版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.一艘輪船和一艘漁船同時沿各自的航向從港口O出發(fā),如圖所示,輪船從港口O沿北偏西20°的方向行60海里到達點M處,同一時刻漁船已航行到與港口O相距80海里的點N處,若M、N兩點相距100海里,則∠NOF的度數(shù)為()A.50° B.60° C.70° D.80°2.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B.C. D.3.如圖所示的幾何體,它的左視圖是()A. B. C. D.4.如圖,有一矩形紙片ABCD,AB=6,AD=8,將紙片折疊使AB落在AD邊上,折痕為AE,再將△ABE以BE為折痕向右折疊,AE與CD交于點F,則的值是()A.1 B. C. D.5.如圖,在平面直角坐標系中,直線y=k1x+2(k1≠0)與x軸交于點A,與y軸交于點B,與反比例函數(shù)y=在第二象限內的圖象交于點C,連接OC,若S△OBC=1,tan∠BOC=,則k2的值是()A.3 B.﹣ C.﹣3 D.﹣66.世界上最小的鳥是生活在古巴的吸蜜蜂鳥,它的質量約為0.056盎司.將0.056用科學記數(shù)法表示為()A.5.6×10﹣1 B.5.6×10﹣2 C.5.6×10﹣3 D.0.56×10﹣17.已知,如圖,AB是⊙O的直徑,點D,C在⊙O上,連接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度數(shù)是()A.75° B.65° C.60° D.50°8.某小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結果出現(xiàn)的頻率,繪制了如圖的折線圖,則符合這一結果的實驗最有可能的是()A.在“石頭、剪刀、布”的游戲中,小明隨機出的是“剪刀”B.擲一枚質地均勻的正六面體骰子,向上一面的點數(shù)是4C.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌,抽中紅桃D.拋擲一枚均勻的硬幣,前2次都正面朝上,第3次正面仍朝上9.如圖,O為直線AB上一點,OE平分∠BOC,OD⊥OE于點O,若∠BOC=80°,則∠AOD的度數(shù)是()A.70° B.50° C.40° D.35°10.不等式2x﹣1<1的解集在數(shù)軸上表示正確的是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.一艘輪船在小島A的北偏東60°方向距小島80海里的B處,沿正西方向航行3小時后到達小島的北偏西45°的C處,則該船行駛的速度為____________海里/時.12.不等式組的所有整數(shù)解的積為__________.13.如圖,把矩形紙片OABC放入平面直角坐標系中,使OA、OC分別落在x軸、y軸上,連接OB,將紙片OABC沿OB折疊,使點A落在點A′的位置,若OB=,tan∠BOC=,則點A′的坐標為_____.14.把拋物線y=x2﹣2x+3沿x軸向右平移2個單位,得到的拋物線解析式為.15.如圖,在△ABC中,點E,F(xiàn)分別是AC,BC的中點,若S四邊形ABFE=9,則S三角形EFC=________.16.已知一組數(shù)據4,x,5,y,7,9的平均數(shù)為6,眾數(shù)為5,則這組數(shù)據的中位數(shù)是_____.17.計算(﹣3)+(﹣9)的結果為______.三、解答題(共7小題,滿分69分)18.(10分)某網店銷售某款童裝,每件售價60元,每星期可賣300件,為了促銷,該網店決定降價銷售.市場調查反映:每降價1元,每星期可多賣30件.已知該款童裝每件成本價40元,設該款童裝每件售價x元,每星期的銷售量為y件.(1)求y與x之間的函數(shù)關系式;(2)當每件售價定為多少元時,每星期的銷售利潤最大,最大利潤是多少元?(3)若該網店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝多少件?19.