2023屆寧波市江東區(qū)市級名校中考數(shù)學模擬精編試卷含解析_第1頁
2023屆寧波市江東區(qū)市級名校中考數(shù)學模擬精編試卷含解析_第2頁
2023屆寧波市江東區(qū)市級名校中考數(shù)學模擬精編試卷含解析_第3頁
2023屆寧波市江東區(qū)市級名校中考數(shù)學模擬精編試卷含解析_第4頁
2023屆寧波市江東區(qū)市級名校中考數(shù)學模擬精編試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知二次函數(shù)(為常數(shù)),當時,函數(shù)的最小值為5,則的值為()A.-1或5 B.-1或3 C.1或5 D.1或32.兩個相同的瓶子裝滿酒精溶液,在一個瓶子中酒精與水的容積之比是1:p,而在另一個瓶子中是1:q,若把兩瓶溶液混合在一起,混合液中的酒精與水的容積之比是()A. B. C. D.3.一個幾何體的三視圖如圖所示,這個幾何體是()A.棱柱B.正方形C.圓柱D.圓錐4.如圖,在菱形ABCD中,AB=BD,點E,F(xiàn)分別在AB,AD上,且AE=DF,連接BF與DE相交于點G,連接CG與BD相交于點H,下列結論:①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2DF,則BG=6GF,其中正確的結論A.只有①②. B.只有①③. C.只有②③. D.①②③.5.如圖1,點E為矩形ABCD的邊AD上一點,點P從點B出發(fā)沿BE→ED→DC運動到點C停止,點Q從點B出發(fā)沿BC運動到點C停止,它們運動的速度都是1cm/s.若點P、Q同時開始運動,設運動時間為t(s),△BPQ的面積為y(cm2),已知y與t之間的函數(shù)圖象如圖2所示.給出下列結論:①當0<t≤10時,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22時,y=110﹣1t;④在運動過程中,使得△ABP是等腰三角形的P點一共有3個;⑤當△BPQ與△BEA相似時,t=14.1.其中正確結論的序號是()A.①④⑤ B.①②④ C.①③④ D.①③⑤6.下列說法正確的是()A.“明天降雨的概率是60%”表示明天有60%的時間都在降雨B.“拋一枚硬幣正面朝上的概率為50%”表示每拋2次就有一次正面朝上C.“彩票中獎的概率為1%”表示買100張彩票肯定會中獎D.“拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近7.在下列各平面圖形中,是圓錐的表面展開圖的是()A. B. C. D.8.如圖,⊙O的直徑AB=2,C是弧AB的中點,AE,BE分別平分∠BAC和∠ABC,以E為圓心,AE為半徑作扇形EAB,π取3,則陰影部分的面積為()A.﹣4 B.7﹣4 C.6﹣ D.9.若點A(a,b),B(,c)都在反比例函數(shù)y=的圖象上,且﹣1<c<0,則一次函數(shù)y=(b﹣c)x+ac的大致圖象是()A. B.C. D.10.如圖,AB是⊙O的切線,半徑OA=2,OB交⊙O于C,∠B=30°,則劣弧的長是()A.π B. C.π D.π11.下列運算正確的是()A.x3+x3=2x6 B.x6÷x2=x3 C.(﹣3x3)2=2x6 D.x2?x﹣3=x﹣112.已知等腰三角形的兩邊長分別為5和6,則這個等腰三角形的周長為()A.11 B.16 C.17 D.16或17二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一次函數(shù)y=kx+b(k≠0)的圖象如圖所示,那么不等式kx+b<0的解集是_____.14.若a,b互為相反數(shù),則a2﹣b2=_____.15.若式子有意義,則x的取值范圍是_____.16.一個不透明的盒子里有n個除顏色外其他完全相同的小球,其中有9個黃球每次摸球前先將盒子里的球搖勻,任意摸出一個球記下顏色后放回盒子,通過大量重復摸球試驗后發(fā)現(xiàn),摸到黃球的頻率穩(wěn)定在,那么估計盒子中小球的個數(shù)是_______.17.