版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
項(xiàng)目三 基本體與立體表面的交線[學(xué)習(xí)目的]1.掌握基本體視圖的繪制方法。2.掌握截切體視圖的繪制方法。3.相交立體視圖的繪制方法。4.培養(yǎng)空間想像和空間構(gòu)思能力。[重點(diǎn)和難點(diǎn)]重點(diǎn):基本體和截切體視圖的繪制方法。難點(diǎn):截交線和相貫線的求解。任務(wù)任務(wù)1平面立體的投影任務(wù)2平面截切體的投影任務(wù)3回轉(zhuǎn)體的投影任務(wù)4回轉(zhuǎn)截切體的投影任務(wù)5相交立體的投影任務(wù)1平面立體的投影一.任務(wù)內(nèi)容已知正六棱柱在投影體系中的位置如圖3-1所示,請(qǐng)繪制出其三面投影。圖3-1任務(wù)圖二.任務(wù)目的1.學(xué)習(xí)平面立體的投影知識(shí)。2.學(xué)習(xí)平面的投影特點(diǎn)。三.任務(wù)知識(shí)1.平面立體的投影方法由于平面立體的表面是由若干個(gè)平面所圍成,因此,平面立體的投影可歸結(jié)為平面立體各表面的投影。2.平面立體的投影特點(diǎn)(1)平面立體的投影可歸納為平面立體上各表面的投影。(2)平面立體上各表面的投影,根據(jù)立體表面與投影面的相對(duì)位置關(guān)系,平面立體的投影結(jié)果如表3-1所示。(3)平面立體的同一表面上任意兩點(diǎn)間的連線為直線段,直線段在各投影面上的投影仍為直線段。表3-1立體表面的投影與投影面的關(guān)系立體表面與投影面的關(guān)系立體表面在投影面上的投影平行反映該表面的實(shí)形,為多邊形垂直積聚成一條直線傾斜原形的類似形,為多邊形3.平面立體的投影步驟(1)形體分析:分析平面立體的形狀特點(diǎn)及各面的投影特性。初步估測平面立體在各投影面的投影。(2)確定坐標(biāo)系及45o輔助線。(3)繪制視圖對(duì)稱中心線和基準(zhǔn)線。(4)繪制平面立體上有特點(diǎn)表面的投影(相對(duì)于投影面垂直或平行的面或線)。(5)繪制其它表面或棱線的投影。(6)分析各點(diǎn)、線、面的可見性。(7)檢查。注意:作圖熟練后輔助線可以省略不畫,以后相同不再重復(fù)說明。四.任務(wù)實(shí)施1.形體分析正六棱柱由頂面,底面和六個(gè)側(cè)棱面圍成。頂面,底面分別由六條底棱線圍成(正六邊形);每個(gè)側(cè)棱面又由兩條側(cè)棱線和兩條底棱線圍成(矩形)。為六棱柱編號(hào)如圖3-2所示。圖3-2六棱柱頂點(diǎn)編號(hào)2.任務(wù)實(shí)施過程(1)想像立體的各面投影,如表3-2所示。(2)想像立體平面投影,如圖3-3所示。(3)繪圖步驟繪圖過程如圖3-4所示。視圖投影圖說明俯視圖頂面和底面與水平面投影面平行,它們?cè)谒酵队懊嫔贤队爸睾锨曳从硨?shí)形,其它六個(gè)側(cè)面與水平投影面均垂直,在水平投影面上的投影積聚為直線。共3頁第1頁視圖投影圖說明主視圖頂面和底面與正立投影面垂直,因此,它們?cè)谡⑼队懊嫔贤队胺e聚為直線;其它六個(gè)側(cè)面中面BB1CC1和面EE1FF1與正立投影面平行,它們?cè)谡⑼队懊嫔系耐队胺从硨?shí)形;面AA1BB1、面CC1DD1、面DD1EE1、面FF1AA1與正立投影面相傾斜,在正立投影面上的投影為原形的類似形。