(5分)如圖,∠AOB=90°,反比例函數(shù)y=﹣(x<0)的圖象過點A(﹣1,a),反比例函數(shù)y=(k>0,x>0)的圖象過點B,且AB∥x軸.(1)求a和k的值;(2)過點B作MN∥OA,交x軸于點M,交y軸于點N,交雙曲線y=于另一點C,求△OBC的面積.20.(8分)計算(﹣)﹣2﹣(π﹣3)0+|﹣2|+2sin60°;21.(10分)如圖,半圓D的直徑AB=4,線段OA=7,O為原點,點B在數(shù)軸的正半軸上運動,點B在數(shù)軸上所表示的數(shù)為m.當半圓D與數(shù)軸相切時,m=.半圓D與數(shù)軸有兩個公共點,設另一個公共點是C.①直接寫出m的取值范圍是.②當BC=2時,求△AOB與半圓D的公共部分的面積.當△AOB的內心、外心與某一個頂點在同一條直線上時,求tan∠AOB的值.22.(10分)根據圖中給出的信息,解答下列問題:放入一個小球水面升高,,放入一個大球水面升高;如果要使水面上升到50,應放入大球、小球各多少個?23.(12分)2019年8月.山西龍城將迎來全國第二屆青年運動會,盛會將至,整個城市已經進入了全力準備的狀態(tài).太職學院足球場作為一個重要比賽場館.占地面積約24300平方米.總建筑面積4790平方米,設有2476個座位,整體建筑簡潔大方,獨具特色.2018年3月15日該場館如期開工,某施工隊負責安裝該場館所有座位,在安裝完476個座位后,采用新技術,效率比原來提升了.結來比原計劃提前4天完成安裝任務.求原計劃每天安裝多少個座位.24.(14分)如圖,四邊形ABCD中,E點在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求證:△ABC與△DEC全等.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故選C.【點睛】本題考查直角三角形的判定,掌握方位角的定義及勾股定理逆定理是本題的解題關鍵.2、D【解析】
根據中心對稱圖形的定義旋轉180°后能夠與原圖形完全重合即是中心對稱圖形,以及軸對稱圖形的定義即可判斷出.【詳解】解:A.∵此圖形旋轉180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;B.∵此圖形旋轉180°后能與原圖形重合,∴此圖形是中心對稱圖形,不是軸對稱圖形,故此選項錯誤;C.∵此圖形旋轉180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;D.∵此圖形旋轉180°后能與原圖形重合,∴此圖形是中心對稱圖形,也是軸對稱圖形,故此選項正確.故選:D.【點睛】本題考查了中心對稱圖形與軸對稱圖形的定義,解題的關鍵是熟練的掌握中心對稱圖形與軸對稱圖形的定義.3、A【解析】
從左面觀察幾何體,能夠看到的線用實線,看不到的線用虛線.【詳解】從左邊看是等寬的上下兩個矩形,上邊的矩形小,下邊的矩形大,兩矩形的公共邊是虛線,
故選:A.【點睛】本題主要考查的是幾何體的三視圖,熟練掌握三視圖的畫法是解題的關鍵.4、C【解析】由題意知:AB=BE=6,BD=AD﹣AB=2(圖2中),AD=AB﹣BD=4(圖3中);∵CE∥AB,∴△ECF∽△ADF,得,即DF=2CF,所以CF:CD=1:3,故選C.【點睛】本題考查了矩形的性質,折疊問題,相似三角形的判定與性質等,準確識圖是解題的關鍵.5、C【解析】
如圖,作CH⊥y軸于H.通過解直角三角形求出點C坐標即可解決問題.【詳解】解:如圖,作CH⊥y軸于H.由題意B(0,2),∵∴CH=1,∵tan∠BOC=∴OH=3,∴C(﹣1,3),把點C(﹣1,3)代入,得到k2=﹣3,故選C.【點睛】本題考查反比例函數(shù)于一次函數(shù)的交點問題,銳角三角函數(shù)等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考??碱}型.6、B【解析】
0.056用科學記數(shù)法表示為:0.056=,故選B.7、B【解析】因為AB是⊙O的直徑,所以求得∠ADB=90°,進而求得∠B的度數(shù),又因為∠B=∠C,所以∠C的度數(shù)可求出.解:∵AB是⊙O的直徑,
∴∠ADB=90°.
