大學(xué)物理 第1章_第1頁
大學(xué)物理 第1章_第2頁
大學(xué)物理 第1章_第3頁
大學(xué)物理 第1章_第4頁
大學(xué)物理 第1章_第5頁
已閱讀5頁,還剩47頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1.1.1參考系和坐標(biāo)系1.1位置矢量和位移1.1.2位置矢量1.1.3位移1.1.1參照系和坐標(biāo)系

宇宙中的所有物體都處于永不停止的運(yùn)動中,這就是運(yùn)動的絕對性.

為描述物體的運(yùn)動而選擇的標(biāo)準(zhǔn)物叫做參考系.1

參考系

選取的參考系不同,對物體運(yùn)動情況的描述不同,這就是運(yùn)動描述的相對性.2.坐標(biāo)系

在確定了參照系之后,為了確切地、定量地說明一個質(zhì)點(diǎn)相對于所選參照系的位置,就得在此參照系上固結(jié)一個坐標(biāo)系.

最常見的是笛卡兒直角坐標(biāo)系:

坐標(biāo)系:參考系的數(shù)學(xué)抽象.1.1.2位置矢量1

位置矢量*位矢的值為

確定質(zhì)點(diǎn)P某一時刻在坐標(biāo)系里的位置的物理量稱位置矢量,簡稱位矢.式中

、、

分別為x、y、z

方向的單位矢量.位矢的方向余弦PP2

運(yùn)動方程分量式從中消去參數(shù)得軌跡方程

1.1.3位移BABA

經(jīng)過時間間隔后,質(zhì)點(diǎn)位置矢量發(fā)生變化,把由始點(diǎn)A指向終點(diǎn)B

的有向線段稱為點(diǎn)A

到B的位移矢量,簡稱位移.

位移的大小為BA位移若質(zhì)點(diǎn)在三維空間中運(yùn)動4

路程():質(zhì)點(diǎn)實(shí)際運(yùn)動軌跡的長度.位移的物理意義A)

確切反映物體在空間位置的變化,與路徑無關(guān),只決定于質(zhì)點(diǎn)的始末位置.B)反映了運(yùn)動的矢量性和疊加性.注意位矢長度的變化位置矢量與位移及路程的異同位置矢量狀態(tài)量位移過程量位移矢量路程標(biāo)量位置矢量與位移都是矢量.位移與路程都是過程量;位移與過程無關(guān),路程與過程有關(guān)1.2.1速度1.2速度和加速度1.2.2加速度1.2.3例題分析1.2.1速度1

平均速度

時間內(nèi),質(zhì)點(diǎn)從點(diǎn)A運(yùn)動到點(diǎn)

B,其位移為時間內(nèi),質(zhì)點(diǎn)的平均速度平均速度與

同方向.平均速度大小或BA2

瞬時速度

當(dāng)質(zhì)點(diǎn)做曲線運(yùn)動時,質(zhì)點(diǎn)在某一點(diǎn)的速度方向就是沿該點(diǎn)曲線的切線方向

.

當(dāng)時平均速度的極限值叫做瞬時速度,簡稱速度當(dāng)時,瞬時速率:速度的大小稱為速率

若質(zhì)點(diǎn)在三維空間中運(yùn)動,其速度為討論

一運(yùn)動質(zhì)點(diǎn)在某瞬時位于矢徑的端點(diǎn)處,其速度大小為(A)(B)(B)(B)(C)(D)1)平均加速度B與同方向.(反映速度變化快慢的物理量)

單位時間內(nèi)的速度增量即平均加速度2)(瞬時)加速度1.2.2

加速度A加速度大小加速度加速度大小質(zhì)點(diǎn)作三維運(yùn)動時加速度為求導(dǎo)求導(dǎo)積分積分質(zhì)點(diǎn)運(yùn)動學(xué)兩類基本問題

一由質(zhì)點(diǎn)的運(yùn)動方程可以求得質(zhì)點(diǎn)在任一時刻的位矢、速度和加速度;

