版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.正五邊形繞著它的中心旋轉(zhuǎn)后與它本身重合,最小的旋轉(zhuǎn)角度數(shù)是()A.36° B.54° C.72° D.108°2.下列說法正確的是()A.負數(shù)沒有倒數(shù)B.﹣1的倒數(shù)是﹣1C.任何有理數(shù)都有倒數(shù)D.正數(shù)的倒數(shù)比自身小3.下列運算結(jié)果正確的是()A.3a2-a2=2 B.a(chǎn)2·a3=a6 C.(-a2)3=-a6 D.a(chǎn)2÷a2=a4.如圖,彈性小球從點P(0,1)出發(fā),沿所示方向運動,每當(dāng)小球碰到正方形OABC的邊時反彈,反彈時反射角等于入射角,當(dāng)小球第1次碰到正方形的邊時的點為P1(2,0),第2次碰到正方形的邊時的點為P2,…,第n次碰到正方形的邊時的點為Pn,則點P2018的坐標(biāo)是()A.(1,4) B.(4,3) C.(2,4) D.(4,1)5.如圖,將一塊含有30°角的直角三角板的兩個頂點放在長方形直尺的一組對邊上,如果∠1=30°,那么∠2的度數(shù)為()A.30° B.40° C.50° D.60°6.某校舉行“漢字聽寫比賽”,5個班級代表隊的正確答題數(shù)如圖.這5個正確答題數(shù)所組成的一組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.10,15 B.13,15 C.13,20 D.15,157.下列成語描述的事件為隨機事件的是()A.水漲船高B.守株待兔C.水中撈月D.緣木求魚8.如圖,菱形ABCD的對角線相交于點O,過點D作DE∥AC,且DE=AC,連接CE、OE,連接AE,交OD于點F,若AB=2,∠ABC=60°,則AE的長為()A. B. C. D.9.解分式方程時,去分母后變形為A. B.C. D.10.如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點F,則∠BFC為()A.75° B.60° C.55° D.45°11.如圖,從正方形紙片的頂點沿虛線剪開,則∠1的度數(shù)可能是()A.44 B.45 C.46 D.4712.魏晉時期的數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù).為計算圓周率建立了嚴(yán)密的理論和完善的算法.作圓內(nèi)接正多邊形,當(dāng)正多邊形的邊數(shù)不斷增加時,其周長就無限接近圓的周長,進而可用來求得較為精確的圓周率.祖沖之在劉徽的基礎(chǔ)上繼續(xù)努力,當(dāng)正多邊形的邊數(shù)增加24576時,得到了精確到小數(shù)點后七位的圓周率,這一成就在當(dāng)時是領(lǐng)先其他國家一千多年,如圖,依據(jù)“割圓術(shù)”,由圓內(nèi)接正六邊形算得的圓周率的近似值是()A.0.5 B.1 C.3 D.π二、填空題:(本大題共6個小題,每小題4分,共24分.)13.等腰梯形是__________對稱圖形.14.如圖,在梯形ABCD中,AB∥CD,∠C=90°,BC=CD=4,AD=2,若,用、表示=_____.15.二次函數(shù)的圖象與x軸有____個交點
.16.因式分解.17.如圖,這是懷柔區(qū)部分景點的分布圖,若表示百泉山風(fēng)景區(qū)的點的坐標(biāo)為,表示慕田峪長城的點的坐標(biāo)為,則表示雁棲湖的點的坐標(biāo)為______.18.從﹣2,﹣1,2,0這四個數(shù)中任取兩個不同的數(shù)作為點的坐標(biāo),該點不在第三象限的概率是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法).(2)在(1)條件下,求證:AB2=BD?BC.20.(6分)某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購進了這種禮盒并且全部售完;2016年,這種禮盒的進價比2014年下降了11元/盒,該商店用2400元購進了與2014年相同數(shù)量的禮盒也全部售完,禮盒的售價均為60元/盒.