共3頁第2頁視圖投影圖說明左視圖頂面和底面與側(cè)立投影面垂直,因此,它們?cè)趥?cè)立投影面上投影積聚為直線;其它六個(gè)側(cè)面中面BB1CC1和面EE1FF1與側(cè)立投影面垂直,在側(cè)立投影面上的投影積聚為直線;面AA1BB1、面CC1DD1、面DD1EE1、面FF1AA1與側(cè)立投影面相傾斜,在側(cè)立投影面上的投影為原形的類似形。共3頁第3頁(a)各面投影(b)三視圖圖3-3六棱柱的投影(a)繪制基準(zhǔn)線(b)繪制正六棱柱底面的外接圓共4頁第1頁(c)繪制正六棱柱俯視圖投影-正六邊形(d)繪制主視圖共4頁第2頁(e)修整主視圖和俯視圖(f)繪制45o線和左視圖基準(zhǔn)線共4頁第3頁(g)修整左視圖(h)加深三視圖圖3-4六棱柱視圖繪制過程共4頁第4頁五.相關(guān)知識(shí)1.平面的投影在三投影面體系中,空間平面對(duì)投影面的相對(duì)位置有三種:投影面垂直面、投影面平行面和一般位置平面。前兩種統(tǒng)稱為特殊位置平面。下面分別介紹三種投影面的投影特性。(1)投影面垂直面(2)投影面平行面(3)一般位置平面(1)投影面垂直面投影面垂直面是指垂直于某一投影面,同時(shí)傾斜于其它兩投影面的平面。投影面垂直面有三種:鉛垂面(⊥H面);正垂面(⊥V面);側(cè)垂面(⊥W面)。平面與投影的夾角分別用α(與水平投影面的夾角)、β(與正立投影面的夾角)、γ(與側(cè)立投影面的夾角)表示。
表3-3列出了三種投影面垂直面的投影情況和特征。下面以鉛垂面為例,進(jìn)一步說明其投影特性。鉛垂面共3頁第1頁正垂面共3頁第2頁側(cè)垂面共3頁第3頁投影面垂直面的投影特性是:1)在所垂直的投影面上的投影積聚成一條直線;2)具有積聚性的投影與投影軸的夾角,反映該平面與相應(yīng)投影面的傾角;3)另外兩個(gè)投影面上的投影為原圖形的類似形。(2)投影面平行面投影面平行面是指平行于某一投影面,同時(shí)又垂直于另外兩投影面的平面。投影面平行面有三種:水平面(∥H面);正平面(∥V面);側(cè)平面(∥W面)。
表3-4列出了三種投影面平行面的投影情況和特征?,F(xiàn)以正平面為例,進(jìn)一步說明其投影特征。水平面共3頁第1頁正平面共3頁第2頁側(cè)平面共3頁第3頁投影面平行面的投影特性:1)在其所平行的投影面上的投影,反映平面圖形的實(shí)形;2)在另外兩個(gè)投影面上的投影均積聚成直線,且平行于相應(yīng)的投影軸。(3)一般位置平面對(duì)三個(gè)投影面都傾斜的平面,稱為一般位置平面。圖3-5所示△ABC是一般位置平面,由于它對(duì)三個(gè)面都傾斜,所以三個(gè)投影均不反映實(shí)形,是原圖形的類似形。同時(shí)各投影也不反映該平面對(duì)各投影面的傾角α、β、γ。由此得到一般位置平面的投影特性是:一般位置平面在三個(gè)投影面上的投影均為原圖形的類似形,且形狀縮小。圖3-5一般位置平面的投影六.思考與練習(xí)1.什么叫平面立體,平面立體有何特點(diǎn)?2.根據(jù)如圖3-6所示三棱錐想像其投影是什么樣的?提示:三棱錐放置時(shí)下表面與水平面平行,看不見的那個(gè)邊與正面平行。3.一立體的不完全投影如圖3-7所示,請(qǐng)根據(jù)已有的投影想像其空間結(jié)構(gòu),并補(bǔ)全其各面投影。圖3-6題2圖圖3-7題3圖任務(wù)2平面截切體的投影一.任務(wù)內(nèi)容一立體的不完全投影如圖3-7所示,請(qǐng)根據(jù)已有的投影想像其空間結(jié)構(gòu),補(bǔ)全其各面投影。圖3-7任務(wù)圖二.任務(wù)目的1.學(xué)習(xí)平面與平面立體交線的求解方法。2.學(xué)習(xí)點(diǎn)的投影和直線的投影。三.任務(wù)知識(shí)1.點(diǎn)的投影點(diǎn)是最基本的幾何元素,一切幾何形體都可看成是點(diǎn)的集合。點(diǎn)在三投影面體系中的投影規(guī)律如圖3-8所示。1)點(diǎn)的正面投影和水平投影的連線垂直于OX軸;2)點(diǎn)的正面投影和側(cè)面投影的連線垂直于OZ軸;3)點(diǎn)的水平投影和側(cè)面投影具有相同的Y坐標(biāo)。
