版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知A樣本的數(shù)據如下:72,73,76,76,77,78,78,78,B樣本的數(shù)據恰好是A樣本數(shù)據每個都加2,則A,B兩個樣本的下列統(tǒng)計量對應相同的是()A.平均數(shù) B.標準差 C.中位數(shù) D.眾數(shù)2.如圖,,則的度數(shù)為()A.115° B.110° C.105° D.65°3.光年天文學中的距離單位,1光年大約是9500000000000km,用科學記數(shù)法表示為A. B. C. D.4.若關于x的一元二次方程x2﹣2x+m=0沒有實數(shù)根,則實數(shù)m的取值是()A.m<1 B.m>﹣1 C.m>1 D.m<﹣15.如果關于x的方程x2﹣x+1=0有實數(shù)根,那么k的取值范圍是()A.k>0 B.k≥0 C.k>4 D.k≥46.如圖,兩個轉盤A,B都被分成了3個全等的扇形,在每一扇形內均標有不同的自然數(shù),固定指針,同時轉動轉盤A,B,兩個轉盤停止后觀察兩個指針所指扇形內的數(shù)字(若指針停在扇形的邊線上,當作指向上邊的扇形).小明每轉動一次就記錄數(shù)據,并算出兩數(shù)之和,其中“和為7”的頻數(shù)及頻率如下表:轉盤總次數(shù)10203050100150180240330450“和為7”出現(xiàn)頻數(shù)27101630465981110150“和為7”出現(xiàn)頻率0.200.350.330.320.300.300.330.340.330.33如果實驗繼續(xù)進行下去,根據上表數(shù)據,出現(xiàn)“和為7”的頻率將穩(wěn)定在它的概率附近,估計出現(xiàn)“和為7”的概率為()A.0.33 B.0.34 C.0.20 D.0.357.下面的幾何體中,主視圖為圓的是()A. B. C. D.8.如圖,AB∥CD,點E在線段BC上,若∠1=40°,∠2=30°,則∠3的度數(shù)是()A.70° B.60° C.55° D.50°9.古希臘著名的畢達哥拉斯學派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+3110.一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),它們離甲地的路程y(km)與客車行駛時間x(h)間的函數(shù)關系如圖,下列信息:(1)出租車的速度為100千米/時;(2)客車的速度為60千米/時;(3)兩車相遇時,客車行駛了3.75小時;(4)相遇時,出租車離甲地的路程為225千米.其中正確的個數(shù)有()A.1個 B.2個 C.3個 D.4個二、填空題(共7小題,每小題3分,滿分21分)11.已知式子有意義,則x的取值范圍是_____12.如圖,經過點B(-2,0)的直線與直線相交于點A(-1,-2),則不等式的解集為.13.如圖,把正方形鐵片OABC置于平面直角坐標系中,頂點A的坐標為(3,0),點P(1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點按順時針方向依次旋轉90°,第一次旋轉至圖①位置,第二次旋轉至圖②位置…,則正方形鐵片連續(xù)旋轉2017次后,點P的坐標為____________________.14.如圖,一組平行橫格線,其相鄰橫格線間的距離都相等,已知點A、B、C、D、O都在橫格線上,且線段AD,BC交于點O,則AB:CD等于______.15.如果一個直角三角形的兩條直角邊的長分別為5、12,則斜邊上的高的長度為______.16.對于實數(shù),我們用符號表示兩數(shù)中較小的數(shù),如.因此,________;若,則________.17.請寫出一個開口向下,并且與y軸交于點(0,1)的拋物線的表達式_________三、解答題(共7小題,滿分69分)18.(10分)如圖,在菱形ABCD中,,點E在對角線BD上.將線段CE繞點C順時針旋轉,得到CF,連接DF.(1)求證:BE=DF;(2)連接AC,若EB=EC,求證:.19.(5分)A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的s與t的關系.(1)L1表示哪輛汽車到甲地的距離與行駛時間的關系?(2)汽車B的速度是多少?(3)求L1,L2分別表示的兩輛汽車的s與t的關系式.