∵∠BAD=25°,
∴∠B=65°,
∴∠C=∠B=65°(同弧所對的圓周角相等).
故選B.
8、B【解析】
根據統(tǒng)計圖可知,試驗結果在0.17附近波動,即其概率P≈0.17,計算四個選項的概率,約為0.17者即為正確答案.【詳解】解:在“石頭、剪刀、布”的游戲中,小明隨機出剪刀的概率是,故A選項錯誤,擲一枚質地均勻的正六面體骰子,向上一面的點數(shù)是4的概率是≈0.17,故B選項正確,一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌,抽中紅桃得概率是,故C選項錯誤,拋擲一枚均勻的硬幣,前2次都正面朝上,第3次正面仍朝上的概率是,故D選項錯誤,故選B.【點睛】此題考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.頻率=所求情況數(shù)與總情況數(shù)之比.熟練掌握概率公式是解題關鍵.9、B【解析】分析:由OE是∠BOC的平分線得∠COE=40°,由OD⊥OE得∠DOC=50°,從而可求出∠AOD的度數(shù).詳解:∵OE是∠BOC的平分線,∠BOC=80°,∴∠COE=∠BOC=×80°=40°,∵OD⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故選B.點睛:本題考查了角平分線的定義:從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線叫做這個角的平分線.性質:若OC是∠AOB的平分線則∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.10、D【解析】
先求出不等式的解集,再在數(shù)軸上表示出來即可.【詳解】移項得,2x<1+1,合并同類項得,2x<2,x的系數(shù)化為1得,x<1.在數(shù)軸上表示為:.故選D.【點睛】本題考查了解一元一次不等式,熟練掌握運算法則是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
設該船行駛的速度為x海里/時,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【詳解】如圖所示:該船行駛的速度為x海里/時,3小時后到達小島的北偏西45°的C處,由題意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°?60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即該船行駛的速度為海里/時;故答案為:.【點睛】本題考查的是解直角三角形,熟練掌握方向角是解題的關鍵.12、1【解析】
解:,解不等式①得:,解不等式②得:,∴不等式組的整數(shù)解為﹣1,1,1…51,所以所有整數(shù)解的積為1,故答案為1.【點睛】本題考查一元一次不等式組的整數(shù)解,準確計算是關鍵,難度不大.13、【解析】
如圖,作輔助線;根據題意首先求出AB、BC的長度;借助面積公式求出A′D、OD的長度,即可解決問題.【詳解】解:∵四邊形OABC是矩形,∴OA=BC,AB=OC,tan∠BOC==,∴AB=2OA,∵,OB=,∴OA=2,AB=2.∵OA′由OA翻折得到,∴OA′=OA=2.如圖,過點A′作A′D⊥x軸與點D;設A′D=a,OD=b;∵四邊形ABCO為矩形,∴∠OAB=∠OCB=90°;四邊形ABA′D為梯形;設AB=OC=a,BC=AO=b;∵OB=,tan∠BOC=,∴,解得:;由題意得:A′O=AO=2;△ABO≌△A′BO;由勾股定理得:x2+y2=2①,由面積公式得:xy+2××2×2=(x+2)×(y+2)②;聯(lián)立①②并解得:x=,y=.故答案為(?,)【點睛】該題以平面直角坐標系為載體,以翻折變換為方法構造而成;綜合考查了矩形的性質、三角函數(shù)的定義、勾股定理等幾何知識點;對分析問題解決問題的能力提出了較高的要求.14、y=(x﹣3)2+2【解析】
