




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖1,將三角板的直角頂點放在直角尺的一邊上,D1=30°,D2=50°,則D3的度數為A.80° B.50° C.30° D.20°2.下列計算正確的是()A.a2?a3=a6 B.(a2)3=a6 C.a6﹣a2=a4 D.a5+a5=a103.若點A(a,b),B(,c)都在反比例函數y=的圖象上,且﹣1<c<0,則一次函數y=(b﹣c)x+ac的大致圖象是()A. B.C. D.4.如圖所示,△ABC為等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG邊長也為2,且AC與DE在同一直線上,△ABC從C點與D點重合開始,沿直線DE向右平移,直到點A與點E重合為止,設CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數關系的圖象大致是()A. B.C. D.5.已知拋物線y=ax2+bx+c與x軸交于點A和點B,頂點為P,若△ABP組成的三角形恰為等腰直角三角形,則b2﹣4ac的值為()A.1 B.4 C.8 D.126.已知:a、b是不等于0的實數,2a=3b,那么下列等式中正確的是()A.ab=23 B.a7.在下面的四個幾何體中,左視圖與主視圖不相同的幾何體是()A. B. C. D.8.估計﹣1的值在()A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間9.已知關于x,y的二元一次方程組的解為,則a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣310.如圖,實數﹣3、x、3、y在數軸上的對應點分別為M、N、P、Q,這四個數中絕對值最小的數對應的點是()A.點M B.點N C.點P D.點Q二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,O是矩形ABCD的對角線AC的中點,M是AD的中點,若AB=5,AD=12,則四邊形ABOM的周長為.12.如圖,一次函數y1=kx+b的圖象與反比例函數y2=(x<0)的圖象相交于點A和點B.當y1>y2>0時,x的取值范圍是_____.13.⊙O的半徑為10cm,AB,CD是⊙O的兩條弦,且AB∥CD,AB=16cm,CD=12cm.則AB與CD之間的距離是cm.14.某自然保護區(qū)為估計該地區(qū)一種珍稀鳥類的數量,先捕捉了20只,給它們做上標記后放回,過一段時間待它們完全混合于同類后又捕捉了20只,發(fā)現(xiàn)其中有4只帶有標記,從而估計該地區(qū)此種鳥類的數量大約有______只15.中國古代的數學專著《九章算術》有方程組問題“五只雀,六只燕,共重1斤(等于16兩),雀重燕輕.互換其中一只,恰好一樣重.”設每只雀、燕的重量各為x兩,y兩,則根據題意,可得方程組為___.16.某物流倉儲公司用如圖A,B兩種型號的機器人搬運物品,已知A型機器人比B型機器人每小時多搬運20kg,A型機器人搬運1000kg所用時間與B型機器人搬運800kg所用時間相等,設B型機器人每小時搬運xkg物品,列出關于x的方程為_____.三、解答題(共8題,共72分)17.(8分)先化簡,然后從﹣<x<的范圍內選取一個合適的整數作為x的值代入求值.18.(8分)石獅泰禾某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節(jié),商店決定采取適當的降價措施,以擴大銷售量,增加利潤,經市場調查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件.設每件童裝降價x元時,每天可銷售______件,每件盈利______元;(用x的代數式表示)每件童裝降價多少元時,平均每天贏利1200元.要想平均每天贏利2000元,可能嗎?請說明理由.19.(8分)計算:解方程:20.(8分)先化簡,再求值:,其中x=﹣1.21.(8分)已知:如圖,在半徑為2的扇形中,°,點C在半徑OB上,AC的垂直平分線交OA于點D,交弧AB于點E,聯(lián)結.(1)若C是半徑OB中點,求的正弦值;(2)若E是弧AB的中點,求證:;(3)聯(lián)結CE,當△DCE是以CD為腰的等腰三角形時,求CD的長.22.