若一個多邊形的內角和為1080°,則這個多邊形的邊數(shù)為__________.18.意大利著名數(shù)學家斐波那契在研究兔子繁殖問題時,發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,…,請根據(jù)這組數(shù)的規(guī)律寫出第10個數(shù)是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知:如圖1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,點P由點B出發(fā)沿BA方向向點A勻速運動,速度為2cm/s;同時點Q由點A出發(fā)沿AC方向點C勻速運動,速度為lcm/s;連接PQ,設運動的時間為t秒(0<t<5),解答下列問題:(1)當為t何值時,PQ∥BC;(2)設△AQP的面積為y(cm2),求y關于t的函數(shù)關系式,并求出y的最大值;(3)如圖2,連接PC,并把△PQC沿QC翻折,得到四邊形PQPC,是否存在某時刻t,使四邊形PQP'C為菱形?若存在,求出此時t的值;若不存在,請說明理由.20.(6分)小麗和哥哥小明分別從家和圖書館同時出發(fā),沿同一條路相向而行,小麗開始跑步,遇到哥哥后改為步行,到達圖書館恰好用35分鐘,小明勻速騎自行車直接回家,騎行10分鐘后遇到了妹妺,再繼續(xù)騎行5分鐘,到家兩人距離家的路程y(m)與各自離開出發(fā)的時間x(min)之間的函數(shù)圖象如圖所示:(1)求兩人相遇時小明離家的距離;(2)求小麗離距離圖書館500m時所用的時間.21.(6分)如圖,關于x的二次函數(shù)y=x2+bx+c的圖象與x軸交于點A(1,0)和點B與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.(1)求二次函數(shù)的表達式;(2)在y軸上是否存在一點P,使△PBC為等腰三角形?若存在.請求出點P的坐標;(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.22.(8分)如圖,∠MON的邊OM上有兩點A、B在∠MON的內部求作一點P,使得點P到∠MON的兩邊的距離相等,且△PAB的周長最?。ūA糇鲌D痕跡,不寫作法)23.(8分)一個不透明的口袋中有四個完全相同的小球,把它們分別標號為1,2,3,4.隨機摸取一個小球然后放回,再隨機摸出一個小球,求下列事件的概率:兩次取出的小球標號相同;兩次取出的小球標號的和等于4.24.(10分)兩個全等的等腰直角三角形按如圖方式放置在平面直角坐標系中,OA在x軸上,已知∠COD=∠OAB=90°,OC=,反比例函數(shù)y=的圖象經(jīng)過點B.求k的值.把△OCD沿射線OB移動,當點D落在y=圖象上時,求點D經(jīng)過的路徑長.25.(10分)某商場將進價40元一個的某種商品按50元一個售出時,每月能賣出500個.商場想了兩個方案來增加利潤:方案一:提高價格,但這種商品每個售價漲價1元,銷售量就減少10個;方案二:售價不變,但發(fā)資料做廣告.已知當這種商品每月的廣告費用為m(千元)時,每月銷售量將是原銷售量的p倍,且p=.試通過計算,請你判斷商場為賺得更大的利潤應選擇哪種方案?請說明你判斷的理由!26.(12分)如圖,某校教學樓AB的后面有一建筑物CD,當光線與地面的夾角是22o時,教學樓在建筑物的墻上留下高2m的影子CE;而當光線與地面的夾角是45o時,教學樓頂A在地面上的影子F與墻角C有13m的距離(B、F、C在一條直線上).求教學樓AB的高度;學校要在A、E之間掛一些彩旗,請你求出A、E之間的距離(結果保留整數(shù)).27.(12分)如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).(1)求拋物線的表達式;(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

