版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),關(guān)于的方程R)有四個相異的實數(shù)根,則的取值范圍是(
)A. B. C. D.2.已知函數(shù)的圖象向左平移個單位后得到函數(shù)的圖象,則的最小值為()A. B. C. D.3.已知集合,,則的真子集個數(shù)為()A.1個 B.2個 C.3個 D.4個4.已知三棱錐的體積為2,是邊長為2的等邊三角形,且三棱錐的外接球的球心恰好是中點,則球的表面積為()A. B. C. D.5.已知函數(shù)的最小正周期為的圖象向左平移個單位長度后關(guān)于軸對稱,則的單調(diào)遞增區(qū)間為()A. B.C. D.6.過拋物線的焦點的直線交該拋物線于,兩點,為坐標原點.若,則直線的斜率為()A. B. C. D.7.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B. C. D.848.下列選項中,說法正確的是()A.“”的否定是“”B.若向量滿足,則與的夾角為鈍角C.若,則D.“”是“”的必要條件9.設(shè)a,b都是不等于1的正數(shù),則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件10.已知函數(shù)是奇函數(shù),則的值為()A.-10 B.-9 C.-7 D.111.直線l過拋物線的焦點且與拋物線交于A,B兩點,則的最小值是A.10 B.9 C.8 D.712.已知命題:“關(guān)于的方程有實根”,若為真命題的充分不必要條件為,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐中,,,兩兩垂直且,點為的外接球上任意一點,則的最大值為______.14.我國古代名著《張丘建算經(jīng)》中記載:“今有方錐下廣二丈,高三丈,欲斬末為方亭;令上方六尺:問亭方幾何?”大致意思是:有一個四棱錐下底邊長為二丈,高三丈;現(xiàn)從上面截取一段,使之成為正四棱臺狀方亭,且四棱臺的上底邊長為六尺,則該正四棱臺的高為________尺,體積是_______立方尺(注:1丈=10尺).15.如圖,已知一塊半徑為2的殘缺的半圓形材料,O為半圓的圓心,,殘缺部分位于過點C的豎直線的右側(cè),現(xiàn)要在這塊材料上裁出一個直角三角形,若該直角三角形一條邊在上,則裁出三角形面積的最大值為______.16.已知數(shù)列的前項和為,且滿足,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點為,準線與軸交于點,點在拋物線上,直線與拋物線交于另一點.(1)設(shè)直線,的斜率分別為,,求證:常數(shù);(2)①設(shè)的內(nèi)切圓圓心為的半徑為,試用表示點的橫坐標;②當(dāng)?shù)膬?nèi)切圓的面積為時,求直線的方程.18.(12分)已知集合,,,將的所有子集任意排列,得到一個有序集合組,其中.記集合中元素的個數(shù)為,,,規(guī)定空集中元素的個數(shù)為.當(dāng)時,求的值;利用數(shù)學(xué)歸納法證明:不論為何值,總存在有序集合組,滿足任意,,都有.19.(12分)如圖,在直三棱柱中,,,D,E分別為AB,BC的中點.(1)證明:平面平面;(2)求點到平面的距離.20.(12分)隨著現(xiàn)代社會的發(fā)展,我國對于環(huán)境保護越來越重視,企業(yè)的環(huán)保意識也越來越強.現(xiàn)某大型企業(yè)為此建立了5套環(huán)境監(jiān)測系統(tǒng),并制定如下方案:每年企業(yè)的環(huán)境監(jiān)測費用預(yù)算定為1200萬元,日常全天候開啟3套環(huán)境監(jiān)測系統(tǒng),若至少有2套系統(tǒng)監(jiān)測出排放超標,則立即檢查污染源處理系統(tǒng);若有且只有1套系統(tǒng)監(jiān)測出排放超標,則立即同時啟動另外2套系統(tǒng)進行1小時的監(jiān)測,且后啟動的這2套監(jiān)測系統(tǒng)中只要有1套系統(tǒng)監(jiān)測出排放超標,也立即檢查污染源處理系統(tǒng).設(shè)每個時間段(以1小時為計量單位)被每套系統(tǒng)監(jiān)測出排放超標的概率均為,且各個時間段每套系統(tǒng)監(jiān)測出排放超標情況相互獨立.(1)當(dāng)時,求某個時間段需要檢查污染源處理系統(tǒng)的概率;(2)若每套環(huán)境監(jiān)測系統(tǒng)運行成本為300元/小時(不啟動則不產(chǎn)生運行費用),除運行費用外,所有的環(huán)境監(jiān)測系統(tǒng)每年的維修和保養(yǎng)費用需要100萬元.