(a)(b)(c)圖3-8點(diǎn)在三投影面體系中的投影(2)點(diǎn)的直角坐標(biāo)與三面投影規(guī)律1)空間點(diǎn)具有三個(gè)坐標(biāo)(x,y,z)。而該空間點(diǎn)的任一投影,均反映了該點(diǎn)的某兩個(gè)坐標(biāo)值,即a(xA,yA),a'(xA,zA),a″(yA,zA)。2)空間點(diǎn)的每一個(gè)坐標(biāo)值,反映了該點(diǎn)到某投影面的距離。由上可知,點(diǎn)A的任意兩個(gè)投影反映了點(diǎn)的三個(gè)坐標(biāo)值。有了點(diǎn)A的一組坐標(biāo)(xA,yA,zA),就能唯一確定該點(diǎn)的三面投影(a,a′,a″)。六.思考與練習(xí)(3)兩點(diǎn)間的相對(duì)位置兩點(diǎn)間的相對(duì)位置是指空間兩點(diǎn)之間上下、左右、前后的位置關(guān)系。根據(jù)兩點(diǎn)的坐標(biāo),可判斷空間兩點(diǎn)間的相對(duì)位置。兩點(diǎn)中,x坐標(biāo)值大的在左,;y坐標(biāo)值大的在前;z坐標(biāo)值大的在上。圖3-9(a)中,xA>xB,則點(diǎn)A在點(diǎn)B之左;yA>yB,則點(diǎn)A在點(diǎn)B之前;zA<zB,則點(diǎn)A在點(diǎn)B之下。即點(diǎn)A在點(diǎn)B之左、前、下方,如圖3-9(b)所示。(a)(b)圖3-9兩點(diǎn)間的相對(duì)位置(4)重影點(diǎn)屬于同一條投射線上的點(diǎn),在該投射線所垂直的投影面上的投影重合為一點(diǎn)??臻g的這些點(diǎn),稱為該投影面的重影點(diǎn)。在圖3-10中,空間兩點(diǎn)A、B屬于對(duì)H面的一條投射線,則點(diǎn)A、B稱為H面的重影點(diǎn),其水平投影重合為一點(diǎn)a(b)。同理,點(diǎn)C、D稱為對(duì)V面的重影點(diǎn),其正面投影重合為一點(diǎn)c′(d′)。(a)(b)圖3-10重影點(diǎn)二.任務(wù)目的2.直線的投影直線的投影一般仍為直線,特殊情況下,可積聚成一點(diǎn)。根據(jù)初等幾何知識(shí):兩點(diǎn)確定一條直線。我們用直線段的投影表示直線的投影,即作出直線段上兩端點(diǎn)的投影,則兩點(diǎn)的同面投影連線為直線的投影,如圖3-11所示。另外,已知直線上一點(diǎn)的投影和該直線的方向,也可畫出該直線的投影。(a)(b)(c)圖3-11直線的投影3.截交線(1)截交線的概念平面與立體相交,可設(shè)想為立體被平面所截,這個(gè)平面稱為截平面;截平面與立體表面的交線稱為截交線;截交線所圍成的封閉區(qū)域稱為截?cái)嗝妗H鐖D3-12所示。圖3-12截交線與截平面(2)截交線的性質(zhì)因截交線為平面與立體表面的交線,因此截交線具有以下性質(zhì):1)共有性截交線既屬于截平面又屬于立體表面,為截平面與立體表面的共有線。2)封閉性由于立體是由不同表面所包圍成的一個(gè)封閉空間,因此截交線是一個(gè)封閉的平面圖形。3)截交線的形狀截交線的形狀取決于被截立體的幾何性質(zhì)及其與截平面的相對(duì)位置。若平面與平面立體相交,其截交線為封閉的平面折線;若平面與曲面立體相交,其截交線為封閉的平面曲線或平面曲線和直線圍成的封閉的平面圖形。(3)求截交線的方法截交線是由那些既在截平面上,又在立體表面上的點(diǎn)集合而成。截交線的求法,可歸結(jié)為求截平面和立體表面的共有點(diǎn)的問題。求出這些共有點(diǎn)的各面投影后,按其可見性用實(shí)線或虛線將這些截交線上的點(diǎn)依次連成平面多邊形或平面曲線即為所求截交線的投影。