由解析式可知該函數(shù)在x=h時取得最小值1,x>h時,y隨x的增大而增大;當x<h時,y隨x的增大而減?。桓鶕?jù)1≤x≤3時,函數(shù)的最小值為5可分如下兩種情況:①若h<1,可得x=1時,y取得最小值5;②若h>3,可得當x=3時,y取得最小值5,分別列出關于h的方程求解即可.【詳解】解:∵x>h時,y隨x的增大而增大,當x<h時,y隨x的增大而減小,∴①若h<1,當時,y隨x的增大而增大,∴當x=1時,y取得最小值5,可得:,解得:h=?1或h=3(舍),∴h=?1;②若h>3,當時,y隨x的增大而減小,當x=3時,y取得最小值5,可得:,解得:h=5或h=1(舍),∴h=5,③若1≤h≤3時,當x=h時,y取得最小值為1,不是5,∴此種情況不符合題意,舍去.綜上所述,h的值為?1或5,故選:A.【點睛】本題主要考查二次函數(shù)的性質和最值,根據(jù)二次函數(shù)的性質和最值進行分類討論是解題的關鍵.2、C【解析】

混合液中的酒精與水的容積之比為兩瓶中的純酒精與兩瓶中的水之比,分別算出純酒精和水的體積即可得答案.【詳解】設瓶子的容積即酒精與水的和是1,則純酒精之和為:1×+1×=+,水之和為:+,∴混合液中的酒精與水的容積之比為:(+)÷(+)=,故選C.【點睛】本題主要考查分式的混合運算,找到相應的等量關系是解決本題的關鍵.3、C【解析】試題解析:根據(jù)主視圖和左視圖為矩形可判斷出該幾何體是柱體,根據(jù)俯視圖是圓可判斷出該幾何體為圓柱.故選C.4、D【解析】

解:①∵ABCD為菱形,∴AB=AD.∵AB=BD,∴△ABD為等邊三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴點B、C、D、G四點共圓,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.過點C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,則△CBM≌△CDN,(HL)∴S四邊形BCDG=S四邊形CMGN.S四邊形CMGN=1S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四邊形CMGN=1S△CMG=1××CG×CG=CG1.③過點F作FP∥AE于P點.∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故選D.5、D【解析】

根據(jù)題意,得到P、Q分別同時到達D、C可判斷①②,分段討論PQ位置后可以判斷③,再由等腰三角形的分類討論方法確定④,根據(jù)兩個點的相對位置判斷點P在DC上時,存在△BPQ與△BEA相似的可能性,分類討論計算即可.【詳解】解:由圖象可知,點Q到達C時,點P到E則BE=BC=10,ED=4故①正確則AE=10﹣4=6t=10時,△BPQ的面積等于∴AB=DC=8故故②錯誤當14<t<22時,故③正確;分別以A、B為圓心,AB為半徑畫圓,將兩圓交點連接即為AB垂直平分線則⊙A、⊙B及AB垂直平分線與點P運行路徑的交點是P,滿足△ABP是等腰三角形此時,滿足條件的點有4個,故④錯誤.∵△BEA為直角三角形∴只有點P在DC邊上時,有△BPQ與△BEA相似由已知,PQ=22﹣t∴當或時,△BPQ與△BEA相似分別將數(shù)值代入或,解得t=(舍去)或t=14.1故⑤正確故選:D.【點睛】本題是動點問題的函數(shù)圖象探究題,考查了三角形相似判定、等腰三角形判定,應用了分類討論和數(shù)形結合的數(shù)學思想.6、D【解析】

根據(jù)概率是指某件事發(fā)生的可能性為多少,隨著試驗次數(shù)的增加,穩(wěn)定在某一個固定數(shù)附近,可得答案.【詳解】解:A.“明天降雨的概率是60%”表示明天下雨的可能性較大,故A不符合題意;B.“拋一枚硬幣正面朝上的概率為”表示每次拋正面朝上的概率都是,故B不符合題意;C.“彩票中獎的概率為1%”表示買100張彩票有可能中獎.故C不符合題意;D.“拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近,故D符合題意;故選D【點睛】本題考查了概率的意義,正確理解概率的含義是解決本題的關鍵.7、C【解析】