(4)2小時后,兩車相距多少千米?(5)行駛多長時間后,A、B兩車相遇?20.(8分)如圖,拋物線與x軸相交于A、B兩點,與y軸的交于點C,其中A點的坐標為(﹣3,0),點C的坐標為(0,﹣3),對稱軸為直線x=﹣1.(1)求拋物線的解析式;(2)若點P在拋物線上,且S△POC=4S△BOC,求點P的坐標;(3)設點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.21.(10分)矩形ABCD中,DE平分∠ADC交BC邊于點E,P為DE上的一點(PE<PD),PM⊥PD,PM交AD邊于點M.(1)若點F是邊CD上一點,滿足PF⊥PN,且點N位于AD邊上,如圖1所示.求證:①PN=PF;②DF+DN=DP;(2)如圖2所示,當點F在CD邊的延長線上時,仍然滿足PF⊥PN,此時點N位于DA邊的延長線上,如圖2所示;試問DF,DN,DP有怎樣的數(shù)量關系,并加以證明.22.(10分)如圖,在Rt△ABC中,∠C=90°,AC=AB.求證:∠B=30°.請?zhí)羁胀瓿上铝凶C明.證明:如圖,作Rt△ABC的斜邊上的中線CD,則CD=AB=AD().∵AC=AB,∴AC=CD=AD即△ACD是等邊三角形.∴∠A=°.∴∠B=90°﹣∠A=30°.23.(12分)閱讀材料:小胖同學發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉全等的三角形.小胖把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.(1)在圖1中證明小胖的發(fā)現(xiàn);借助小胖同學總結規(guī)律,構造“手拉手”圖形來解答下面的問題:(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點E為△ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(shù)(用含有m的式子表示).24.(14分)如圖,△ABC和△BEC均為等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,點P為線段BE延長線上一點,連接CP以CP為直角邊向下作等腰直角△CPD,線段BE與CD相交于點F.(1)求證:;(2)連接BD,請你判斷AC與BD有什么位置關系?并說明理由;(3)若PE=1,求△PBD的面積.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】試題分析:根據樣本A,B中數(shù)據之間的關系,結合眾數(shù),平均數(shù),中位數(shù)和標準差的定義即可得到結論:設樣本A中的數(shù)據為xi,則樣本B中的數(shù)據為yi=xi+2,則樣本數(shù)據B中的眾數(shù)和平均數(shù)以及中位數(shù)和A中的眾數(shù),平均數(shù),中位數(shù)相差2,只有標準差沒有發(fā)生變化.故選B.考點:統(tǒng)計量的選擇.2、A【解析】
根據對頂角相等求出∠CFB=65°,然后根據CD∥EB,判斷出∠B=115°.【詳解】∵∠AFD=65°,∴∠CFB=65°,∵CD∥EB,∴∠B=180°?65°=115°,故選:A.【點睛】本題考查了平行線的性質,知道“兩直線平行,同旁內角互補”是解題的關鍵.3、C【解析】
科學記數(shù)法的表示形式為的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:將9500000000000km用科學記數(shù)法表示為.故選C.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.4、C【解析】試題解析:關于的一元二次方程沒有實數(shù)根,,解得:故選C.5、D【解析】
由被開方數(shù)非負結合根的判別式△≥0,即可得出關于k的一元一次不等式組,解之即可得出k的取值范圍.【詳解】∵關于x的方程x2-x+1=0有實數(shù)根,∴,解得:k≥1.故選D.【點睛】本題考查了根的判別式,牢記“當△≥0時,方程有實數(shù)根”是解題的關鍵.6、A【解析】
