




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2.教學(xué)目標(biāo):1、了解相反向量的概念;2、掌握向量的減法,會(huì)作兩個(gè)向量的減向量,并理解其幾何意義;3、通過闡述向量的減法運(yùn)算可以轉(zhuǎn)化成向量的加法運(yùn)算,使學(xué)生理解事物之間可以相互轉(zhuǎn)化的辯證思想.教學(xué)重點(diǎn):向量減法的概念和向量減法的作圖法.教學(xué)難點(diǎn):減法運(yùn)算時(shí)方向的確定.學(xué)法:減法運(yùn)算是加法運(yùn)算的逆運(yùn)算,學(xué)生在理解相反向量的基礎(chǔ)上結(jié)合向量的加法運(yùn)算掌握向量的減法運(yùn)算;并利用三角形做出減向量.教具:多媒體或?qū)嵨锿队皟x,尺規(guī)授課類型:新授課教學(xué)思路:復(fù)習(xí):向量加法的法則:三角形法則與平行四邊形法則ABDCABDC例:在四邊形中,CB+BA+BC=.解:CB+BA+BC=CB+BA+AD=CD.提出課題:向量的減法用“相反向量”定義向量的減法(1)“相反向量”的定義:與a長度相同、方向相反的向量.記作-a(2)規(guī)定:零向量的相反向量仍是零向量.-(-a)=a.任一向量與它的相反向量的和是零向量.a+(-a)=0如果a、b互為相反向量,則a=-b,b=-a,a+b=0(3)向量減法的定義:向量a加上的b相反向量,叫做a與b的差. 即:a-b=a+(-b)求兩個(gè)向量差的運(yùn)算叫做向量的減法.用加法的逆運(yùn)算定義向量的減法:向量的減法是向量加法的逆運(yùn)算:OabBaba-b若b+x=a,則x叫做aOabBaba-b求作差向量:已知向量a、b,求作向量∵(a-b)+b=a+(-b)+b=a+0=a作法:在平面內(nèi)取一點(diǎn)O,作=a,=b則=a-b即a-b可以表示為從向量b的終點(diǎn)指向向量a的終點(diǎn)的向量.注意:1表示a-b.強(qiáng)調(diào):差向量“箭頭”指向被減數(shù)OABaB’bbbBa+(-OABaB’bbbBa+(-b)ab顯然,此法作圖較繁,但最后作圖可統(tǒng)一.探究:如果從向量a的終點(diǎn)指向向量b的終點(diǎn)作向量,那么所得向量是b-a.aa-bAABBB’Oa-baabbOAOBa-ba-bBAO-b2)若a∥b,如何作出a-b?例題:例1、(P97例三)已知向量a、b、c、d,求作向量a-b、c-d.解:在平面上取一點(diǎn)O,作=a,=b,=c,=d,ABCbadcDO作,,則=aABCbadcDOABABDC例2、平行四邊形中,a,b,用a、b表示向量、.解:由平行四邊形法則得:=a+b,==a-b變式一:當(dāng)a,b滿足什么條件時(shí),a+b與a-b垂直?(|a|=|b|)變式二:當(dāng)a,b滿足什么條件時(shí),|a+b|=|a-b|?(a,b互相垂直)變式三:a+b與a-b可能是相當(dāng)向量嗎?(不可能,∵對(duì)角線方向不同)練習(xí):P98小結(jié):向量減法的定義、作圖法|作業(yè):P103第4、5題板書設(shè)計(jì)(略)2.2.2向量的減法運(yùn)算及其幾何意義課前預(yù)習(xí)學(xué)案預(yù)習(xí)目標(biāo):復(fù)習(xí)回顧向量的加法法則及其運(yùn)算律,為本節(jié)新授內(nèi)容做好鋪墊。預(yù)習(xí)內(nèi)容:向量加法的法則:。ABDC向量加法的運(yùn)算定律:ABDC例:在四邊形中,CB+BA+BC=.解:CB+BA+BC=CB+BA+AD=CD.提出疑惑:向量有加法運(yùn)算,那么它有減法嗎?