C. D.2.為計(jì)算,設(shè)計(jì)了如圖所示的程序框圖,則空白框中應(yīng)填入()A. B. C. D.3.在空間直角坐標(biāo)系中,四面體各頂點(diǎn)坐標(biāo)分別為:.假設(shè)螞蟻窩在點(diǎn),一只螞蟻從點(diǎn)出發(fā),需要在,上分別任意選擇一點(diǎn)留下信息,然后再返回點(diǎn).那么完成這個(gè)工作所需要走的最短路徑長(zhǎng)度是()A. B. C. D.4.半正多面體(semiregularsolid)亦稱(chēng)“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對(duì)稱(chēng)美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個(gè)正三角形和六個(gè)正方形為面的半正多面體.如圖所示,圖中網(wǎng)格是邊長(zhǎng)為1的正方形,粗線(xiàn)部分是某二十四等邊體的三視圖,則該幾何體的體積為()A. B. C. D.5.若單位向量,夾角為,,且,則實(shí)數(shù)()A.-1 B.2 C.0或-1 D.2或-16.已知拋物線(xiàn)上一點(diǎn)的縱坐標(biāo)為4,則點(diǎn)到拋物線(xiàn)焦點(diǎn)的距離為()A.2 B.3 C.4 D.57.△ABC的內(nèi)角A,B,C的對(duì)邊分別為,已知,則為()A. B. C.或 D.或8.已知隨機(jī)變量X的分布列如下表:X01Pabc其中a,b,.若X的方差對(duì)所有都成立,則()A. B. C. D.9.已知拋物線(xiàn)的焦點(diǎn)為,對(duì)稱(chēng)軸與準(zhǔn)線(xiàn)的交點(diǎn)為,為上任意一點(diǎn),若,則()A.30° B.45° C.60° D.75°10.歷史上有不少數(shù)學(xué)家都對(duì)圓周率作過(guò)研究,第一個(gè)用科學(xué)方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長(zhǎng)確定圓周長(zhǎng)的上下界,開(kāi)創(chuàng)了圓周率計(jì)算的幾何方法,而中國(guó)數(shù)學(xué)家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱(chēng)為割圓術(shù).近代無(wú)窮乘積式、無(wú)窮連分?jǐn)?shù)、無(wú)窮級(jí)數(shù)等各種值的表達(dá)式紛紛出現(xiàn),使得值的計(jì)算精度也迅速增加.華理斯在1655年求出一個(gè)公式:,根據(jù)該公式繪制出了估計(jì)圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是A. B. C. D.11.已知函數(shù),,若成立,則的最小值為()A.0 B.4 C. D.12.已知(為虛數(shù)單位,為的共軛復(fù)數(shù)),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在().A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在平面四邊形中,點(diǎn),是橢圓短軸的兩個(gè)端點(diǎn),點(diǎn)在橢圓上,,記和的面積分別為,,則______.14.已知函數(shù),若,則___________.15.根據(jù)如圖所示的偽代碼,若輸入的的值為2,則輸出的的值為_(kāi)___________.16.已知數(shù)列為正項(xiàng)等比數(shù)列,,則的最小值為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知,,動(dòng)點(diǎn)滿(mǎn)足直線(xiàn)與直線(xiàn)的斜率之積為,設(shè)點(diǎn)的軌跡為曲線(xiàn).(1)求曲線(xiàn)的方程;(2)若過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)交于,兩點(diǎn),過(guò)點(diǎn)且與直線(xiàn)垂直的直線(xiàn)與相交于點(diǎn),求的最小值及此時(shí)直線(xiàn)的方程.18.(12分)已知矩陣,,若矩陣,求矩陣的逆矩陣.19.(12分)已知函數(shù),.(1)求函數(shù)在處的切線(xiàn)方程;(2)當(dāng)時(shí),證明:對(duì)任意恒成立.20.(12分)已知橢圓C:()的左、右焦點(diǎn)分別為,,離心率為,且過(guò)點(diǎn).(1)求橢圓C的方程;(2)過(guò)左焦點(diǎn)的直線(xiàn)l與橢圓C交于不同的A,B兩點(diǎn),若,求直線(xiàn)l的斜率k.21.(12分)設(shè)等差數(shù)列滿(mǎn)足,.(1)求數(shù)列的通項(xiàng)公式;(2)求的前項(xiàng)和及使得最小的的值.22.(10分)已知函數(shù)的最大值為2.(Ⅰ)求函數(shù)在上的單調(diào)遞減區(qū)間;(Ⅱ)中,,角所對(duì)的邊分別是,且,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