(1)2014年這種禮盒的進價是多少元/盒?(2)若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?21.(6分)如圖,AB是⊙O的直徑,弦DE交AB于點F,⊙O的切線BC與AD的延長線交于點C,連接AE.(1)試判斷∠AED與∠C的數(shù)量關(guān)系,并說明理由;(2)若AD=3,∠C=60°,點E是半圓AB的中點,則線段AE的長為.22.(8分)如圖,點G是正方形ABCD對角線CA的延長線一點,對角線BD與AC交于點O,以線段AG為邊作一個正方形AEFG,連接EB、GD.(1)求證:EB=GD;(2)若AB=5,AG=2,求EB的長.23.(8分)如圖,AB是⊙O的直徑,AC是⊙O的切線,BC與⊙O相交于點D,點E在⊙O上,且DE=DA,AE與BC交于點F.(1)求證:FD=CD;(2)若AE=8,tan∠E=3424.(10分)如圖,我們把一個半圓和拋物線的一部分圍成的封閉圖形稱為“果圓”,已知分別為“果圓”與坐標(biāo)軸的交點,直線與“果圓”中的拋物線交于兩點(1)求“果圓”中拋物線的解析式,并直接寫出“果圓”被軸截得的線段的長;(2)如圖,為直線下方“果圓”上一點,連接,設(shè)與交于,的面積記為,的面積即為,求的最小值(3)“果圓”上是否存在點,使,如果存在,直接寫出點坐標(biāo),如果不存在,請說明理由25.(10分)如圖,已知正方形ABCD的邊長為4,點P是AB邊上的一個動點,連接CP,過點P作PC的垂線交AD于點E,以PE為邊作正方形PEFG,頂點G在線段PC上,對角線EG、PF相交于點O.(1)若AP=1,則AE=;(2)①求證:點O一定在△APE的外接圓上;②當(dāng)點P從點A運動到點B時,點O也隨之運動,求點O經(jīng)過的路徑長;(3)在點P從點A到點B的運動過程中,△APE的外接圓的圓心也隨之運動,求該圓心到AB邊的距離的最大值.26.(12分)如圖,直線y=12x與雙曲線y=kx(k>0,x>0)交于點A,將直線y=12(1)設(shè)點B的橫坐標(biāo)分別為b,試用只含有字母b的代數(shù)式表示k;(2)若OA=3BC,求k的值.27.(12分)在一次數(shù)學(xué)活動課上,老師讓同學(xué)們到操場上測量旗桿的高度,然后回來交流各自的測量方法.小芳的測量方法是:拿一根高3.5米的竹竿直立在離旗桿27米的C處(如圖),然后沿BC方向走到D處,這時目測旗桿頂部A與竹竿頂部E恰好在同一直線上,又測得C、D兩點的距離為3米,小芳的目高為1.5米,這樣便可知道旗桿的高.你認(rèn)為這種測量方法是否可行?請說明理由.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】正五邊形繞著它的中心旋轉(zhuǎn)后與它本身重合,最小的旋轉(zhuǎn)角度數(shù)是=72度,故選C.2、B【解析】
根據(jù)倒數(shù)的定義解答即可.【詳解】A、只有0沒有倒數(shù),該項錯誤;B、﹣1的倒數(shù)是﹣1,該項正確;C、0沒有倒數(shù),該項錯誤;D、小于1的正分?jǐn)?shù)的倒數(shù)大于1,1的倒數(shù)等于1,該項錯誤.故選B.【點睛】本題主要考查倒數(shù)的定義:兩個實數(shù)的乘積是1,則這兩個數(shù)互為倒數(shù),熟練掌握這個知識點是解答本題的關(guān)鍵.3、C【解析】選項A,3a2-a2=2a2;選項B,a2·a3=a5;選項C,(-a2)3=-a6;選項D,a2÷a2=1.正確的只有選項C,故選C.4、D【解析】
先根據(jù)反射角等于入射角先找出前幾個點,直至出現(xiàn)規(guī)律,然后再根據(jù)規(guī)律進行求解.【詳解】由分析可得p(0,1)、、、、、、等,故該坐標(biāo)的循環(huán)周期為7則有則有,故是第2018次碰到正方形的點的坐標(biāo)為(4,1).【點睛】本題主要考察規(guī)律的探索,注意觀察規(guī)律是解題的關(guān)鍵.5、D【解析】如圖,因為,∠1=30°,∠1+∠3=60°,所以∠3=30°,因為AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故選D.6、D【解析】