根據上表數(shù)據,出現(xiàn)“和為7”的頻率將穩(wěn)定在它的概率附近,估計出現(xiàn)“和為7”的概率即可.【詳解】由表中數(shù)據可知,出現(xiàn)“和為7”的概率為0.33.故選A.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.7、C【解析】試題解析:A、的主視圖是矩形,故A不符合題意;B、的主視圖是正方形,故B不符合題意;C、的主視圖是圓,故C符合題意;D、的主視圖是三角形,故D不符合題意;故選C.考點:簡單幾何體的三視圖.8、A【解析】試題分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故選A.考點:平行線的性質.9、C【解析】
本題考查探究、歸納的數(shù)學思想方法.題中明確指出:任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.由于“正方形數(shù)”為兩個“三角形數(shù)”之和,正方形數(shù)可以用代數(shù)式表示為:(n+1)2,兩個三角形數(shù)分別表示為n(n+1)和(n+1)(n+2),所以由正方形數(shù)可以推得n的值,然后求得三角形數(shù)的值.【詳解】∵A中13不是“正方形數(shù)”;選項B、D中等式右側并不是兩個相鄰“三角形數(shù)”之和.故選:C.【點睛】此題是一道找規(guī)律的題目,這類題型在中考中經常出現(xiàn).對于找規(guī)律的題目首先應找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.10、D【解析】
根據題意和函數(shù)圖象中的數(shù)據可以判斷各個小題是否正確,從而可以解答本題.【詳解】由圖象可得,出租車的速度為:600÷6=100千米/時,故(1)正確,客車的速度為:600÷10=60千米/時,故(2)正確,兩車相遇時,客車行駛時間為:600÷(100+60)=3.75(小時),故(3)正確,相遇時,出租車離甲地的路程為:60×3.75=225千米,故(4)正確,故選D.【點睛】本題考查一次函數(shù)的應用,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.二、填空題(共7小題,每小題3分,滿分21分)11、x≤1且x≠﹣1.【解析】根據二次根式有意義,分式有意義得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案為x≤1且x≠﹣1.12、【解析】分析:不等式的解集就是在x下方,直線在直線上方時x的取值范圍.由圖象可知,此時.13、(6053,2).【解析】
根據前四次的坐標變化總結規(guī)律,從而得解.【詳解】第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…發(fā)現(xiàn)點P的位置4次一個循環(huán),∵2017÷4=504余1,P2017的縱坐標與P1相同為2,橫坐標為5+3×2016=6053,∴P2017(6053,2),故答案為(6053,2).考點:坐標與圖形變化﹣旋轉;規(guī)律型:點的坐標.14、2:1.【解析】
過點O作OE⊥AB于點E,延長EO交CD于點F,可得OF⊥CD,由AB//CD,可得△AOB∽△DOC,根據相似三角形對應高的比等于相似比可得,由此即可求得答案.【詳解】如圖,過點O作OE⊥AB于點E,延長EO交CD于點F,∵AB//CD,∴∠OFD=∠OEA=90°,即OF⊥CD,∵AB//CD,∴△AOB∽△DOC,又∵OE⊥AB,OF⊥CD,練習本中的橫格線都平行,且相鄰兩條橫格線間的距離都相等,∴=,故答案為:2:1.【點睛】本題考查了相似三角形的的判定與性質,熟練掌握相似三角形對應高的比等于相似比是解本題的關鍵.15、【解析】
利用勾股定理求出斜邊長,再利用面積法求出斜邊上的高即可.【詳解】解:∵直角三角形的兩條直角邊的長分別為5,12,∴斜邊為=13,∵三角形的面積=×5×12=×13h(h為斜邊上的高),∴h=.故答案為:.【點睛】考查了勾股定理,以及三角形面積公式,熟練掌握勾股定理是解本題的關鍵.16、2或-1.【解析】①∵--,∴min{-,-}=-;②∵min{(x?1)2,x2}=1,∴當x>0.5時,(x?1)2=1,∴x?1=±1,∴x?1=1,x?1=?1,解得:x1=2,x2=0(不合題意,舍去),當x?0.5時,x2=1,解得:x1=1(不合題意,舍去),x2=?1,17、(答案不唯一)【解析】