二已知質(zhì)點(diǎn)的加速度以及初始速度和初始位置,可求質(zhì)點(diǎn)速度及其運(yùn)動方程.運(yùn)動學(xué)的問題一般可以分為如下兩類。(1)已知運(yùn)動方程求速度、加速度的問題(在曲線運(yùn)動中還可以求運(yùn)動軌跡)。這類問題的求解是非常簡單的,根據(jù)在前面學(xué)習(xí)的公式,大家可以看到對運(yùn)動方程求時間的一階導(dǎo)數(shù)就得到速度,再求一次導(dǎo)數(shù)就得到加速度。再將具體的時間代入到速度和加速度公式中就可以求得任意時刻的速度和加速度。(2)已知加速度和初始條件求速度、運(yùn)動方程的問題(在曲線運(yùn)動中還可以求運(yùn)動軌跡)。這類問題在數(shù)學(xué)上看是典型的積分問題。積分常數(shù)的確定常常需要一些已知條件,即初始條件。初始條件是指問題給定時刻(通常是t為零的時刻,但也有t不為零的情況)質(zhì)點(diǎn)運(yùn)動的速度和位置(常用和來表示)。1.2.3例題分析(5)質(zhì)點(diǎn)的加速度.1.已知一質(zhì)點(diǎn)的運(yùn)動方程為其中x、y以m計,t以s計.求:(1)質(zhì)點(diǎn)的軌道方程并畫出其軌道曲線;(2)質(zhì)點(diǎn)的位置矢量;(3)質(zhì)點(diǎn)的速度;(4)前2s內(nèi)的平均速度;(2)質(zhì)點(diǎn)的位置矢量為(1)將質(zhì)點(diǎn)的運(yùn)動方程消去時間參數(shù)t,得質(zhì)點(diǎn)軌道方程為質(zhì)點(diǎn)的軌道曲線如圖所示(3)質(zhì)點(diǎn)的速度為(5)質(zhì)點(diǎn)的加速度為(4)前2s內(nèi)的平均速度為2.已知質(zhì)點(diǎn)在時刻位于點(diǎn)處,且以初速加速度運(yùn)動.試求:(1)質(zhì)點(diǎn)在任意時刻的速度;(2)質(zhì)點(diǎn)的運(yùn)動方程.解(1)由題意可知對其兩邊取積分有所以質(zhì)點(diǎn)在任意時刻的速度為(2)因為質(zhì)點(diǎn)的速度為對其兩邊取積分有故質(zhì)點(diǎn)的運(yùn)動方程為

例3

如圖所示,A、B兩物體由一長為的剛性細(xì)桿相連,A、B兩物體可在光滑軌道上滑行.如物體A以恒定的速率向左滑行,當(dāng)時,物體B的速率為多少?解

建立坐標(biāo)系如圖OAB為一直角三角形,剛性細(xì)桿的長度l為一常量ABl物體A

的速度物體B

的速度ABl兩邊求導(dǎo)得即沿

軸正向,當(dāng)時解(1)由題意可得速度分量分別為t=3s時速度為速度與軸之間的夾角

例4

設(shè)質(zhì)點(diǎn)的運(yùn)動方程為其中.式中各量的單位均為SI單位.求(1)t=3s

時的速度.(2)作出質(zhì)點(diǎn)的運(yùn)動軌跡圖.(2)運(yùn)動方程由運(yùn)動方程消去參數(shù)t

可得軌跡方程為0軌跡圖246-6-4-2246取值范圍?1.3.1直線運(yùn)動的定義1.3直線運(yùn)動1.3.2直線運(yùn)動的運(yùn)動學(xué)公式1.3.3例題分析1.3.1直線運(yùn)動的定義

質(zhì)點(diǎn)在一條確定的直線上的運(yùn)動稱之為直線運(yùn)動.質(zhì)點(diǎn)P的位置矢量為質(zhì)點(diǎn)P的位移為質(zhì)點(diǎn)P的速度為質(zhì)點(diǎn)P的加速度為矢量→標(biāo)量?1.3.2直線運(yùn)動的運(yùn)動學(xué)公式

假定質(zhì)點(diǎn)沿x軸作勻加速直線運(yùn)動,加速度a不隨時間變化,初位置為,初速度為,則

由直線運(yùn)動速度公式和位移公式消去時間參數(shù)可得例5、設(shè)某質(zhì)點(diǎn)沿x軸運(yùn)動,在t=0時的速度為v0,其加速度與速度的大小成正比而方向相反,比例系數(shù)為k(k>0),試求速度隨時間變化的關(guān)系式。解:由題意及加速度的定義式,可知