根據題意易得新拋物線的頂點,根據頂點式及平移前后二次項的系數(shù)不變可得新拋物線的解析式.【詳解】解:y=x2﹣2x+3=(x﹣1)2+2,其頂點坐標為(1,2).向右平移2個單位長度后的頂點坐標為(3,2),得到的拋物線的解析式是y=(x﹣3)2+2,故答案為:y=(x﹣3)2+2.【點睛】此題主要考查了次函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.15、3【解析】分析:由已知條件易得:EF∥AB,且EF:AB=1:2,從而可得△CEF∽△CAB,且相似比為1:2,設S△CEF=x,根據相似三角形的性質可得方程:,解此方程即可求得△EFC的面積.詳解:∵在△ABC中,點E,F(xiàn)分別是AC,BC的中點,∴EF是△ABC的中位線,∴EF∥AB,EF:AB=1:2,∴△CEF∽△CAB,∴S△CEF:S△CAB=1:4,設S△CEF=x,∵S△CAB=S△CEF+S四邊形ABFE,S四邊形ABFE=9,∴,解得:,經檢驗:是所列方程的解.故答案為:3.點睛:熟悉三角形的中位線定理和相似三角形的面積比等于相似比的平方是正確解答本題的關鍵.16、1.1【解析】【分析】先判斷出x,y中至少有一個是1,再用平均數(shù)求出x+y=11,即可得出結論.【詳解】∵一組數(shù)據4,x,1,y,7,9的眾數(shù)為1,∴x,y中至少有一個是1,∵一組數(shù)據4,x,1,y,7,9的平均數(shù)為6,∴(4+x+1+y+7+9)=6,∴x+y=11,∴x,y中一個是1,另一個是6,∴這組數(shù)為4,1,1,6,7,9,∴這組數(shù)據的中位數(shù)是×(1+6)=1.1,故答案為:1.1.【點睛】本題考查了眾數(shù)、平均數(shù)、中位數(shù)等概念,熟練掌握眾數(shù)、平均數(shù)、中位數(shù)的概念、判斷出x,y中至少有一個是1是解本題的關鍵.17、-1【解析】試題分析:利用同號兩數(shù)相加的法則計算即可得原式=﹣(3+9)=﹣1,故答案為﹣1.三、解答題(共7小題,滿分69分)18、(1)y=﹣30x+1;(2)每件售價定為55元時,每星期的銷售利潤最大,最大利潤2元;(3)該網店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝360件.【解析】
(1)每星期的銷售量等于原來的銷售量加上因降價而多銷售的銷售量,代入即可求解函數(shù)關系式;(2)根據利潤=銷售量(銷售單價-成本),建立二次函數(shù),用配方法求得最大值.(3)根據題意可列不等式,再取等將其轉化為一元二次方程并求解,根據每星期的銷售利潤所在拋物線開口向下求出滿足條件的x的取值范圍,再根據(1)中一元一次方程求得滿足條件的x的取值范圍內y的最小值即可.【詳解】(1)y=300+30(60﹣x)=﹣30x+1.(2)設每星期利潤為W元,W=(x﹣40)(﹣30x+1)=﹣30(x﹣55)2+2.∴x=55時,W最大值=2.∴每件售價定為55元時,每星期的銷售利潤最大,最大利潤2元.(3)由題意(x﹣40)(﹣30x+1)≥6480,解得52≤x≤58,當x=52時,銷售300+30×8=540,當x=58時,銷售300+30×2=360,∴該網店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝360件.【點睛】本題主要考查一次函數(shù)的應用和二次函數(shù)的應用,注意綜合運用所學知識解題.19、(1)a=2,k=8(2)=1.【解析】分析:(1)把A(-1,a)代入反比例函數(shù)得到A(-1,2),過A作AE⊥x軸于E,BF⊥x軸于F,根據相似三角形的性質得到B(4,2),于是得到k=4×2=8;