現(xiàn)以此方案實施,問該企業(yè)的環(huán)境監(jiān)測費用是否會超過預(yù)算(全年按9000小時計算)?并說明理由.21.(12分)已知橢圓的左、右頂點分別為、,上、下頂點分別為,,為其右焦點,,且該橢圓的離心率為;(Ⅰ)求橢圓的標準方程;(Ⅱ)過點作斜率為的直線交橢圓于軸上方的點,交直線于點,直線與橢圓的另一個交點為,直線與直線交于點.若,求取值范圍.22.(10分)已知等差數(shù)列的前n項和為,,公差,、、成等比數(shù)列,數(shù)列滿足.(1)求數(shù)列,的通項公式;(2)已知,求數(shù)列的前n項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】=,當(dāng)時時,單調(diào)遞減,時,單調(diào)遞增,且當(dāng),當(dāng),
當(dāng)時,恒成立,時,單調(diào)遞增且,方程R)有四個相異的實數(shù)根.令=則,,即.2、A【解析】
首先求得平移后的函數(shù),再根據(jù)求的最小值.【詳解】根據(jù)題意,的圖象向左平移個單位后,所得圖象對應(yīng)的函數(shù),所以,所以.又,所以的最小值為.故選:A【點睛】本題考查三角函數(shù)的圖象變換,誘導(dǎo)公式,意在考查平移變換,屬于基礎(chǔ)題型.3、C【解析】
求出的元素,再確定其真子集個數(shù).【詳解】由,解得或,∴中有兩個元素,因此它的真子集有3個.故選:C.【點睛】本題考查集合的子集個數(shù)問題,解題時可先確定交集中集合的元素個數(shù),解題關(guān)鍵是對集合元素的認識,本題中集合都是曲線上的點集.4、A【解析】
根據(jù)是中點這一條件,將棱錐的高轉(zhuǎn)化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設(shè)點到平面的距離為,因為是中點,所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.【點睛】本題考查球的表面積,考查點到平面的距離,屬于中檔題.5、D【解析】
先由函數(shù)的周期和圖象的平移后的函數(shù)的圖象性質(zhì)得出函數(shù)的解析式,從而得出的解析式,再根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間得出函數(shù)的單調(diào)遞增區(qū)間,可得選項.【詳解】因為函數(shù)的最小正周期是,所以,即,所以,的圖象向左平移個單位長度后得到的函數(shù)解析式為,由于其圖象關(guān)于軸對稱,所以,又,所以,所以,所以,因為的遞增區(qū)間是:,,由,,得:,,所以函數(shù)的單調(diào)遞增區(qū)間為().故選:D.【點睛】本題主要考查正弦型函數(shù)的周期性,對稱性,單調(diào)性,圖象的平移,在進行圖象的平移時,注意自變量的系數(shù),屬于中檔題.6、D【解析】
根據(jù)拋物線的定義,結(jié)合,求出的坐標,然后求出的斜率即可.【詳解】解:拋物線的焦點,準線方程為,設(shè),則,故,此時,即.則直線的斜率.故選:D.【點睛】本題考查了拋物線的定義,直線斜率公式,屬于中檔題.7、B【解析】
畫出幾何體的直觀圖,計算表面積得到答案.【詳解】該幾何體的直觀圖如圖所示:故.故選:.【點睛】本題考查了根據(jù)三視圖求表面積,意在考查學(xué)生的計算能力和空間想象能力.8、D【解析】
對于A根據(jù)命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,即可判斷出;對于B若向量滿足,則與的夾角為鈍角或平角;對于C當(dāng)m=0時,滿足am2≤bm2,但是a≤b不一定成立;對于D根據(jù)元素與集合的關(guān)系即可做出判斷.【詳解】選項A根據(jù)命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,因此A不正確;選項B若向量滿足,則與的夾角為鈍角或平角,因此不正確.選項C當(dāng)m=0時,滿足am2≤bm2,但是a≤b不一定成立,因此不正確;選項D若“”,則且,所以一定可以推出“”,因此“”是“”的必要條件,故正確.故選:D.【點睛】本題考查命題的真假判斷與應(yīng)用,涉及知識點有含有量詞的命題的否定、不等式性質(zhì)、向量夾角與性質(zhì)、集合性質(zhì)等,屬于簡單題.9、C【解析】
根據(jù)對數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì)求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.【點睛】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數(shù),對數(shù)不等式的解法,是基礎(chǔ)題.10、B【解析】