將五個答題數(shù),從小打到排列,5個數(shù)中間的就是中位數(shù),出現(xiàn)次數(shù)最多的是眾數(shù).【詳解】將這五個答題數(shù)排序為:10,13,15,15,20,由此可得中位數(shù)是15,眾數(shù)是15,故選D.【點睛】本題考查中位數(shù)和眾數(shù)的概念,熟記概念即可快速解答.7、B【解析】試題解析:水漲船高是必然事件,A不正確;守株待兔是隨機事件,B正確;水中撈月是不可能事件,C不正確緣木求魚是不可能事件,D不正確;故選B.考點:隨機事件.8、C【解析】在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四邊形OCED是平行四邊形,∵AC⊥BD,∴平行四邊形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC為等邊三角形,∴AD=AB=AC=2,OA=AC=1,在矩形OCED中,由勾股定理得:CE=OD=,在Rt△ACE中,由勾股定理得:AE=;故選C.點睛:本題考查了菱形的性質(zhì),先求出四邊形OCED是平行四邊形,再根據(jù)菱形的對角線互相垂直求出∠COD=90°,證明四邊形OCED是矩形,再根據(jù)菱形的性質(zhì)得出AC=AB,再根據(jù)勾股定理得出AE的長度即可.9、D【解析】試題分析:方程,兩邊都乘以x-1去分母后得:2-(x+2)=3(x-1),故選D.考點:解分式方程的步驟.10、B【解析】
由正方形的性質(zhì)和等邊三角形的性質(zhì)得出∠BAE=150°,AB=AE,由等腰三角形的性質(zhì)和內(nèi)角和定理得出∠ABE=∠AEB=15°,再運用三角形的外角性質(zhì)即可得出結(jié)果.【詳解】解:∵四邊形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等邊三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故選:B.【點睛】本題考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的判定與性質(zhì)、三角形的外角性質(zhì);熟練掌握正方形和等邊三角形的性質(zhì),并能進行推理計算是解決問題的關(guān)鍵.11、A【解析】
連接正方形的對角線,然后依據(jù)正方形的性質(zhì)進行判斷即可.【詳解】解:如圖所示:∵四邊形為正方形,∴∠1=45°.∵∠1<∠1.∴∠1<45°.故選:A.【點睛】本題主要考查的是正方形的性質(zhì),熟練掌握正方形的性質(zhì)是解題的關(guān)鍵.12、C【解析】
連接OC、OD,根據(jù)正六邊形的性質(zhì)得到∠COD=60°,得到△COD是等邊三角形,得到OC=CD,根據(jù)題意計算即可.【詳解】連接OC、OD,∵六邊形ABCDEF是正六邊形,∴∠COD=60°,又OC=OD,∴△COD是等邊三角形,∴OC=CD,正六邊形的周長:圓的直徑=6CD:2CD=3,故選:C.【點睛】本題考查的是正多邊形和圓,掌握正多邊形的中心角的計算公式是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、軸【解析】
根據(jù)軸對稱圖形的概念,等腰梯形是軸對稱圖形,且有1條對稱軸,即底邊的垂直平分線.【詳解】畫圖如下:結(jié)合圖形,根據(jù)軸對稱的定義及等腰梯形的特征可知,等腰梯形是軸對稱圖形.故答案為:軸【點睛】本題考查了關(guān)于軸對稱的定義,運用定義會進行判斷一個圖形是不是軸對稱圖形.14、【解析】