(10分)如圖,某人在山坡坡腳C處測得一座建筑物頂點A的仰角為63.4°,沿山坡向上走到P處再測得該建筑物頂點A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:1.(1)求此人所在位置點P的鉛直高度.(結果精確到0.1米)(2)求此人從所在位置點P走到建筑物底部B點的路程(結果精確到0.1米)(測傾器的高度忽略不計,參考數據:tan53°≈,tan63.4°≈2)23.(12分)已知2是關于x的方程x2﹣2mx+3m=0的一個根,且這個方程的兩個根恰好是等腰△ABC的兩條邊長,則△ABC的周長為_____.24.科技改變生活,手機導航極大方便了人們的出行,如圖,小明一家自駕到古鎮(zhèn)C游玩,到達A地后,導航顯示車輛應沿北偏西55°方向行駛4千米至B地,再沿北偏東35°方向行駛一段距離到達古鎮(zhèn)C,小明發(fā)現(xiàn)古鎮(zhèn)C恰好在A地的正北方向,求B、C兩地的距離(結果保留整數)(參考數據:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題分析:根據平行線的性質,得∠4=∠2=50°,再根據三角形的外角的性質∠3=∠4-∠1=50°-30°=20°.故答案選D.考點:平行線的性質;三角形的外角的性質.2、B【解析】
根據同底數冪乘法、冪的乘方的運算性質計算后利用排除法求解.【詳解】A、a2?a3=a5,錯誤;B、(a2)3=a6,正確;C、不是同類項,不能合并,錯誤;D、a5+a5=2a5,錯誤;故選B.【點睛】本題綜合考查了整式運算的多個考點,包括同底數冪的乘法、冪的乘方、合并同類項,需熟練掌握且區(qū)分清楚,才不容易出錯.3、D【解析】
將,代入,得,,然后分析與的正負,即可得到的大致圖象.【詳解】將,代入,得,,即,.∴.∵,∴,∴.即與異號.∴.又∵,故選D.【點睛】本題考查了反比例函數圖像上點的坐標特征,一次函數的圖像與性質,得出與的正負是解答本題的關鍵.4、A【解析】
此題可分為兩段求解,即C從D點運動到E點和A從D點運動到E點,列出面積隨動點變化的函數關系式即可.【詳解】解:設CD的長為與正方形DEFG重合部分圖中陰影部分的面積為當C從D點運動到E點時,即時,.當A從D點運動到E點時,即時,,與x之間的函數關系由函數關系式可看出A中的函數圖象與所求的分段函數對應.故選A.【點睛】本題考查的動點變化過程中面積的變化關系,重點是列出函數關系式,但需注意自變量的取值范圍.5、B【解析】
設拋物線與x軸的兩交點A、B坐標分別為(x1,0),(x2,0),利用二次函數的性質得到P(-,),利用x1、x2為方程ax2+bx+c=0的兩根得到x1+x2=-,x1?x2=,則利用完全平方公式變形得到AB=|x1-x2|=,接著根據等腰直角三角形的性質得到||=?,然后進行化簡可得到b2-1ac的值.【詳解】設拋物線與x軸的兩交點A、B坐標分別為(x1,0),(x2,0),頂點P的坐標為(-,),則x1、x2為方程ax2+bx+c=0的兩根,∴x1+x2=-,x1?x2=,∴AB=|x1-x2|====,∵△ABP組成的三角形恰為等腰直角三角形,
∴||=?,=,∴b2-1ac=1.故選B.【點睛】本題考查了拋物線與x軸的交點:把求二次函數y=ax2+bx+c(a,b,c是常數,a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程.也考查了二次函數的性質和等腰直角三角形的性質.6、B【解析】∵2a=3b,∴ab=3故選B.7、B【解析】
由幾何體的三視圖知識可知,主視圖、左視圖是分別從物體正面、左面看所得到的圖形,細心觀察即可求解.【詳解】A、正方體的左視圖與主視圖都是正方形,故A選項不合題意;B、長方體的左視圖與主視圖都是矩形,但是矩形的長寬不一樣,故B選項與題意相符;C、球的左視圖與主視圖都是圓,故C選項不合題意;D、圓錐左視圖與主視圖都是等腰三角形,故D選項不合題意;故選B.【點睛】本題主要考查了幾何題的三視圖,解題關鍵是能正確畫出幾何體的三視圖.8、B【解析】
根據,可得答案.【詳解】解:∵,∴,∴∴﹣1的值在2和3之間.故選B.【點睛】本題考查了估算無理數的大小,先確定的大小,在確定答案的范圍.9、B【解析】
把代入方程組得:,解得:,所以a?2b=?2×()=2.故選B.10、D【解析】∵實數-3,x,3,y在數軸上的對應點分別為M、N、P、Q,
∴原點在點M與N之間,
∴這四個數中絕對值最大的數對應的點是點Q.