根據(jù)分段函數(shù)表達式,先求得的值,然后結(jié)合的奇偶性,求得的值.【詳解】因為函數(shù)是奇函數(shù),所以,.故選:B【點睛】本題主要考查分段函數(shù)的解析式、分段函數(shù)求函數(shù)值,考查數(shù)形結(jié)合思想.意在考查學(xué)生的運算能力,分析問題、解決問題的能力.11、B【解析】
根據(jù)拋物線中過焦點的兩段線段關(guān)系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標準方程可知p=2因為直線l過拋物線的焦點,由過拋物線焦點的弦的性質(zhì)可知所以因為為線段長度,都大于0,由基本不等式可知,此時所以選B【點睛】本題考查了拋物線的基本性質(zhì)及其簡單應(yīng)用,基本不等式的用法,屬于中檔題.12、B【解析】命題p:,為,又為真命題的充分不必要條件為,故二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先根據(jù)三棱錐的幾何性質(zhì),求出外接球的半徑,結(jié)合向量的運算,將問題轉(zhuǎn)化為求球體表面一點到外心距離最大的問題,即可求得結(jié)果.【詳解】因為兩兩垂直且,故三棱錐的外接球就是對應(yīng)棱長為2的正方體的外接球.且外接球的球心為正方體的體對角線的中點,如下圖所示:容易知外接球半徑為.設(shè)線段的中點為,故可得,故當(dāng)取得最大值時,取得最大值.而當(dāng)在同一個大圓上,且,點與線段在球心的異側(cè)時,取得最大值,如圖所示:此時,故答案為:.【點睛】本題考查球體的幾何性質(zhì),幾何體的外接球問題,涉及向量的線性運算以及數(shù)量積運算,屬綜合性困難題.14、213892【解析】
根據(jù)題意畫出圖形,利用棱錐與棱臺的結(jié)構(gòu)特征求出正四棱臺的高,再計算它的體積.【詳解】如圖所示:正四棱錐P-ABCD的下底邊長為二丈,即AB=20尺,高三丈,即PO=30尺,截去一段后,得正四棱臺ABCD-A'B'C'D',且上底邊長為A'B'=6尺,所以,解得,所以該正四棱臺的體積是,故答案為:21;3892.【點睛】本題考查了棱錐與棱臺的結(jié)構(gòu)特征與應(yīng)用問題,也考查了棱臺的體積計算問題,屬于中檔題.15、【解析】
分兩種情況討論:(1)斜邊在BC上,設(shè),則,(2)若在若一條直角邊在上,設(shè),則,進一步利用導(dǎo)數(shù)的應(yīng)用和三角函數(shù)關(guān)系式恒等變形和函數(shù)單調(diào)性即可求出最大值.【詳解】(1)斜邊在上,設(shè),則,則,,從而.當(dāng)時,此時,符合.(2)若一條直角邊在上,設(shè),則,則,,由知.,當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,.當(dāng),即時,最大.故答案為:.【點睛】此題考查實際問題中導(dǎo)數(shù),三角函數(shù)和函數(shù)單調(diào)性的綜合應(yīng)用,注意分類討論把所有情況考慮完全,屬于一般性題目.16、【解析】
對題目所給等式進行賦值,由此求得的表達式,判斷出數(shù)列是等比數(shù)列,由此求得的值.【詳解】解:,可得時,,時,,又,兩式相減可得,即,上式對也成立,可得數(shù)列是首項為1,公比為的等比數(shù)列,可得.【點睛】本小題主要考查已知求,考查等比數(shù)列前項和公式,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)①;②.【解析】
(1)設(shè)過的直線交拋物線于,,聯(lián)立,利用直線的斜率公式和韋達定理表示出,化簡即可;(2)由(1)知點在軸上,故,設(shè)出直線方程,求出交點坐標,因為內(nèi)心到三角形各邊的距離相等且均為內(nèi)切圓半徑,列出方程組求解即可.【詳解】(1)設(shè)過的直線交拋物線于,,聯(lián)立方程組,得:.于是,有:,又,;(2)①由(1)知點在軸上,故,聯(lián)立的直線方程:.,又點在拋物線上,得,又,;②由題得,(解法一)所以直線的方程為(解法二)設(shè)內(nèi)切圓半徑為,則.設(shè)直線的斜率為,則:直線的方程為:代入直線的直線方程,可得于是有:得,又由(1)可設(shè)內(nèi)切圓的圓心為則,即:,解得:所以,直線的方程為:.【點睛】本題主要考查了拋物線的性質(zhì),直線與拋物線相關(guān)的綜合問題的求解,考查了學(xué)生的運算求解與邏輯推理能力.18、;證明見解析.【解析】