求截交線的一般方法有:1)積聚性法已知截交線的兩個(gè)投影(截平面有積聚性的一個(gè)投影和被截切立體表面有積聚性的一個(gè)投影),根據(jù)共有點(diǎn)性質(zhì)和共有點(diǎn)所在表面的積聚性,求出截交線的另一個(gè)投影的方法稱為積聚性法。2)輔助線法過截交線上任一點(diǎn)在立體表面上作輔助線,通過輔助線的三面投影求截交線上該點(diǎn)的各面投影,進(jìn)而求出截交線投影的方法稱為輔助線法。3)輔助面法過截交線上的任意一點(diǎn)作輔助平面(一般為特殊面),而該輔助平面與截平面、被截立體表面必然相交,根據(jù)三面共點(diǎn)的幾何原理,求解截交線上點(diǎn)的投影的方法稱為輔助面法。(4)求截交線的一般步驟1)形體分析①分析組成立體表面形狀。②分析截平面和立體或回轉(zhuǎn)軸線相對(duì)位置。③初步判斷截交線的形狀。2)求截交線上各端點(diǎn)的投影。3)判別各點(diǎn)可見性,依次連接各端點(diǎn)。4)判別總體可見性,完成作圖。5)檢查。四.任務(wù)實(shí)施1.分析由圖3-7所示可以看出該立體原型是一個(gè)三棱錐,且該三棱錐被一個(gè)側(cè)垂面所截。截三棱錐的平面與三棱錐的三個(gè)表面相交必然會(huì)有三條交線,因此截?cái)嗝娴男螤钍且粋€(gè)三角形。截?cái)嗝嬷系牟糠直磺械?,下面的部分被保留。因截交線的形狀是一個(gè)三角形,因此,只需求出其三個(gè)端點(diǎn)即可。而三個(gè)端點(diǎn)是截平面與三條棱線的交點(diǎn)。2.任務(wù)實(shí)施過程(1)對(duì)該立體的各個(gè)頂點(diǎn)進(jìn)行標(biāo)記如圖3-13所示。(2)補(bǔ)畫各面投影。繪圖過程如表3-5所示。(a)立體圖(b)平面圖圖3-13頂點(diǎn)標(biāo)記1.求點(diǎn)D、E、F的正面與水平面投影共5頁第1頁2.連接截交線共5頁第2頁3.加深截交線共5頁第3頁4.加深其它圖線共5頁第4頁5.擦除多余圖線共5頁第5頁五.相關(guān)知識(shí)1.各種位置直線及其投影特性根據(jù)直線相對(duì)投影面的位置不同,直線可分為三類:投影面平行線;投影面垂直線;一般位置直線。前兩類統(tǒng)稱為特殊位置直線。 直線與其水平投影、正面投影、側(cè)面投影的夾角,分別稱為該直線對(duì)投影面H、V、W的傾角,分別用α、β、γ表示。(1)投影面平行線及其投影特性平行于某一個(gè)投影面,而與另外兩個(gè)投影面傾斜的直線稱為投影面平行線。它又分為三種:水平線(只∥H面);正平線(只∥V面);側(cè)平線(只∥W面)。下面以水平線為例介紹其投影特性。水平線水平線投影特性
1)水平線的正面投影平行OX軸,側(cè)面投影平行于OY軸,且均小于實(shí)長。因?yàn)锳B上各點(diǎn)與H面等距,即z坐標(biāo)相等,所以a′b′∥OX,a″b″∥OY。同時(shí),a′b′=AB·cos?<AB,a″b″=AB?cosγ<AB。2)水平線的水平投影反映直線實(shí)長。因?yàn)锳Bba是矩形,ab∥AB,所以ab=AB。3)水平線的水平投影與OX、OY軸的夾角分別反映該直線對(duì)V面、W面的傾角β、γ。因?yàn)锳B∥ab,a′b′∥OX,a″b″∥OY,所以ab與OX、OY的夾角即為AB對(duì)V面、W面的真實(shí)夾角β、γ。正平線側(cè)平線投影面平行線的投影特性為:1)在它所不平行的兩個(gè)投影面上的投影平行于相應(yīng)的投影軸,但不反映實(shí)長。2)在它所平行的投影面上的投影反映實(shí)長,且與投影軸的夾角,分別反映該直線對(duì)另兩個(gè)投影面的真實(shí)夾角。