故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】
∵AB=5,AD=12,∴根據矩形的性質和勾股定理,得AC=13.∵BO為Rt△ABC斜邊上的中線∴BO=6.5∵O是AC的中點,M是AD的中點,∴OM是△ACD的中位線∴OM=2.5∴四邊形ABOM的周長為:6.5+2.5+6+5=1故答案為112、-2<x<-0.5【解析】
根據圖象可直接得到y(tǒng)1>y2>0時x的取值范圍.【詳解】根據圖象得:當y1>y2>0時,x的取值范圍是﹣2<x<﹣0.5,故答案為﹣2<x<﹣0.5.【點睛】本題考查了反比例函數與一次函數的交點問題,熟悉待定系數法以及理解函數圖象與不等式的關系是解題的關鍵.13、2或14【解析】
分兩種情況進行討論:①弦AB和CD在圓心同側;②弦AB和CD在圓心異側;作出半徑和弦心距,利用勾股定理和垂徑定理求解即可.【詳解】①當弦AB和CD在圓心同側時,如圖,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF?OE=2cm;②當弦AB和CD在圓心異側時,如圖,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB與CD之間的距離為14cm或2cm.故答案為:2或14.14、1【解析】
求出樣本中有標記的所占的百分比,再用樣本容量除以百分比即可解答.【詳解】解:
只.
故答案為:1.【點睛】本題考查的是通過樣本去估計總體,總體百分比約等于樣本百分比.15、【解析】設每只雀、燕的重量各為x兩,y兩,由題意得:故答案是:或.16、【解析】
設B型機器人每小時搬運x
kg物品,則A型機器人每小時搬運(x+20)kg物品,根據“A型機器人搬運1000kg所用時間與B型機器人搬運800kg所用時間相等”可列方程.【詳解】設B型機器人每小時搬運x
kg物品,則A型機器人每小時搬運(x+20)kg物品,根據題意可得,故答案為.【點睛】本題考查了由實際問題抽象出分式方程,解題的關鍵是根據數量關系列出關于x的分式方程.本題屬于基礎題,難度不大,解決該題型題目時,根據數量關系列出方程是關鍵.三、解答題(共8題,共72分)17、【解析】
根據分式的減法和除法可以化簡題目中的式子,然后從﹣<x<的范圍內選取一個使得原分式有意義的整數作為x的值代入即可解答本題.【詳解】解:÷(﹣x+1)====,當x=﹣2時,原式=.【點睛】本題考查分式的化簡求值、估算無理數的大小,解答本題的關鍵是明確分式化簡求值的方法.18、(1)(20+2x),(40﹣x);(2)每件童裝降價20元或10元,平均每天贏利1200元;(3)不可能做到平均每天盈利2000元.【解析】
(1)、根據銷售量=原銷售量+因價格下降而增加的數量;每件利潤=原售價-進價-降價,列式即可;(2)、根據總利潤=單件利潤×數量,列出方程即可;(3)、根據(2)中的相關關系方程,判斷方程是否有實數根即可.【詳解】(1)、設每件童裝降價x元時,每天可銷售20+2x件,每件盈利40-x元,
故答案為(20+2x),(40-x);(2)、根據題意可得:(20+2x)(40-x)=1200,解得:即每件童裝降價10元或20元時,平均每天盈利1200元;(3)、(20+2x)(40-x)=2000,,∵此方程無解,∴不可能盈利2000元.【點睛】本題主要考查的是一元二次方程的實際應用問題,屬于中等難度題型.解決這個問題的關鍵就是要根據題意列出方程.19、(1)10;(2)原方程無解.【解析】
(1)原式利用二次根式性質,零指數冪、負整數指數冪法則,以及特殊角的三角函數值計算即可求出值;(2)分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到分式方程的解.【詳解】(1)原式==10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,經檢驗:x=2是增根,原方程無解.【點睛】此題考查了解分式方程,利用了轉化的思想,解分式方程注意要檢驗.20、-2.【解析】
根據分式的運算法化解即可求出答案.【詳解】解:原式=,當x=﹣1時,原式=.【點睛】熟練運用分式的運算法則.21、(2);(2)詳見解析;(2)當是以CD為腰的等腰三角形時,CD的長為2或.【解析】