因而積分

得所以

速度的方向保持不變,但大小隨時間增大而減小,直到速度等于零為止(反向?)。

例題分析

一質(zhì)點(diǎn)沿x軸正向運(yùn)動時,它的加速度為,當(dāng)時,.試求質(zhì)點(diǎn)的速度和質(zhì)點(diǎn)的運(yùn)動方程.解1.4.1拋體運(yùn)動1.4平面曲線運(yùn)動1.4.2圓周運(yùn)動1.4.3例題分析獵人瞄準(zhǔn)樹上的猴子射擊,猴子一見火光就跳下(自由下落),卻不能避開子彈。平面極坐標(biāo)

A

設(shè)一質(zhì)點(diǎn)在平面內(nèi)運(yùn)動,某時刻它位于點(diǎn)A.矢徑與軸之間的夾角為.于是質(zhì)點(diǎn)在點(diǎn)A

的位置可由來確定.以

為坐標(biāo)的參考系為平面極坐標(biāo)系.它與直角坐標(biāo)系之間的變換關(guān)系為

以拋射點(diǎn)為坐標(biāo)原點(diǎn)建立坐標(biāo)系,水平方向為x軸,豎直方向為y軸。設(shè)拋出時刻t=0的速率為v0,拋射角為,加速度恒定任意時刻的速度為:則初速度分量分別為:Oyx1.4.1拋體運(yùn)動將上式積分,得到運(yùn)動方程的矢量形式為消去時間參數(shù)t,得到拋體運(yùn)動的軌跡方程為拋物線方程,故拋體運(yùn)動也叫拋物線運(yùn)動。

令y=0,得到拋物線與x軸的另一個交點(diǎn)坐標(biāo)H,它就是射程:

根據(jù)軌跡方程的極值條件,求得最大射高為:OyxHh

物體在空中飛行回落到拋出點(diǎn)高度時所用的時間為若,則,此時為平拋運(yùn)動;若,則,此時射程最大;若,則,此時為豎直拋體運(yùn)動.圓周運(yùn)動及其描述1.切向加速度和法向加速度

采用自然坐標(biāo)系,可以更好地理解加速度的物理意義。

在運(yùn)動軌道上任一點(diǎn)建立正交坐標(biāo)系,其一根坐標(biāo)軸沿軌道切線方向,正方向為運(yùn)動的前進(jìn)方向;一根沿軌道法線方向,正方向指向軌道內(nèi)凹的一側(cè)。切向單位矢量法向單位矢量顯然,軌跡上各點(diǎn)處,坐標(biāo)軸的方位不斷變化。1.1自然坐標(biāo)系

由于質(zhì)點(diǎn)速度的方向一定沿著軌跡的切向,因此,自然坐標(biāo)系中可將速度表示為:由加速度的定義有切向加速度和法向加速度1.2自然坐標(biāo)系下的加速度ddsPPd切向加速度和法向加速度以圓周運(yùn)動為例:

如圖,質(zhì)點(diǎn)在dt

時間內(nèi)經(jīng)歷弧長ds,對應(yīng)于角位移d

,切線的方向改變d角度。由矢量三角形法則可求出極限情況下切向單位矢的增量為即與P點(diǎn)的切向正交。因此P加速度即圓周運(yùn)動的加速度可分解為兩個正交分量:at稱切向加速度,表示質(zhì)點(diǎn)速率變化的快慢;an稱法向加速度,反映質(zhì)點(diǎn)速度方向變化的快慢。切向加速度和法向加速度

上述加速度表達(dá)式對任何平面曲線運(yùn)動都適用,但式中半徑R要用曲率半徑代替??傊?圓周運(yùn)動的加速度可歸納如下:3.圓周運(yùn)動的角量描述角位置:角量運(yùn)動方程角位移:平均角速度:角速度:角加速度:ROx線量與角量之間的關(guān)系

圓周運(yùn)動既可以用速度、加速度描述,也可以用角速度、角加速度描述,二者應(yīng)有一定的對應(yīng)關(guān)系。

+00+t+tBtA

圖示

一質(zhì)點(diǎn)作圓周運(yùn)動:在t時間內(nèi),質(zhì)點(diǎn)的角位移為,則A、B間的有向線段與弧將滿足下面的關(guān)系兩邊同除以t,得到速度與角速度之間的關(guān)系:線量與角量之間的關(guān)系

上式兩端對時間求導(dǎo),得到切向加速度與角加速度之間的關(guān)系:將速度與角速度的關(guān)系代入法向加速度的定義式,得到法向加速度與角速度之間的關(guān)系:線量與角量之間的關(guān)系法向加速度也叫向心加速度。角量與線量的關(guān)系(2)質(zhì)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論