(2)投影面垂直線及其投影特性 垂直于某一個(gè)投影面,而與另外兩個(gè)投影面平行的直線,稱為投影面垂直線。它分為三種:鉛垂線(⊥H面);正垂線(⊥V面);側(cè)垂線(⊥W面) 下面以鉛垂線為例,介紹其投影特性:鉛垂線鉛垂線投影特性:1)由于AB垂直H面,所以A、B兩點(diǎn)對(duì)H面的投影積聚為一點(diǎn);2)AB垂直H面,必平行V、W面,所以AB在V、W面上的投影均反映實(shí)長;3)直線AB垂直H面,必垂直O(jiān)X、OY軸,所以a′b′⊥OX軸,a″b″⊥OYW軸。正垂線側(cè)垂線投影面垂直線的投影特性為:1)直線在所垂直的投影面上的投影積聚為一點(diǎn);2)另外兩個(gè)投影面上的投影垂直相應(yīng)的投影軸,且反映線段的實(shí)長。(3)一般位置直線 對(duì)三個(gè)投影面都傾斜的直線,稱為一般位置直線。圖3-14表示一般位置直線AB的三面投影。因?yàn)棣痢ⅵ?、γ均不等于零,所以ab=AB?cosα<AB,aˊbˊ=AB·cosβ<AB,a″b″=AB·cosγ<AB,一般位置直線的投影與相應(yīng)投影軸的夾角,都不反映該直線對(duì)投影面的傾角。
由上述可知,一般位置直線的投影特性為:三個(gè)投影都傾斜于投影軸,且不反映該直線的實(shí)長;投影與投影軸的三個(gè)夾角,都不反映直線對(duì)投影面的傾角。(a)(b)圖3-14一般位置直線2.點(diǎn)與直線的相對(duì)位置(1)點(diǎn)與直線的從屬關(guān)系點(diǎn)與直線的從屬關(guān)系有兩種情況,即點(diǎn)在直線上和點(diǎn)不在直線上。判斷點(diǎn)是否在直線上的定理: 定理3-1:若點(diǎn)在直線上,則點(diǎn)的各面投影必在直線的同面投影上。反之,若點(diǎn)的各面投影均在直線的同面投影上,則點(diǎn)必在該直線上。 如圖3-15所示,點(diǎn)C在直線AB上,其水平投影c必在ab上,正面投影c′必在a′b′上。D、E兩點(diǎn)都不在直線AB上。(a)(b)圖3-15點(diǎn)與直線的從屬關(guān)系 定理3-2:若點(diǎn)在直線上,則點(diǎn)分直線長度之比等于其投影分直線投影之比。反之,若點(diǎn)投影分直線各投影長度之比相等,則該點(diǎn)必此在直線上。 如圖3-16所示,因a′m′:m′b′≠am:mb,故點(diǎn)M不在AB上。 (a)(b)圖3-16判斷點(diǎn)是否在直線上(2)兩直線的相對(duì)位置 兩直線的相對(duì)置有三種情況:平行、相交、交叉。平行和相交的兩直線均屬于同一平面(共面)的直線,而交叉兩直線則不屬于同一平面(異面)的直線。下面分別討論它們的投影特性。1)兩直線平行 定理:若空間兩直線互相平行,則兩直線的各同面投影必定互相平行。反之,若兩直線的各同面投影互相平行,則兩直線在空間也必定互相平行。 定理:若兩直線平行,其長度之比等于各同面投影長度之比。 如圖3-17(a)(b)(c)所示(a)(a)共2頁第1頁(b)(c)圖3-17平行兩直線的投影共2頁第2頁2)兩直線相交 定理:若兩直線在空間相交,則它們的各同面投影必相交,且交點(diǎn)符合點(diǎn)的投影規(guī)律。反之,如果兩直線的各同面投影相交且交點(diǎn)符合點(diǎn)的投影規(guī)律,則此兩直線在空間必定相交。(如圖3-18所示) 定理:若兩條直線各面投影均相交,且交點(diǎn)分直線之比等于其投影分直線投影之比,則兩直線必相交。(如圖3-19所示)(a)(b)圖3-18相交兩直線的投影共2頁第1頁(a)(b)圖3-19判斷兩直線是否相交共2頁第2頁3)交叉兩直線 既不平行也不相交的兩直線,稱為交叉兩直線。