課內(nèi)探究學(xué)案學(xué)習(xí)目標(biāo):1、了解相反向量的概念;2、掌握向量的減法,會(huì)作兩個(gè)向量的減向量,并理解其幾何意義;3、通過闡述向量的減法運(yùn)算可以轉(zhuǎn)化成向量的加法運(yùn)算,使學(xué)生理解事物之間可以相互轉(zhuǎn)化的辯證思想.學(xué)習(xí)過程:一、提出課題:向量的減法用“相反向量”定義向量的減法“相反向量”的定義:。規(guī)定:零向量的相反向量仍是.-(-a)=a.任一向量與它的相反向量的和是.a+(-a)=0如果a、b互為相反向量,則a=-b,b=-a,a+b=0(3)向量減法的定義:.即:求兩個(gè)向量差的運(yùn)算叫做向量的減法.用加法的逆運(yùn)算定義向量的減法:向量的減法是向量加法的逆運(yùn)算:若b+x=a,則x叫做a與b的差,記作。求作差向量:已知向量a、b,求作向量∵(a-b)+b=a+(-b)+b=a+0=a作法:注意:1表示a-b.強(qiáng)調(diào):差向量“箭頭”指向2用“相反向量”定義法作差向量,a-b=。顯然,此法作圖較繁,但最后作圖可統(tǒng)一.探究:如果從向量a的終點(diǎn)指向向量b的終點(diǎn)作向量,那么所得向量是。aabAABBB’OabaabbOAOBababBAOb2)若a∥b,如何作出a-b?二、例題:例1、(P97例三)已知向量a、b、c、d,求作向量a-b、c-d.例2、平行四邊形中,a,b,用a、b表示向量、.變式一:當(dāng)a,b滿足什么條件時(shí),a+b與ab垂直?(|a|=|b|)變式二:當(dāng)a,b滿足什么條件時(shí),|a+b|=|ab|?(a,b互相垂直)變式三:a+b與ab可能是相當(dāng)向量嗎?(不可能,∵對(duì)角線方向不同)課后練習(xí)與提高1.在△ABC中,=a,=b,則等于()+b+(-b)為平行四邊形ABCD平面上的點(diǎn),設(shè)=a,=b,=c,=d,則+b+c+d=0+c-d=0+b-c-d=0+d=03.如圖,在四邊形ABCD中,根據(jù)圖示填空:a+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 打造創(chuàng)新型文化的工作計(jì)劃
- 外墻涂料勞務(wù)承包合同
- 學(xué)校藝術(shù)教學(xué)指導(dǎo)計(jì)劃
- 年度創(chuàng)新與研發(fā)項(xiàng)目的計(jì)劃
- 以游戲?yàn)槊浇榕囵B(yǎng)幼兒園小班的自主學(xué)習(xí)能力計(jì)劃
- 發(fā)掘潛在的職業(yè)機(jī)會(huì)計(jì)劃
- 人才引進(jìn)與留存策略計(jì)劃
- 醫(yī)院急救設(shè)施建設(shè)安全措施
- 物流公司采購部職責(zé)與效率提升
- 公共交通系統(tǒng)消防應(yīng)急預(yù)案及措施
- 黑布林閱讀初一11《杰克的悠長夏天》中文版
- 物業(yè)客服培訓(xùn) 課件
- 胸腔閉式引流護(hù)理-2023年中華護(hù)理學(xué)會(huì)團(tuán)體標(biāo)準(zhǔn)
- 2022年錦州市三支一扶考試真題
- 短視頻編輯與制作(第2版)PPT完整全套教學(xué)課件
- 2023年《移動(dòng)式壓力容器充裝質(zhì)量管理手冊(cè)》
- ESD靜電防護(hù)點(diǎn)檢表
- 全飛秒激光技術(shù)
- 城軌道交通接觸網(wǎng)檢修工職業(yè)標(biāo)準(zhǔn)
- QC成果減少隧道工程Ⅳ類Ⅴ類圍巖超挖量
- 《質(zhì)量回溯》培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論