(2)先求出OCOB=2,設OD=x,得出CD=AD=OA﹣OD=2﹣x,根據勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出結論;(2)先判斷出,進而得出∠CBE=∠BCE,再判斷出△OBE∽△EBC,即可得出結論;(3)分兩種情況:①當CD=CE時,判斷出四邊形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;②當CD=DE時,判斷出∠DAE=∠DEA,再判斷出∠OAE=OEA,進而得出∠DEA=∠OEA,即:點D和點O重合,即可得出結論.【詳解】(2)∵C是半徑OB中點,∴OCOB=2.∵DE是AC的垂直平分線,∴AD=CD.設OD=x,∴CD=AD=OA﹣OD=2﹣x.在Rt△OCD中,根據勾股定理得:(2﹣x)2﹣x2=2,∴x,∴CD,∴sin∠OCD;(2)如圖2,連接AE,CE.∵DE是AC垂直平分線,∴AE=CE.∵E是弧AB的中點,∴,∴AE=BE,∴BE=CE,∴∠CBE=∠BCE.連接OE,∴OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠BCE=∠OEB.∵∠B=∠B,∴△OBE∽△EBC,∴,∴BE2=BO?BC;(3)△DCE是以CD為腰的等腰三角形,分兩種情況討論:①當CD=CE時.∵DE是AC的垂直平分線,∴AD=CD,AE=CE,∴AD=CD=CE=AE,∴四邊形ADCE是菱形,∴CE∥AD,∴∠OCE=90°,設菱形的邊長為a,∴OD=OA﹣AD=2﹣a.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,∴4﹣a2=a2﹣(2﹣a)2,∴a=﹣22(舍)或a=;∴CD=;②當CD=DE時.∵DE是AC垂直平分線,∴AD=CD,∴AD=DE,∴∠DAE=∠DEA.連接OE,∴OA=OE,∴∠OAE=∠OEA,∴∠DEA=∠OEA,∴點D和點O重合,此時,點C和點B重合,∴CD=2.綜上所述:當△DCE是以CD為腰的等腰三角形時,CD的長為2或.【點睛】本題是圓的綜合題,主要考查了勾股定理,線段垂直平分線的性質,菱形的判定和性質,銳角三角函數,作出輔助線是解答本題的關鍵.22、(1)此人所在P的鉛直高度約為14.3米;(2)從P到點B的路程約為17.1米【解析】分析:(1)過P作PF⊥BD于F,作PE⊥AB于E,設PF=5x,在Rt△ABC中求出AB,用含x的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的長.詳解:過P作PF⊥BD于F,作PE⊥AB于E,∵斜坡的坡度i=5:1,設PF=5x,CF=1x,∵四邊形BFPE為矩形,∴B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 法律服務在電商平臺的知識產權保護策略考核試卷
- 拍賣行品牌影響力考核試卷
- 風險評估與企業(yè)決策之間的聯(lián)系-試題及答案
- 2024年預算員團隊效率提升策略試題及答案
- 跨界創(chuàng)意營銷案例解析試題及答案
- 注會考試準備經驗分享及答案
- 公司總經理工作述職報告
- 初中家長會教師發(fā)言稿
- 餐飲行業(yè)互動儀式傳播和品牌資產的關系研究
- SARS-CoV-2原始株和奧密克戎BA.1株在小鼠模型中的致病特征比較
- 秸稈破壁菌酶研發(fā)項目可行性研究報告(范文參考)
- 2025新疆機場(集團)有限責任公司阿克蘇管理分公司第一季度招聘(75人)筆試參考題庫附帶答案詳解
- 全國計算機等級考試《三級信息安全技術》專用教材【考綱分析+考點精講+真題演練】
- 生豬屠宰獸醫(yī)衛(wèi)生檢驗人員理論考試題庫及答案
- 小學數學主題活動設計一年級《歡樂購物街》
- 體外循環(huán)意外時麻醉醫(yī)生該做些什么?
- (完整word版)男襯衫的制作工藝
- 家和萬事興-善人道
- 信用社(銀行)清產核資實施方案
- 幼兒園大班語言活動《熟能生巧》優(yōu)質課公開課教案比賽講課獲獎教案
- 九族五服表(九族五服圖)
評論
0/150
提交評論