過點A作AE⊥DC,利用向量知識解題.【詳解】解:過點A作AE⊥DC于E,∵AE⊥DC,BC⊥DC,∴AE∥BC,又∵AB∥CD,∴四邊形AECB是矩形,∴AB=EC,AE=BC=4,∴DE===2,∴AB=EC=2=DC,∵,∴,∵,∴,∴,故答案為.【點睛】向量知識只有使用滬教版(上海)教材的學(xué)生才學(xué)過,全國絕大部分地區(qū)將向量放在高中階段學(xué)習(xí).15、2【解析】【分析】根據(jù)一元二次方程x2+mx+m-2=0的根的判別式的符號進行判定二次函數(shù)y=x2+mx+m-2的圖象與x軸交點的個數(shù).【詳解】二次函數(shù)y=x2+mx+m-2的圖象與x軸交點的縱坐標(biāo)是零,即當(dāng)y=0時,x2+mx+m-2=0,∵△=m2-4(m-2)=(m-2)2+4>0,∴一元二次方程x2+mx+m-2=0有兩個不相等是實數(shù)根,即二次函數(shù)y=x2+mx+m-2的圖象與x軸有2個交點,故答案為:2.【點睛】本題考查了拋物線與x軸的交點.二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)的交點與一元二次方程ax2+bx+c=0根之間的關(guān)系.△=b2-4ac決定拋物線與x軸的交點個數(shù).△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.16、【解析】試題分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應(yīng)用平方差公式分解即可:.17、【解析】
直接利用已知點坐標(biāo)得出原點位置,進而得出答案.【詳解】解:如圖所示:雁棲湖的點的坐標(biāo)為:(1,-3).故答案為(1,-3).【點睛】本題考查坐標(biāo)確定位置,正確得出原點的位置是解題關(guān)鍵.18、【解析】
列舉出所有情況,看在第四象限的情況數(shù)占總情況數(shù)的多少即可.【詳解】如圖:共有12種情況,在第三象限的情況數(shù)有2種,
故不再第三象限的共10種,
不在第三象限的概率為,
故答案為.【點睛】本題考查了樹狀圖法的知識,解題的關(guān)鍵是列出樹狀圖求出概率.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)作圖見解析;(2)證明見解析;【解析】
(1)①以C為圓心,任意長為半徑畫弧,交CB、CA于E、F;②以A為圓心,CE長為半徑畫弧,交AB于G;③以G為圓心,EF長為半徑畫弧,兩弧交于H;④連接AH并延長交BC于D,則∠BAD=∠C;(2)證明△ABD∽△CBA,然后根據(jù)相似三角形的性質(zhì)得到結(jié)論.【詳解】(1)如圖,∠BAD為所作;(2)∵∠BAD=∠C,∠B=∠B∴△ABD∽△CBA,∴AB:BC=BD:AB,∴AB2=BD?BC.【點睛】本題考查了基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).也考查了相似三角形的判定與性質(zhì).20、(1)35元/盒;(2)20%.【解析】
試題分析:(1)設(shè)2014年這種禮盒的進價為x元/盒,則2016年這種禮盒的進價為(x﹣11)元/盒,根據(jù)2014年花3500元與2016年花2400元購進的禮盒數(shù)量相同,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;(2)設(shè)年增長率為m,根據(jù)數(shù)量=總價÷單價求出2014年的購進數(shù)量,再根據(jù)2014年的銷售利潤×(1+增長率)2=2016年的銷售利潤,即可得出關(guān)于m的一元二次方程,解之即可得出結(jié)論.試題解析:(1)設(shè)2014年這種禮盒的進價為x元/盒,則2016年這種禮盒的進價為(x﹣11)元/盒,根據(jù)題意得:,解得:x=35,經(jīng)檢驗,x=35是原方程的解.答:2014年這種禮盒的進價是35元/盒.(2)設(shè)年增長率為m,2014年的銷售數(shù)量為3500÷35=100(盒).根據(jù)題意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合題意,舍去).答:年增長率為20%.考點:一元二次方程的應(yīng)用;分式方程的應(yīng)用;增長率問題.21、(1)∠AED=∠C,理由見解析;(2)【解析】