結合圓錐的平面展開圖的特征,側面展開是一個扇形,底面展開是一個圓.【詳解】解:圓錐的展開圖是由一個扇形和一個圓形組成的圖形.故選C.【點睛】考查了幾何體的展開圖,熟記常見立體圖形的展開圖的特征,是解決此類問題的關鍵.注意圓錐的平面展開圖是一個扇形和一個圓組成.8、A【解析】∵O的直徑AB=2,∴∠C=90°,∵C是弧AB的中點,∴,∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分別平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°?(∠BAC+∠CBA)=135°,連接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO為Rt△ABC內切圓半徑,∴S△ABC=(AB+AC+BC)?EO=AC?BC,∴EO=?1,∴AE2=AO2+EO2=12+(?1)2=4?2,∴扇形EAB的面積==,△ABE的面積=AB?EO=?1,∴弓形AB的面積=扇形EAB的面積?△ABE的面積=,∴陰影部分的面積=O的面積?弓形AB的面積=?()=?4,故選:A.9、D【解析】

將,代入,得,,然后分析與的正負,即可得到的大致圖象.【詳解】將,代入,得,,即,.∴.∵,∴,∴.即與異號.∴.又∵,故選D.【點睛】本題考查了反比例函數(shù)圖像上點的坐標特征,一次函數(shù)的圖像與性質,得出與的正負是解答本題的關鍵.10、C【解析】

由切線的性質定理得出∠OAB=90°,進而求出∠AOB=60°,再利用弧長公式求出即可.【詳解】∵AB是⊙O的切線,∴∠OAB=90°,∵半徑OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧AC?的長是:=,故選:C.【點睛】本題考查了切線的性質,圓周角定理,弧長的計算,解題的關鍵是先求出角度再用弧長公式進行計算.11、D【解析】分析:根據(jù)合并同類項法則,同底數(shù)冪相除,積的乘方的性質,同底數(shù)冪相乘的性質,逐一判斷即可.詳解:根據(jù)合并同類項法則,可知x3+x3=2x3,故不正確;根據(jù)同底數(shù)冪相除,底數(shù)不變指數(shù)相加,可知a6÷a2=a4,故不正確;根據(jù)積的乘方,等于各個因式分別乘方,可知(-3a3)2=9a6,故不正確;根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加,可得x2?x﹣3=x﹣1,故正確.故選D.點睛:此題主要考查了整式的相關運算,是一道綜合性題目,熟練應用整式的相關性質和運算法則是解題關鍵.12、D【解析】試題分析:由等腰三角形的兩邊長分別是5和6,可以分情況討論其邊長為5,5,6或者5,6,6,均滿足三角形兩邊之和大于第三邊,兩邊之差小于第三邊的條件,所以此等腰三角形的周長為5+5+6=16或5+6+6=17.故選項D正確.考點:三角形三邊關系;分情況討論的數(shù)學思想二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x>﹣1.【解析】

一次函數(shù)y=kx+b的圖象在x軸下方時,y<0,再根據(jù)圖象寫出解集即可.【詳解】當不等式kx+b<0時,一次函數(shù)y=kx+b的圖象在x軸下方,因此x>﹣1.故答案為:x>﹣1.【點睛】本題考查了一次函數(shù)與一元一次不等式:從函數(shù)的角度看,就是尋求使一次函數(shù)y=kx+b(k≠0)的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b(k≠0)在x軸上(或下)方部分所有的點的橫坐標所構成的集合.14、1【解析】【分析】直接利用平方差公式分解因式進而結合相反數(shù)的定義分析得出答案.【詳解】∵a,b互為相反數(shù),∴a+b=1,∴a2﹣b2=(a+b)(a﹣b)=1,故答案為1.【點睛】本題考查了公式法分解因式以及相反數(shù)的定義,正確分解因式是解題關鍵.15、x≥﹣2且x≠1.【解析】由知,∴,又∵在分母上,∴.故答案為且.16、1【解析】

根據(jù)利用頻率估計概率得到摸到黃球的概率為1%,然后根據(jù)概率公式計算n的值.【詳解】解:根據(jù)題意得=1%,解得n=1,所以這個不透明的盒子里大約有1個除顏色外其他完全相同的小球.故答案為1.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.當實驗的所有可能結果不是有限個或結果個數(shù)很多,或各種可能結果發(fā)生的可能性不相等時,一般通過統(tǒng)計頻率來估計概率.17、1【解析】