圖3-17(b)(c)和圖3-19所示直線AB與直線CD不相交又不平行,故兩者交叉。六.思考與練習(xí)1.平面截切體的截交線的形狀由什么決定?2.平面截切體上截交線的求解方法是什么?3.平面立體上任意兩點(diǎn)間的連線是什么線?4.直線如何分類,各類直線有何投影特性?5.如何判斷兩條直線之間的關(guān)系?6.一立體的不完全投影如圖3-20所示,請(qǐng)根據(jù)已有的投影想像其空間結(jié)構(gòu),并補(bǔ)全其各面投影。7.若將一個(gè)圓柱置于投影體系中,那么圓柱的投影如何表達(dá)?圖3-20任務(wù)圖任務(wù)3回轉(zhuǎn)體的投影一.任務(wù)內(nèi)容 如圖3-21所示,一圓柱底圓直徑為30,高度為40,請(qǐng)想像并繪制其三面投影。圖3-21任務(wù)圖二.任務(wù)目的1.學(xué)習(xí)有關(guān)回轉(zhuǎn)體的基礎(chǔ)知識(shí)。2.學(xué)習(xí)回轉(zhuǎn)體的投影特性。三.任務(wù)知識(shí)1.回轉(zhuǎn)體的概念(1)回轉(zhuǎn)面:由一條動(dòng)線繞著一條定直線回轉(zhuǎn)一周而形成的立體表面稱為回轉(zhuǎn)面。(2)回轉(zhuǎn)軸:保持不動(dòng)的定直線稱為回轉(zhuǎn)軸;(3)母線:繞回轉(zhuǎn)軸旋轉(zhuǎn)的動(dòng)線稱為母線;(4)素線:回轉(zhuǎn)面上任意位置的母線稱為素線;(5)緯圓:母線上任意點(diǎn)的旋轉(zhuǎn)軌跡是一個(gè)圓,稱為緯圓。(6)轉(zhuǎn)向輪廓線:從某一方向上觀察立體時(shí),立體可見部分與不可見部分的分界線稱為轉(zhuǎn)向輪廓線。(7)回轉(zhuǎn)體:回轉(zhuǎn)面或回轉(zhuǎn)面和平面構(gòu)成的立體稱為回轉(zhuǎn)體。如圓柱、圓錐、圓球、圓環(huán)等。 如圖3-22所示圖3-22回轉(zhuǎn)體2.回轉(zhuǎn)面的特點(diǎn)(1)垂直于回轉(zhuǎn)軸的平面與回轉(zhuǎn)面相交,其交線為一與回轉(zhuǎn)軸垂直的圓(緯圓)。(2)包含回轉(zhuǎn)軸的平面與回轉(zhuǎn)面相交,其交線與母線形狀相同。3.回轉(zhuǎn)體的投影方法 回轉(zhuǎn)體一般由回轉(zhuǎn)面(如圓球、圓環(huán)等)或回轉(zhuǎn)面與平面圍成(如圓柱、圓錐等)。因此,回轉(zhuǎn)體的投影也就歸結(jié)為回轉(zhuǎn)面的投影與平面的投影。而回轉(zhuǎn)面的投影一般用轉(zhuǎn)向輪廓線表達(dá)。平面的投影可用我們前面所學(xué)過的知識(shí)表達(dá)。四.任務(wù)實(shí)施1.任務(wù)分析 圓柱由頂面,底面和圓柱面圍成。圓柱面是由一直母線繞與之平行的軸線回轉(zhuǎn)而成。若按圖3-23所示位置放置,該圓柱各面分析如表3-8所示。表3-8圓柱表面分析表圓柱表面相對(duì)投影面位置正面投影水平投影側(cè)面投影頂面和底面水平面直線反映實(shí)形(圓)直線圓柱面鉛垂面矩形圓矩形圖3-23圓柱2.任務(wù)實(shí)施過程(1)確定坐標(biāo)系及45o輔助線。(2)繪制視圖對(duì)稱中心線和基準(zhǔn)線。(3)繪制水平投影。(4)繪制正面投影及側(cè)面投影。(5)分析可見性。(6)檢查。結(jié)果如圖3-24所示。圖3-24圓柱的投影五.相關(guān)知識(shí)1.其它回轉(zhuǎn)體的投影(1)圓錐的投影(2)圓球的投影(3)圓環(huán)的投影(a)三面投影原理圖(b)三視圖圖3-25圓錐的三面投影原理圖與三視圖(a)三面投影原理圖(b)三視圖圖3-26圓球的三面投影原理圖與三視圖圖3-27圓環(huán)三視圖2.回轉(zhuǎn)體表面上取點(diǎn) 回轉(zhuǎn)體表面取點(diǎn)的方法 首先,確定點(diǎn)所在的表面,并分析該表面的投影特性,若該表面垂直于某一投影面,則點(diǎn)在該投影面上的投影必落在該平面的積聚性投影上。