(2)求的直線AO的解析式為y=-2x,設直線MN的解析式為y=-2x+b,得到直線MN的解析式為y=-2x+10,解方程組得到C(1,8),于是得到結論.詳解:(1)∵反比例函數(shù)y=﹣(x<0)的圖象過點A(﹣1,a),∴a=﹣=2,∴A(﹣1,2),過A作AE⊥x軸于E,BF⊥⊥x軸于F,∴AE=2,OE=1,∵AB∥x軸,∴BF=2,∵∠AOB=90°,∴∠EAO+∠AOE=∠AOE+∠BOF=90°,∴∠EAO=∠BOF,∴△AEO∽△OFB,∴,∴OF=4,∴B(4,2),∴k=4×2=8;(2)∵直線OA過A(﹣1,2),∴直線AO的解析式為y=﹣2x,∵MN∥OA,∴設直線MN的解析式為y=﹣2x+b,∴2=﹣2×4+b,∴b=10,∴直線MN的解析式為y=﹣2x+10,∵直線MN交x軸于點M,交y軸于點N,∴M(5,0),N(0,10),解得,,∴C(1,8),∴△OBC的面積=S△OMN﹣S△OCN﹣S△OBM=5×10﹣×10×1﹣×5×2=1.點睛:本題考查了一次函數(shù)圖象上點的坐標特征,反比例函數(shù)與一次函數(shù)交點問題,相似三角形的判定和性質,求函數(shù)的解析式,三角形的面積的計算,正確的作出輔助線是解題的關鍵.20、1【解析】
原式利用零指數(shù)冪、負整數(shù)指數(shù)冪法則,絕對值的代數(shù)意義,以及特殊角的三角函數(shù)值計算即可得到結果.【詳解】原式=4-1+2-+=1.【點睛】此題考查了實數(shù)的運算,絕對值,零指數(shù)冪、負整數(shù)指數(shù)冪,以及特殊角的三角函數(shù)值,熟練掌握運算法則是解本題的關鍵.21、(1);(2)①;②△AOB與半圓D的公共部分的面積為;(3)tan∠AOB的值為或.【解析】
(1)根據題意由勾股定理即可解答(2)①根據題意可知半圓D與數(shù)軸相切時,只有一個公共點,和當O、A、B三點在數(shù)軸上時,求出兩種情況m的值即可②如圖,連接DC,得出△BCD為等邊三角形,可求出扇形ADC的面積,即可解答(3)根據題意如圖1,當OB=AB時,內心、外心與頂點B在同一條直線上,作AH⊥OB于點H,設BH=x,列出方程求解即可解答如圖2,當OB=OA時,內心、外心與頂點O在同一條直線上,作AH⊥OB于點H,設BH=x,列出方程求解即可解答【詳解】(1)當半圓與數(shù)軸相切時,AB⊥OB,由勾股定理得m=,故答案為.(2)①∵半圓D與數(shù)軸相切時,只有一個公共點,此時m=,當O、A、B三點在數(shù)軸上時,m=7+4=11,∴半圓D與數(shù)軸有兩個公共點時,m的取值范圍為.故答案為.②如圖,連接DC,當BC=2時,∵BC=CD=BD=2,∴△BCD為等邊三角形,∴∠BDC=60°,∴∠ADC=120°,∴扇形ADC的面積為,,∴△AOB與半圓D的公共部分的面積為;(3)如圖1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 市場調查類合同范例
- 工地鋼材合同范例
- 外墻保溫安裝合同范例
- 開發(fā)空間租賃合同范例
- 建筑原料供貨合同范例
- 衛(wèi)生監(jiān)督聘用合同范例
- 小區(qū)閑置租賃合同范例
- 與他人簽訂合作合同模板
- 外貿進進口合同范例
- 建筑公司用人合同范例
- 2024年保育員(中級)考試題庫(含答案)
- 廣東開放大學2024秋《形勢與政策(專)》形成性考核參考答案
- 九年級語文上冊其中知識點復習
- 2024年江蘇省泰州市保安員理論考試題庫及答案(完整)
- 糖尿病酮癥酸中毒
- 人教版(2024新版)七年級上冊數(shù)學期中模擬試卷(無答案)
- 企業(yè)法律合規(guī)與內部審計制度
- 2024年應急指示燈具:消防應急燈合作協(xié)議書
- 《喜迎建隊日 爭做好少年》主題班會教案3篇
- 2024-2025學年魯教版(五四制)八年級數(shù)學上冊期中測試題
- 湖北省武漢市部分學校2022-2023學年高一上學期期中聯(lián)考英語試卷
評論
0/150
提交評論