根據(jù)多邊形內角和定理:(n﹣2)?110(n≥3)可得方程110(x﹣2)=1010,再解方程即可.【詳解】解:設多邊形邊數(shù)有x條,由題意得:110(x﹣2)=1010,解得:x=1,故答案為:1.【點睛】此題主要考查了多邊形內角和定理,關鍵是熟練掌握計算公式:(n﹣2)?110(n≥3).18、1【解析】解:3=2+1;5=3+2;8=5+3;13=8+5;…可以發(fā)現(xiàn):從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和.則第8個數(shù)為13+8=21;第9個數(shù)為21+13=34;第10個數(shù)為34+21=1.故答案為1.點睛:此題考查了數(shù)字的有規(guī)律變化,解答此類題目的關鍵是要求學生通對題目中給出的圖表、數(shù)據(jù)等認真進行分析、歸納并發(fā)現(xiàn)其中的規(guī)律,并應用規(guī)律解決問題.此類題目難度一般偏大.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)當t=時,PQ∥BC;(2)﹣(t﹣)2+,當t=時,y有最大值為;(3)存在,當t=時,四邊形PQP′C為菱形【解析】

(1)只要證明△APQ∽△ABC,可得=,構建方程即可解決問題;(2)過點P作PD⊥AC于D,則有△APD∽△ABC,理由相似三角形的性質構建二次函數(shù)即可解決問題;

(3)存在.由△APO∽△ABC,可得=,即=,推出OA=(5﹣t),根據(jù)OC=CQ,構建方程即可解決問題;【詳解】(1)在Rt△ABC中,AB===10,BP=2t,AQ=t,則AP=10﹣2t,∵PQ∥BC,∴△APQ∽△ABC,∴=,即=,解得t=,∴當t=時,PQ∥BC.(2)過點P作PD⊥AC于D,則有△APD∽△ABC,∴=,即=,∴PD=6﹣t,∴y=t(6﹣t)=﹣(t﹣)2+,∴當t=時,y有最大值為.(3)存在.理由:連接PP′,交AC于點O.∵四邊形PQP′C為菱形,∴OC=CQ,∵△APO∽△ABC,∴=,即=,∴OA=(5﹣t),∴8﹣(5﹣t)=(8﹣t),解得t=,∴當t=時,四邊形PQP′C為菱形.【點睛】本題考查四邊形綜合題、相似三角形的判定和性質、平行線的性質、勾股定理等知識,解題的關鍵是學會添加常用輔助線,構造相似三角形解決問題,學會理由參數(shù)構建方程解決問題,屬于中考壓軸題.20、(1)兩人相遇時小明離家的距離為1500米;(2)小麗離距離圖書館500m時所用的時間為分.【解析】

(1)根據(jù)題意得出小明的速度,進而得出得出小明離家的距離;(2)由(1)的結論得出小麗步行的速度,再列方程解答即可.【詳解】解:(1)根據(jù)題意可得小明的速度為:4500÷(10+5)=300(米/分),300×5=1500(米),∴兩人相遇時小明離家的距離為1500米;(2)小麗步行的速度為:(4500﹣1500)÷(35﹣10)=120(米/分),設小麗離距離圖書館500m時所用的時間為x分,根據(jù)題意得,1500+120(x﹣10)=4500﹣500,解得x=.答:小麗離距離圖書館500m時所用的時間為分.【點睛】本題由函數(shù)圖像獲取信息,以及一元一次方程的應用,由函數(shù)圖像正確獲取信息是解答本題的關鍵.21、(1)二次函數(shù)的表達式為:y=x2﹣4x+3;(2)點P的坐標為:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)當點M出發(fā)1秒到達D點時,△MNB面積最大,最大面積是1.此時點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.【解析】