可畫(huà)出圖形,根據(jù)條件可得,從而可解出,然后根據(jù),進(jìn)行數(shù)量積的運(yùn)算即可求出.【詳解】如圖:點(diǎn)為的三條中線(xiàn)的交點(diǎn),由可得:,又因,,.故選:B【點(diǎn)睛】本題考查三角形重心的定義及性質(zhì),向量加法的平行四邊形法則,向量加法、減法和數(shù)乘的幾何意義,向量的數(shù)乘運(yùn)算及向量的數(shù)量積的運(yùn)算,考查運(yùn)算求解能力,屬于中檔題.2、A【解析】
根據(jù)程序框圖輸出的S的值即可得到空白框中應(yīng)填入的內(nèi)容.【詳解】由程序框圖的運(yùn)行,可得:S=0,i=0滿(mǎn)足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=1,S=1,i=1滿(mǎn)足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=2×(﹣2),S=1+2×(﹣2),i=2滿(mǎn)足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=3×(﹣2)2,S=1+2×(﹣2)+3×(﹣2)2,i=3…觀察規(guī)律可知:滿(mǎn)足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=99×(﹣2)99,S=1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i=1,此時(shí),應(yīng)該不滿(mǎn)足判斷框內(nèi)的條件,退出循環(huán),輸出S的值,所以判斷框中的條件應(yīng)是i<1.故選:A.【點(diǎn)睛】本題考查了當(dāng)型循環(huán)結(jié)構(gòu),當(dāng)型循環(huán)是先判斷后執(zhí)行,滿(mǎn)足條件執(zhí)行循環(huán),不滿(mǎn)足條件時(shí)算法結(jié)束,屬于基礎(chǔ)題.3、C【解析】
將四面體沿著劈開(kāi),展開(kāi)后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開(kāi),展開(kāi)后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【點(diǎn)睛】本題考查了余弦定理解三角形,需熟記定理的內(nèi)容,考查了學(xué)生的空間想象能力,屬于中檔題.4、D【解析】
根據(jù)三視圖作出該二十四等邊體如下圖所示,求出該幾何體的棱長(zhǎng),可以將該幾何體看作是相應(yīng)的正方體沿各棱的中點(diǎn)截去8個(gè)三棱錐所得到的,可求出其體積.【詳解】如下圖所示,將該二十四等邊體的直觀圖置于棱長(zhǎng)為2的正方體中,由三視圖可知,該幾何體的棱長(zhǎng)為,它是由棱長(zhǎng)為2的正方體沿各棱中點(diǎn)截去8個(gè)三棱錐所得到的,該幾何體的體積為,故選:D.【點(diǎn)睛】本題考查三視圖,幾何體的體積,對(duì)于二十四等邊體比較好的處理方式是由正方體各棱的中點(diǎn)得到,屬于中檔題.5、D【解析】
利用向量模的運(yùn)算列方程,結(jié)合向量數(shù)量積的運(yùn)算,求得實(shí)數(shù)的值.【詳解】由于,所以,即,,即,解得或.故選:D【點(diǎn)睛】本小題主要考查向量模的運(yùn)算,考查向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.6、D【解析】試題分析:拋物線(xiàn)焦點(diǎn)在軸上,開(kāi)口向上,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線(xiàn)方程為,因?yàn)辄c(diǎn)A的縱坐標(biāo)為4,所以點(diǎn)A到拋物線(xiàn)準(zhǔn)線(xiàn)的距離為,因?yàn)閽佄锞€(xiàn)上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線(xiàn)的距離,所以點(diǎn)A與拋物線(xiàn)焦點(diǎn)的距離為5.考點(diǎn):本小題主要考查應(yīng)用拋物線(xiàn)定義和拋物線(xiàn)上點(diǎn)的性質(zhì)拋物線(xiàn)上的點(diǎn)到焦點(diǎn)的距離,考查學(xué)生的運(yùn)算求解能力.點(diǎn)評(píng):拋物線(xiàn)上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線(xiàn)的距離,這條性質(zhì)在解題時(shí)經(jīng)常用到,可以簡(jiǎn)化運(yùn)算.7、D【解析】
由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點(diǎn)睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.8、D【解析】