根據二次函數(shù)的性質,拋物線開口向下a<0,與y軸交點的縱坐標即為常數(shù)項,然后寫出即可.【詳解】∵拋物線開口向下,并且與y軸交于點(0,1)∴二次函數(shù)的一般表達式中,a<0,c=1,∴二次函數(shù)表達式可以為:(答案不唯一).【點睛】本題考查二次函數(shù)的性質,掌握開口方向、與y軸的交點與二次函數(shù)二次項系數(shù)、常數(shù)項的關系是解題的關鍵.三、解答題(共7小題,滿分69分)18、證明見解析【解析】【分析】(1)根據菱形的性質可得BC=DC,,再根據,從而可得,繼而得=,由旋轉的性質可得=,證明≌,即可證得=;(2)根據菱形的對角線的性質可得,,從而得,由,可得,由(1)可知,可推得,即可得,問題得證.【詳解】(1)∵四邊形ABCD是菱形,∴,,∵,∴,∴,∵線段由線段繞點順時針旋轉得到,∴,在和中,,∴≌,∴;(2)∵四邊形ABCD是菱形,∴,,∴,∵,∴,由(1)可知,,∴,∴,∴.【點睛】本題考查了旋轉的性質、菱形的性質、全等三角形的判定與性質等,熟練掌握和應用相關的性質與定理是解題的關鍵.19、(1)L1表示汽車B到甲地的距離與行駛時間的關系;(2)汽車B的速度是1.5千米/分;(3)s1=﹣1.5t+330,s2=t;(4)2小時后,兩車相距30千米;(5)行駛132分鐘,A、B兩車相遇.【解析】試題分析:(1)直接根據函數(shù)圖象的走向和題意可知L1表示汽車B到甲地的距離與行駛時間的關系;
(2)由L1上60分鐘處點的坐標可知路程和時間,從而求得速度;
(3)先分別設出函數(shù),利用函數(shù)圖象上的已知點,使用待定系數(shù)法可求得函數(shù)解析式;
(4)結合(3)中函數(shù)圖象求得時s的值,做差即可求解;
(5)求出函數(shù)圖象的交點坐標即可求解.試題解析:(1)函數(shù)圖形可知汽車B是由乙地開往甲地,故L1表示汽車B到甲地的距離與行駛時間的關系;(2)(330﹣240)÷60=1.5(千米/分);(3)設L1為把點(0,330),(60,240)代入得所以設L2為把點(60,60)代入得所以(4)當時,330﹣150﹣120=60(千米);所以2小時后,兩車相距60千米;(5)當時,解得即行駛132分鐘,A、B兩車相遇.20、(1)y=x2+2x﹣3;(2)點P的坐標為(2,21)或(﹣2,5);(3).【解析】
(1)先根據點A坐標及對稱軸得出點B坐標,再利用待定系數(shù)法求解可得;(2)利用(1)得到的解析式,可設點P的坐標為(a,a2+2a﹣3),則點P到OC的距離為|a|.然后依據S△POC=2S△BOC列出關于a的方程,從而可求得a的值,于是可求得點P的坐標;(3)先求得直線AC的解析式,設點D的坐標為(x,x2+2x﹣3),則點Q的坐標為(x,﹣x﹣3),然后可得到QD與x的函數(shù)的關系,最后利用配方法求得QD的最大值即可.【詳解】解:(1)∵拋物線與x軸的交點A(﹣3,0),對稱軸為直線x=﹣1,∴拋物線與x軸的交點B的坐標為(1,0),設拋物線解析式為y=a(x+3)(x﹣1),將點C(0,﹣3)代入,得:﹣3a=﹣3,解得a=1,則拋物線解析式為y=(x+3)(x﹣1)=x2+2x﹣3;(2)設點P的坐標為(a,a2+2a﹣3),則點P到OC的距離為|a|.∵S△POC=2S△BOC,∴?OC?|a|=2×OC?OB,即×3×|a|=2××3×1,解得a=±2.當a=2時,點P的坐標為(2,21);當a=﹣2時,點P的坐標為(﹣2,5).∴點P的坐標為(2,21)或(﹣2,5).(3)如圖所示:設AC的解析式為y=kx﹣3,將點A的坐標代入得:﹣3k﹣3=0,解得k=﹣1,∴直線AC的解析式為y=﹣x﹣3.設點D的坐標為(x,x2+2x﹣3),則點Q的坐標為(x,﹣x﹣3).∴QD=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+﹣)=﹣(x+)2+,∴當x=﹣時,QD有最大值,QD的最大值為.【點睛】本題主要考查了二次函數(shù)綜合題,解題的關鍵是熟練掌握二次函數(shù)的性質和應用.21、(1)①證明見解析;②證明見解析;(2),證明見解析.【解析】