即利用積聚性法求解點(diǎn)的投影,再利用點(diǎn)的投影規(guī)律求解點(diǎn)的其它投影面投影。若點(diǎn)所在的表面不具有積聚性,一般考慮使用。圓柱表面取點(diǎn)的步驟1)確定點(diǎn)所在的表面。2)分析點(diǎn)所在表面的投影特性。3)根據(jù)點(diǎn)所在平面的投影特性利用積聚性法、輔助直線法或輔助平面法進(jìn)行求解求解點(diǎn)的投影。4)根據(jù)點(diǎn)所處圓柱表面的位置,確定點(diǎn)的可見性。5)檢查。 【例3-1】已知圓柱上點(diǎn)A、B、C的正面投影,請(qǐng)做出它們的其它兩面投影。題目答案
(a)原題(b)作圖結(jié)果 【例3-2】如圖3-29所示,已知圓錐上點(diǎn)M、N、F、H的正面投影,請(qǐng)作出它們的其它兩面投影。題目答案(a)原題(b)答案 【例3-3】如圖3-30所示,已知圓球表面上點(diǎn)A、B、C的正面投影,請(qǐng)作點(diǎn)A、B、C的其它兩面投影。題目答案(a)原題(b)答案 【例3-4】如圖3-31所示,已知圓環(huán)上一點(diǎn)M的正面投影,請(qǐng)做出點(diǎn)M的其它兩面投影。題目答案(a)原題(b)答案六.思考與練習(xí)1.什么叫回轉(zhuǎn)體?回轉(zhuǎn)體有何特點(diǎn)?2.描述常見回轉(zhuǎn)體的投影?3.圓柱被平面截的投影有哪些可能?如何表達(dá)?4.圓錐被平面截的投影有哪些可能?如何表達(dá)?任務(wù)4回轉(zhuǎn)截切體的投影一.任務(wù)內(nèi)容 一立體的不完全投影如圖3-32所示,請(qǐng)根據(jù)已有的投影想像其空間結(jié)構(gòu),補(bǔ)全其各面投影。圖3-32任務(wù)圖二.任務(wù)目的1.學(xué)習(xí)回轉(zhuǎn)體截交線的求解方法。2.熟悉各種回轉(zhuǎn)體截交線的特點(diǎn)。三.任務(wù)知識(shí)1.回轉(zhuǎn)體表面上截交線的性質(zhì)(1)截交線上每一點(diǎn)均為截平面與回轉(zhuǎn)面的共有點(diǎn)。(2)截交線為封閉的平面曲線。2.回轉(zhuǎn)體表面上截交線的求解步驟(1)形體分析 1)分析組成立體表面形狀。 2)分析截平面和立體或回轉(zhuǎn)軸線相對(duì)位置。 3)初步判斷截交線的形狀。(2)求截交線上特殊點(diǎn)(頂點(diǎn),極限點(diǎn)等)和中間點(diǎn)的投影。(3)判別各點(diǎn)可見性,光滑連接。(4)判別總體可見性,完成作圖。(5)檢查。四.任務(wù)實(shí)施1.任務(wù)分析 由圖3-32可以看出,該立體是由一個(gè)正垂面截切圓柱而成。(1)正垂面相對(duì)于圓柱軸線傾斜且正垂面與圓柱的上下圓柱面沒有相交,故正垂面截切圓柱生成的截交線為一橢圓;截交線在正面的投影積聚成一條直線段。(2)因截交線上的點(diǎn)均在圓柱面上,而圓柱面在水平面的投影均積聚在圓柱在水平面的投影——圓上。因此截交線在水平面的投影為圓,并與圓柱在水平面的投影相重合。(3)因正垂面與側(cè)面相傾斜,因此截交線在側(cè)面的投影為它的類似形——橢圓。圓柱截切體的空間結(jié)構(gòu)如圖3-33所示。圖3-33圓柱空間結(jié)構(gòu)2.任務(wù)實(shí)施過程(1)繪制圓柱截切體在水平面的投影——圓。(2)標(biāo)注特殊點(diǎn):Ⅰ、Ⅲ、Ⅴ、Ⅶ在水平面的投影。這些點(diǎn)是截交線的最左、最前、最右、最后點(diǎn),并求出這些點(diǎn)其它兩面投影,如圖3-34所示。