當(dāng)時,集合共有個子集,即可求出結(jié)果;分類討論,利用數(shù)學(xué)歸納法證明.【詳解】當(dāng)時,集合共有個子集,所以;①當(dāng)時,,由可知,,此時令,,,,滿足對任意,都有,且;②假設(shè)當(dāng)時,存在有序集合組滿足題意,且,則當(dāng)時,集合的子集個數(shù)為個,因為是4的整數(shù)倍,所以令,,,,且恒成立,即滿足對任意,都有,且,綜上,原命題得證.【點睛】本題考查集合的自己個數(shù)的研究,結(jié)合數(shù)學(xué)歸納法的應(yīng)用,屬于難題.19、(1)證明見解析;(2).【解析】
(1)通過證明面,即可由線面垂直推證面面垂直;(2)根據(jù)面,將問題轉(zhuǎn)化為求到面的距離,利用等體積法求點面距離即可.【詳解】(1)因為棱柱是直三棱柱,所以又,所以面又,分別為AB,BC的中點所以//即面又面,所以平面平面(2)由(1)可知////所以//平面即點到平面的距離等于點到平面的距離設(shè)點到面的距離為由(1)可知,面且在中,,易知由等體積公式可知即由得所以到平面的距離等于【點睛】本題考查由線面垂直推證面面垂直,涉及利用等體積法求點面距離,屬綜合中檔題.20、(1);(2)不會超過預(yù)算,理由見解析【解析】
(1)求出某個時間段在開啟3套系統(tǒng)就被確定需要檢查污染源處理系統(tǒng)的概率為,某個時間段在需要開啟另外2套系統(tǒng)才能確定需要檢查污染源處理系統(tǒng)的概率為,可得某個時間段需要檢查污染源處理系統(tǒng)的概率;(2)設(shè)某個時間段環(huán)境監(jiān)測系統(tǒng)的運行費用為元,則的可能取值為900,1500.求得,,求得其分布列和期望,對其求導(dǎo),研究函數(shù)的單調(diào)性,可得期望的最大值,從而得出結(jié)論.【詳解】(1)某個時間段在開啟3套系統(tǒng)就被確定需要檢查污染源處理系統(tǒng)的概率為,某個時間段在需要開啟另外2套系統(tǒng)才能確定需要檢查污染源處理系統(tǒng)的概率為某個時間段需要檢查污染源處理系統(tǒng)的概率為.(2)設(shè)某
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 23604-2024鈦及鈦合金產(chǎn)品力學(xué)性能試驗取樣方法
- 黑龍江省綏化市望奎縣第五中學(xué)(五四學(xué)制)2024-2025學(xué)年九年級上學(xué)期期中數(shù)學(xué)試卷(含答案)
- 贛南師范大學(xué)《環(huán)境監(jiān)測》2022-2023學(xué)年第一學(xué)期期末試卷
- 阜陽師范大學(xué)《中小學(xué)音樂教材教法》2022-2023學(xué)年第一學(xué)期期末試卷
- 阜陽師范大學(xué)《經(jīng)濟數(shù)學(xué)一》2021-2022學(xué)年第一學(xué)期期末試卷
- 阜陽師范大學(xué)《表演基礎(chǔ)理論》2021-2022學(xué)年第一學(xué)期期末試卷
- 無錫市2024-2025學(xué)年五年級上學(xué)期11月期中調(diào)研數(shù)學(xué)試卷二(有答案)
- 福建師范大學(xué)協(xié)和學(xué)院《外貿(mào)單證實務(wù)模擬操作》2022-2023學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《中國地理》2022-2023學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《教育學(xué)含教師職業(yè)道德》2021-2022學(xué)年第一學(xué)期期末試卷
- 初中踐行勞動教育做新時代好少年主題班會課件
- 人教版四年級數(shù)學(xué)上冊知識歸納期末復(fù)習(xí)
- 小學(xué)三年級數(shù)學(xué)口算 3位乘或除1位第1-10篇
- 【歷史】七年級上冊期中復(fù)習(xí)(1-15課)(復(fù)習(xí)課件) 2024-2025學(xué)年七年級歷史上冊(統(tǒng)編版2024)
- Unit1 Making friends Part C Make a mind map of making friends(教案)-2024-2025學(xué)年人教PEP版(2024)英語三年級上冊
- 申請失業(yè)保險金承諾書
- 《體育保健學(xué)》課件-第三章 運動性病癥
- 分頻器的簡易計算與制作
- 3%23連鑄方坯生產(chǎn)中節(jié)距履帶鋼工藝研究
- 風(fēng)溫肺熱病中醫(yī)臨床路徑分析報告
- 廣東建筑省統(tǒng)表驗收報告
評論
0/150
提交評論