(1)①利用矩形的性質,結合已知條件可證△PMN≌△PDF,則可證得結論;②由勾股定理可求得DM=DP,利用①可求得MN=DF,則可證得結論;(2)過點P作PM1⊥PD,PM1交AD邊于點M1,則可證得△PM1N≌△PDF,則可證得M1N=DF,同(1)②的方法可證得結論.【詳解】解:(1)①∵四邊形ABCD是矩形,∴∠ADC=90°.又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;∵PM⊥PD,∠DMP=45°,∴DP=MP.∵PM⊥PD,PF⊥PN,∴∠MPN+∠NPD=∠NPD+∠DPF=90°,∴∠MPN=∠DPF.在△PMN和△PDF中,,∴△PMN≌△PDF(ASA),∴PN=PF,MN=DF;②∵PM⊥PD,DP=MP,∴DM2=DP2+MP2=2DP2,∴DM=DP.∵又∵DM=DN+MN,且由①可得MN=DF,∴DM=DN+DF,∴DF+DN=DP;(2).理由如下:過點P作PM1⊥PD,PM1交AD邊于點M1,如圖,∵四邊形ABCD是矩形,∴∠ADC=90°.又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;∵PM1⊥PD,∠DM1P=45°,∴DP=M1P,∴∠PDF=∠PM1N=135°,同(1)可知∠M1PN=∠DPF.在△PM1N和△PDF中,∴△PM1N≌△PDF(ASA),∴M1N=DF,由勾股定理可得:=DP2+M1P2=2DP2,∴DM1DP.∵DM1=DN﹣M1N,M1N=DF,∴DM1=DN﹣DF,∴DN﹣DF=DP.【點睛】本題為四邊形的綜合應用,涉及矩形的性質、等腰直角三角形的性質、全等三角形的判定和性質、勾股定理等知識.在每個問題中,構造全等三角形是解題的關鍵,注意勾股定理的應用.本題考查了知識點較多,綜合性較強,難度適中.22、直角三角形斜邊上的中線等于斜邊的一半;1.【解析】
根據直角三角形斜邊上的中線等于斜邊的一半和等邊三角形的判定與性質填空即可.【詳解】證明:如圖,作Rt△ABC的斜邊上的中線CD,則CD=AB=AD(直角三角形斜邊上的中線等于斜邊的一半),∵AC=AB,∴AC=CD=AD即△ACD是等邊三角形,∴∠A=1°,∴∠B=90°﹣∠A=30°.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質,等邊三角形的判定與性質,重點在于邏輯思維能力的訓練.23、(1)證明見解析;(2)證明見解析;(3)∠EAF=m°.【解析】分析:(1)如圖1中,欲證明BD=EC,只要證明△DAB≌△EAC即可;(2)如圖2中,延長DC到E,使得DB=DE.首先證明△BDE是等邊三角形,再證明△ABD≌△CBE即可解決問題;(3)如圖3中,將AE繞點E逆時針旋轉m°得到AG,連接CG、EG、EF、FG,延長ED到M,使得DM=DE,連接FM、CM.想辦法證明△AFE≌△AFG,可得∠EAF=∠FAG=m°.詳(1)證明:如圖1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC,∴BD=EC.(2)證明:如圖2中,延長DC到E,使得DB=DE.∵DB=DE,∠BDC=60°,∴△BDE是等邊三角形,∴∠BD=BE,∠DBE=∠ABC=60°,∴∠ABD=∠CBE,∵AB=BC,∴△ABD≌△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度密封膠產品環(huán)保標準制定與執(zhí)行合同3篇
- 2025年度智能溫室大棚設施買賣合同范本4篇
- 2025年度園林除草項目承包合同范本4篇
- 2025年度現(xiàn)代農業(yè)示范園區(qū)開發(fā)承包經營合同范本3篇
- 2025年度智能穿戴設備開發(fā)框架授權許可合同3篇
- 2024面粉市場推廣與品牌代言合同3篇
- 2024版設備維修及日常保養(yǎng)合同合同一
- 2025年度床墊行業(yè)展會參展與合作協(xié)議3篇
- 2025年度玻璃行業(yè)研發(fā)成果轉化銷售合同3篇
- 2025年度新型城鎮(zhèn)化建設項目承包合同終止協(xié)議3篇
- 2025年湖北武漢工程大學招聘6人歷年高頻重點提升(共500題)附帶答案詳解
- 【數(shù) 學】2024-2025學年北師大版數(shù)學七年級上冊期末能力提升卷
- GB/T 26846-2024電動自行車用電動機和控制器的引出線及接插件
- 遼寧省沈陽市皇姑區(qū)2024-2025學年九年級上學期期末考試語文試題(含答案)
- 2024年國家工作人員學法用法考試題庫及參考答案
- 妊娠咳嗽的臨床特征
- 國家公務員考試(面試)試題及解答參考(2024年)
- 《阻燃材料與技術》課件 第6講 阻燃纖維及織物
- 2024年金融理財-擔保公司考試近5年真題附答案
- 泰山產業(yè)領軍人才申報書
- 高中語文古代文學課件:先秦文學
評論
0/150
提交評論