根據(jù)X的分布列列式求出期望,方差,再利用將方差變形為,從而可以利用二次函數(shù)的性質(zhì)求出其最大值為,進(jìn)而得出結(jié)論.【詳解】由X的分布列可得X的期望為,又,所以X的方差,因?yàn)?所以當(dāng)且僅當(dāng)時(shí),取最大值,又對(duì)所有成立,所以,解得,故選:D.【點(diǎn)睛】本題綜合考查了隨機(jī)變量的期望?方差的求法,結(jié)合了概率?二次函數(shù)等相關(guān)知識(shí),需要學(xué)生具備一定的計(jì)算能力,屬于中檔題.9、C【解析】
如圖所示:作垂直于準(zhǔn)線(xiàn)交準(zhǔn)線(xiàn)于,則,故,得到答案.【詳解】如圖所示:作垂直于準(zhǔn)線(xiàn)交準(zhǔn)線(xiàn)于,則,在中,,故,即.故選:.【點(diǎn)睛】本題考查了拋物線(xiàn)中角度的計(jì)算,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.10、B【解析】
初始:,,第一次循環(huán):,,繼續(xù)循環(huán);第二次循環(huán):,,此時(shí),滿(mǎn)足條件,結(jié)束循環(huán),所以判斷框內(nèi)填入的條件可以是,所以正整數(shù)的最小值是3,故選B.11、A【解析】
令,進(jìn)而求得,再轉(zhuǎn)化為函數(shù)的最值問(wèn)題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)在研究函數(shù)最值中的應(yīng)用,考查了轉(zhuǎn)化的數(shù)學(xué)思想,恰當(dāng)?shù)挠靡粋€(gè)未知數(shù)來(lái)表示和是本題的關(guān)鍵,屬于中檔題.12、D【解析】
設(shè),由,得,利用復(fù)數(shù)相等建立方程組即可.【詳解】設(shè),則,所以,解得,故,復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,在第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義,涉及到共軛復(fù)數(shù)的定義、復(fù)數(shù)的模等知識(shí),考查學(xué)生的基本計(jì)算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
依題意易得A、B、C、D四點(diǎn)共圓且圓心在x軸上,然后設(shè)出圓心,由圓的方程與橢圓方程聯(lián)立得到B的橫坐標(biāo),進(jìn)一步得到D橫坐標(biāo),再由計(jì)算比值即可.【詳解】因?yàn)椋訟、B、C、D四點(diǎn)共圓,直徑為,又A、C關(guān)于x軸對(duì)稱(chēng),所以圓心E在x軸上,設(shè)圓心E為,則圓的方程為,聯(lián)立橢圓方程消y得,解得,故B的橫坐標(biāo)為,又B、D中點(diǎn)是E,所以D的橫坐標(biāo)為,故.故答案為:.【點(diǎn)睛】本題考查橢圓中的四點(diǎn)共圓及三角形面積之比的問(wèn)題,考查學(xué)生基本計(jì)算能力及轉(zhuǎn)化與化歸思想,本題關(guān)鍵是求出B、D橫坐標(biāo),是一道有區(qū)分度的壓軸填空題.14、【解析】
根據(jù)題意,利用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性,利用函數(shù)奇偶性的性質(zhì)求解即可.【詳解】因?yàn)楹瘮?shù),其定義域?yàn)椋云涠x域關(guān)于原點(diǎn)對(duì)稱(chēng),又,所以函數(shù)為奇函數(shù),因?yàn)椋?故答案為:【點(diǎn)睛】本題考查函數(shù)奇偶性的判斷及其性質(zhì);考查運(yùn)算求解能力;熟練掌握函數(shù)奇偶性的判斷方法是求解本題的關(guān)鍵;屬于中檔題、常考題型.15、【解析】
滿(mǎn)足條件執(zhí)行,否則執(zhí)行.【詳解】本題實(shí)質(zhì)是求分段函數(shù)在處的函數(shù)值,當(dāng)時(shí),.故答案為:1【點(diǎn)睛】本題考查條件語(yǔ)句的應(yīng)用,此類(lèi)題要做到讀懂算法語(yǔ)句,本題是一道容易題.16、27【解析】
利用等比數(shù)列的性質(zhì)求得,結(jié)合其下標(biāo)和性質(zhì)和均值不等式即可容易求得.【詳解】由等比數(shù)列的性質(zhì)可知,則,.當(dāng)且僅當(dāng)時(shí)取得最小值.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列的下標(biāo)和性質(zhì),涉及均值不等式求和的最小值,屬綜合基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)的最小值為1,此時(shí)直線(xiàn):【解析】