(1)根據(jù)切線的性質(zhì)和圓周角定理解答即可;(2)根據(jù)勾股定理和三角函數(shù)進行解答即可.【詳解】(1)∠AED=∠C,證明如下:連接BD,可得∠ADB=90°,∴∠C+∠DBC=90°,∵CB是⊙O的切線,∴∠CBA=90°,∴∠ABD+∠DBC=90°,∴∠ABD=∠C,∵∠AEB=∠ABD,∴∠AED=∠C,(2)連接BE,∴∠AEB=90°,∵∠C=60°,∴∠CAB=30°,在Rt△DAB中,AD=3,∠ADB=90°,∴cos∠DAB=,解得:AB=2,∵E是半圓AB的中點,∴AE=BE,∵∠AEB=90°,∴∠BAE=45°,在Rt△AEB中,AB=2,∠ADB=90°,∴cos∠EAB=,解得:AE=.故答案為【點睛】此題考查了切線的性質(zhì)、直角三角形的性質(zhì)以及圓周角定理.此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用,注意掌握輔助線的作法.22、(1)證明見解析;(2);【解析】
(1)根據(jù)正方形的性質(zhì)得到∠GAD=∠EAB,證明△GAD≌△EAB,根據(jù)全等三角形的性質(zhì)證明;(2)根據(jù)正方形的性質(zhì)得到BD⊥AC,AC=BD=5,根據(jù)勾股定理計算即可.【詳解】(1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,∴∠GAD=∠EAB,在△GAD和△EAB中,,∴△GAD≌△EAB,∴EB=GD;(2)∵四邊形ABCD是正方形,AB=5,∴BD⊥AC,AC=BD=5,∴∠DOG=90°,OA=OD=BD=,∵AG=2,∴OG=OA+AG=,由勾股定理得,GD==,∴EB=.【點睛】本題考查的是正方形的性質(zhì)、全等三角形的判定和性質(zhì),掌握正方形的對角線相等、垂直且互相平分是解題的關(guān)鍵.23、(1)證明見解析;(2)256【解析】
(1)先利用切線的性質(zhì)得出∠CAD+∠BAD=90°,再利用直徑所對的圓周角是直角得出∠B+∠BAD=90°,從而可證明∠B=∠EAD,進而得出∠EAD=∠CAD,進而判斷出△ADF≌△ADC,即可得出結(jié)論;(2)過點D作DG⊥AE,垂足為G.依據(jù)等腰三角形的性質(zhì)可得到EG=AG=1,然后在Rt△GEG中,依據(jù)銳角三角函數(shù)的定義可得到DG的長,然后依據(jù)勾股定理可得到AD=ED=2,然后在Rt△ABD中,依據(jù)銳角三角函數(shù)的定義可求得AB的長,從而可求得⊙O的半徑的長.【詳解】(1)∵AC是⊙O的切線,∴BA⊥AC,∴∠CAD+∠BAD=90°,∵AB是⊙O的直徑,∴∠ADB=90°,∴∠B+∠BAD=90°,∴∠CAD=∠B,∵DA=DE,∴∠EAD=∠E,又∵∠B=∠E,∴∠B=∠EAD,∴∠EAD=∠CAD,在△ADF和△ADC中,∠ADF=∠ADC=90°,AD=AD,∠FAD=∠CAD,∴△ADF≌△ADC,∴FD=CD.(2)如下圖所示:過點D作DG⊥AE,垂足為G.∵DE=AE,DG⊥AE,∴EG=AG=12∵tan∠E=34∴GDEG=34,即GD4∴ED=EG∵∠B=∠E,tan∠E=34∴sin∠B=ADAB=GDED=∴⊙O的半徑為256【點睛】本題考查了切線的性質(zhì),圓周角定理,圓的性質(zhì),全等三角形的判定和性質(zhì),利用等式的性質(zhì)和同角的余角相等判斷角相等是解本題的關(guān)鍵.24、(1);6;(2)有最小值;(3),.【解析】
(1)先求出點B,C坐標(biāo),利用待定系數(shù)法求出拋物線解析式,進而求出點A坐標(biāo),即可求出半圓的直徑,再構(gòu)造直角三角形求出點D的坐標(biāo)即可求出BD;
(2)先判斷出要求的最小值,只要CG最大即可,再求出直線EG解析式和拋物線解析式聯(lián)立成的方程只有一個交點,求出直線EG解析式,即可求出CG,結(jié)論得證.