(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程組,解方程組即可得二次函數(shù)的表達式;(2)先求出點B的坐標,再根據(jù)勾股定理求得BC的長,當△PBC為等腰三角形時分三種情況進行討論:①CP=CB;②BP=BC;③PB=PC;分別根據(jù)這三種情況求出點P的坐標;(3)設AM=t則DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化為頂點式,根據(jù)二次函數(shù)的性質即可得△MNB最大面積;此時點M在D點,點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.【詳解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函數(shù)的表達式為:y=x2﹣4x+3;(2)令y=0,則x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,點P在y軸上,當△PBC為等腰三角形時分三種情況進行討論:如圖1,①當CP=CB時,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②當PB=PC時,OP=OB=3,∴P3(0,-3);③當BP=BC時,∵OC=OB=3∴此時P與O重合,∴P4(0,0);綜上所述,點P的坐標為:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);(3)如圖2,設AM=t,由AB=2,得BM=2﹣t,則DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,當點M出發(fā)1秒到達D點時,△MNB面積最大,最大面積是1.此時點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.22、詳見解析【解析】

作∠MON的角平分線OT,在ON上截取OA′,使得OA′=OA,連接BA′交OT于點P,點P即為所求.【詳解】解:如圖,點P即為所求.【點睛】本題主要考查作圖-復雜作圖,利用了角平分線的性質,難點在于利用軸對稱求最短路線的問題.23、(1)(2)【解析】

試題分析:首先根據(jù)題意進行列表,然后求出各事件的概率.試題解析:(1)P(兩次取得小球的標號相同)=;(2)P(兩次取得小球的標號的和等于4)=.考點:概率的計算.24、(1)k=2;(2)點D經(jīng)過的路徑長為.【解析】

(1)根據(jù)題意求得點B的坐標,再代入求得k值即可;(2)設平移后與反比例函數(shù)圖象的交點為D′,由平移性質可知DD′∥OB,過D′作D′E⊥x軸于點E,交DC于點F,設CD交y軸于點M(如圖),根據(jù)已知條件可求得點D的坐標為(﹣1,1),設D′橫坐標為t,則OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的長,即可得點D經(jīng)過的路徑長.【詳解】(1)∵△AOB和△COD為全等三的等腰直角三角形,OC=,∴AB=OA=OC=OD=,∴點B坐標為(,),代入得k=2;(2)設平移后與反比例函數(shù)圖象的交點為D′,由平移性質可知DD′∥OB,過D′作D′E⊥x軸于點E,交DC于點F,設CD交y軸于點M,如圖,∵OC=OD=,∠AOB=∠COM=45°,∴OM=MC=MD=1,∴D坐標為(﹣1,1),設D′橫坐標為t,則OE=MF=t,∴D′F=DF=t+1,∴D′E=D′F+EF=t+2,∴D′(t,t+2),∵D′在反比例函數(shù)圖象上,∴t(t+2)=2,解得t=或t=﹣﹣1(舍去),∴D′(﹣1,+1),∴DD′=,即點D經(jīng)過的路徑長為.【點睛】本題是反比例函數(shù)與幾何的綜合題,求得點D′的坐標是解決第(2)問的關鍵.25、方案二能獲得更大的利潤;理由見解析【解析】

方案一:由利潤=(實際售價-進價)×銷售量,列出函數(shù)關系式,再用配方法求最大利潤;方案二:由利潤=(售價-進價)×500p-廣告費用,列出函數(shù)關系式,再用配方法求最大利潤.【詳解】解:設漲價x元,利潤為y元,則方案一:漲價x元時,該商品每一件利潤為:50+x?40,銷售量為:500?10x,∴,∵當x=20時,y最大=9000,∴方案一的最大利潤為9000元;方案二:該商品售價利潤為=(50?40)×500p,廣告費用為:1000m元,∴,∴方案二的最大利潤為10125元;∴選擇方案二能獲得更大的利潤.【點睛】本題考查二次函數(shù)的實際應用,根據(jù)題意,列出函數(shù)關系式,配方求出最大值.26、(1)2m(2)27m【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論