(1)用直接法求軌跡方程,即設(shè)動(dòng)點(diǎn)為,把已知用坐標(biāo)表示并整理即得.注意取值范圍;(2)設(shè):,將其與曲線(xiàn)的方程聯(lián)立,消元并整理得,設(shè),,則可得,,由求出,將直線(xiàn)方程與聯(lián)立,得,求得,計(jì)算,設(shè).顯然,構(gòu)造,由導(dǎo)數(shù)的知識(shí)求得其最小值,同時(shí)可得直線(xiàn)的方程.【詳解】(1)設(shè),則,即整理得(2)設(shè):,將其與曲線(xiàn)的方程聯(lián)立,得即設(shè),,則,將直線(xiàn):與聯(lián)立,得∴∴設(shè).顯然構(gòu)造在上恒成立所以在上單調(diào)遞增所以,當(dāng)且僅當(dāng),即時(shí)取“=”即的最小值為1,此時(shí)直線(xiàn):.(注:1.如果按函數(shù)的性質(zhì)求最值可以不扣分;2.若直線(xiàn)方程按斜率是否存在討論,則可以根據(jù)步驟相應(yīng)給分.)【點(diǎn)睛】本題考查求軌跡方程,考查直線(xiàn)與橢圓相交中的最值.直線(xiàn)與橢圓相交問(wèn)題中常采用“設(shè)而不求”的思想方法,即設(shè)交點(diǎn)坐標(biāo)為,設(shè)直線(xiàn)方程,直線(xiàn)方程與橢圓方程聯(lián)立并消元,然后用韋達(dá)定理得(或),把這個(gè)代入其他條件變形計(jì)算化簡(jiǎn)得出結(jié)論,本題屬于難題,對(duì)學(xué)生的邏輯推理、運(yùn)算求解能力有一定的要求.18、.【解析】試題分析:,所以.試題解析:B.因?yàn)椋裕?9、(1)(2)見(jiàn)解析【解析】
(1)因?yàn)椋傻?,即可求得答案;?)要證對(duì)任意恒成立,即證對(duì)任意恒成立.設(shè),,當(dāng)時(shí),,即可求得答案.【詳解】(1),,,函數(shù)在處的切線(xiàn)方程為.(2)要證對(duì)任意恒成立.即證對(duì)任意恒成立.設(shè),,當(dāng)時(shí),,,令,解得,當(dāng)時(shí),,函數(shù)在上單調(diào)遞減;當(dāng)時(shí),,函數(shù)在上單調(diào)遞增.,,,當(dāng)時(shí),對(duì)任意恒成立,即當(dāng)時(shí),對(duì)任意恒成立.【點(diǎn)睛】本題主要考查了求曲線(xiàn)的切線(xiàn)方程和求證不等式恒成立問(wèn)題,解題關(guān)鍵是掌握由導(dǎo)數(shù)求切線(xiàn)方程的解法和根據(jù)導(dǎo)數(shù)求證不等式恒成立的方法,考查了分析能力和計(jì)算能力,屬于難題.20、(1)(2)直線(xiàn)l的斜率為或【解析】
(1)根據(jù)已知列出方程組即可解得橢圓方程;(2)設(shè)直線(xiàn)方程,與橢圓方程聯(lián)立,轉(zhuǎn)化為,借助向量的數(shù)量積的坐標(biāo)表示,及韋達(dá)定理即可求得結(jié)果.【詳解】(1)由題意得解得故橢圓C的方程為.(2)直線(xiàn)l的方程為,設(shè),,則由方程組消去y得,,所以,,由,得,所以,又所以,即所以,因此,直線(xiàn)l的斜率為或.【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線(xiàn)和橢圓的位置關(guān)系,考查學(xué)生的計(jì)算求解能力,難度一般.21、(1)(2);時(shí),取得最小值【解析】
(1)設(shè)等差數(shù)列的公差為,由,結(jié)合已知,聯(lián)立方程組,即可求得答案.(2)由(1)知,故可得,即可求得答案.【詳解】(1)設(shè)等差數(shù)列的公差為,由及,得解得數(shù)列的通項(xiàng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 五年級(jí)健康教育教案
- 三年級(jí)品德教案上冊(cè)
- 河北省公務(wù)員面試模擬57
- 2024建筑工程機(jī)械租賃合同16篇
- 浙江公務(wù)員面試模擬45
- 湖南公務(wù)員面試模擬30
- 江蘇行政職業(yè)能力2009
- 2024屆中考數(shù)學(xué)一次函數(shù)天天練(9)及答案
- 4.1.2 垂線(xiàn) 華東師大版(2024)數(shù)學(xué)七年級(jí)上冊(cè)課件
- 2024年改造合作開(kāi)發(fā)協(xié)議
- 江蘇自考11002公司法與企業(yè)法復(fù)習(xí)講義
- 低血糖癥診療規(guī)范內(nèi)科學(xué)診療規(guī)范診療指南2023版
- 毒蘑菇中毒醫(yī)療護(hù)理查房培訓(xùn)課件
- 氰化鉀貯存、使用規(guī)定
- 交通部定額站公路造價(jià)解釋答疑終審稿
- 詩(shī)情畫(huà)意談力學(xué)知到章節(jié)答案智慧樹(shù)2023年天津大學(xué)
- 煙草公司客戶(hù)服務(wù)手冊(cè)
- 【移動(dòng)應(yīng)用開(kāi)發(fā)技術(shù)】Android開(kāi)發(fā)中實(shí)現(xiàn)一個(gè)彈出框的方法
- 幽門(mén)螺旋桿菌的認(rèn)識(shí)與治療
- 孫雙喜植樹(shù)問(wèn)題課件
- 《糖尿病人的護(hù)理》
評(píng)論
0/150
提交評(píng)論