(3)求出線段AC,BC進而判斷出滿足條件的一個點P和點B重合,再利用拋物線的對稱性求出另一個點P.【詳解】解:(1)對于直線y=x-3,令x=0,
∴y=-3,
∴B(0,-3),
令y=0,
∴x-3=0,
∴x=4,
∴C(4,0),
∵拋物線y=x2+bx+c過B,C兩點,∴∴∴拋物線的解析式為y=;令y=0,
∴=0,∴x=4或x=-1,
∴A(-1,0),
∴AC=5,
如圖2,記半圓的圓心為O',連接O'D,
∴O'A=O'D=O'C=AC=,
∴OO'=OC-O'C=4-=,
在Rt△O'OD中,OD==2,∴D(0,2),
∴BD=2-(-3)=5;(2)如圖3,
∵A(-1,0),C(4,0),
∴AC=5,
過點E作EG∥BC交x軸于G,
∵△ABF的AF邊上的高和△BEF的EF邊的高相等,設(shè)高為h,
∴S△ABF=AF?h,S△BEF=EF?h,∴==∵的最小值,∴最小,∵CF∥GE,∴∴最小,即:CG最大,∴EG和果圓的拋物線部分只有一個交點時,CG最大,
∵直線BC的解析式為y=x-3,
設(shè)直線EG的解析式為y=x+m①,
∵拋物線的解析式為y=x2-x-3②,
聯(lián)立①②化簡得,3x2-12x-12-4m=0,
∴△=144+4×3×(12+4m)=0,
∴m=-6,
∴直線EG的解析式為y=x-6,
令y=0,
∴x-6=0,
∴x=8,
∴CG=4,∴=;(3),.理由:如圖1,∵AC是半圓的直徑,
∴半圓上除點A,C外任意一點Q,都有∠AQC=90°,
∴點P只能在拋物線部分上,
∵B(0,-3),C(4,0),
∴BC=5,
∵AC=5,
∴AC=BC,
∴∠BAC=∠ABC,
當(dāng)∠APC=∠CAB時,點P和點B重合,即:P(0,-3),
由拋物線的對稱性知,另一個點P的坐標(biāo)為(3,-3),
即:使∠APC=∠CAB,點P坐標(biāo)為(0,-3)或(3,-3).【點睛】本題是二次函數(shù)綜合題,考查待定系數(shù)法,圓的性質(zhì),勾股定理,相似三角形的判定和性質(zhì),拋物線的對稱性,等腰三角形的判定和性質(zhì),判斷出CG最大時,兩三角形面積之比最小是解本題的關(guān)鍵.25、(1)34;(2)①證明見解析;②22;(3)【解析】試題分析:(1)由正方形的性質(zhì)得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余關(guān)系證出∠AEP=∠PBC,得出△APE∽△BCP,得出對應(yīng)邊成比例即可求出AE的長;(2)①A、P、O、E四點共圓,即可得出結(jié)論;②連接OA、AC,由勾股定理求出AC=42,由圓周角定理得出∠OAP=∠OEP=45°,周長點O在AC上,當(dāng)P運動到點B時,O為AC(3)設(shè)△APE的外接圓的圓心為M,作MN⊥AB于N,由三角形中位線定理得出MN=12AE,設(shè)AP=x,則BP=4﹣x,由相似三角形的對應(yīng)邊成比例求出AE的表達式,由二次函數(shù)的最大值求出AE的最大值為1,得出MN的最大值=1試題解析:(1)∵四邊形ABCD、四邊形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠PBC,∴△APE∽△BC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025超市柜臺租賃合同范本
- 2025鍋爐房工程施工承攬合同
- 乘法和加減法混合運算 說課稿
- 上海師范大學(xué)天華學(xué)院《中國古典建筑美學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海師范大學(xué)《餐旅管理研究方法》2023-2024學(xué)年第一學(xué)期期末試卷
- 質(zhì)檢報告范文
- 2025關(guān)于擔(dān)保合同格式
- 課題申報書:高管綠色治理能力與企業(yè)低碳轉(zhuǎn)型:測度、機制與效果研究
- 2024屆高考作文預(yù)測及佳作賞析倍速生活質(zhì)量何在
- 上海歐華職業(yè)技術(shù)學(xué)院《日企文件及洽談翻譯》2023-2024學(xué)年第一學(xué)期期末試卷
- 電子競技賽事裁判員培訓(xùn)教程
- 2024重慶機場集團限公司公開招聘46人高頻難、易錯點500題模擬試題附帶答案詳解
- 03S702鋼筋混凝土化糞池-標(biāo)準(zhǔn)圖集
- 統(tǒng)編版 七年級上冊 第五單元 活動·探究 任務(wù)一 體會人與動物的關(guān)系 20 狼(教學(xué)設(shè)計)
- 2023年人教版八年級地理下冊全冊電子教案備課
- 內(nèi)蒙古自治區(qū)高等職業(yè)院校2024年對口招收中等職業(yè)學(xué)校畢業(yè)生單獨考試語文試題(無答案)
- 幼兒園班本課程培訓(xùn)
- 2025屆浙江省杭州市學(xué)軍中學(xué)高三下學(xué)期聯(lián)合考試物理試題含解析
- 質(zhì)量管理題庫
- 2024年部編版七年級上冊語文期末專項訓(xùn)練:文言文對比閱讀
- 2024-2030年智能交通項目可行性研究報告
評論
0/150
提交評論