(3)標(biāo)注中間點(diǎn):Ⅱ、Ⅳ、Ⅵ、Ⅷ在在水平面的投影(注意:標(biāo)注時(shí),使四個(gè)中間點(diǎn)相互對(duì)稱,可以簡化操作)并求出這些點(diǎn)其它兩面投影,如圖3-34所示。(4)將這些點(diǎn)的側(cè)面投影依次光滑連接起來,即為所求的截交線的側(cè)面投影。結(jié)果如圖3-34所示。(5)繪制其它位置的投影線,如圖3-34所示。(6)檢查。五.相關(guān)知識(shí)圖3-34實(shí)施過程1.圓柱截交線 由于截平面與圓柱體的相對(duì)位置不同,截交線的形狀可分為以下幾種:(1)圓(2)矩形(3)橢圓(4)復(fù)合圖形截交線為圓共4頁第1頁截交線為矩形共4頁第2頁交線為橢圓共4頁第3頁交線為復(fù)合圖形共4頁第4頁2.圓錐的截交線(1)直線::截平面過錐頂;如表3-22(A)所示。(2)圓::截平面垂直于軸線;如表3-22(B)所示。(3)橢圓:截平面與軸線傾斜;如表3-22(C)所示。(4)拋物線;如表3-22(D)所示。(5)雙曲線一支;如表3-22(E)所示。直線共5頁第1頁圓共5頁第2頁橢圓共5頁第3頁拋物線共5頁第4頁雙曲線一支共5頁第5頁
【例3-5】如圖3-35(a)所示,求圓錐被正垂面截切后的截交體投影。(1)形體分析1)正垂面相對(duì)于圓錐軸線傾斜且與圓錐素線不平行,因此屬于圓錐截交線的第三種情況,但截平面又與圓錐的下表面相交,因此截交線為橢圓弧與直線段組成的封閉圖形,如表3-22C、D所示;截交線在正面的投影積聚成一條直線段。2)因正垂面與水平面相傾斜,因此截交線在水平面的投影為它的類似形——橢圓弧與直線組成的封閉圖形。3)因正垂面與側(cè)面相傾斜,因此截交線在側(cè)面的投影為它的類似形——橢圓弧與直線組成的封閉圖形。(2)作圖方法與步驟1)標(biāo)注特殊點(diǎn)Ⅰ、Ⅲ、Ⅴ、Ⅶ的正面的投影。這些點(diǎn)是截交線的最左、最前、最右、最后點(diǎn),求出這些點(diǎn)的其它兩面投影,如圖3-35(b)所示。2)標(biāo)注中間點(diǎn)Ⅱ、Ⅳ、Ⅵ、Ⅷ的正面的投影。求出這些點(diǎn)的其它兩面投影,如圖3-35(b)所示。3)將這些點(diǎn)的水平面投影和側(cè)面投影依次光滑連接起來,即為所求的截交線的水平面投影和側(cè)面投影,結(jié)果如圖3-35(b)所示。4)檢查。(a)原題(b)答案3.球的截交線 任何截平面與圓球相交,截交線都是圓;當(dāng)圓平行于投影面時(shí),圓在投影面上的投影是圓;當(dāng)圓傾斜于投影面時(shí),圓在投影面上的投影是橢圓;當(dāng)圓垂直于投影面時(shí),圓的投影為直線。圓或直線橢圓 【例3-6】如圖3-36(a)所示,求作圓球截切體的水平面投影和側(cè)面投影。(1)形體分析 截平面為正垂面,截交線是圓,且截交線在正投影面的投影積聚成一條直線;在水平面和側(cè)面的投影為橢圓。(a)原題(2)作圖方法與步驟1)標(biāo)注特殊點(diǎn)Ⅰ、Ⅲ、Ⅴ、Ⅶ的正面投影,并作出它們的其它兩面投影。2)標(biāo)注中間點(diǎn)Ⅱ、Ⅳ、Ⅵ、Ⅷ的正面投影,并作出它們的其它兩面投影。3)依次光滑連接各點(diǎn)的同面投影,即為所求的圓球截切體的截交線各面投影。4)作為圓球轉(zhuǎn)向輪廓線在各面的投影,并判斷它們的可見性。5)整理,去除圓球截切體投影中不存在的圖線。結(jié)果如圖3-36(b)所示。6)檢查。(b)答案4.組合體的截交線 當(dāng)平面與組合體相截時(shí),可分別討論該截平面與各基本體的截交線情況,再分析截平面截切各基本體相交處的情況。 【例3-7】請(qǐng)求出如圖3-37所示組合截切體的各面投影。(1)形體分析 1)截平面為水平面,截交線在正投影面和側(cè)立投影面上的投影積聚成直線;在水平面的投影為反映實(shí)形。 2)截平面與被截的圓柱體的軸線相平行,因此截平面與兩圓柱的截交線都是矩形。而截平面與兩圓柱的截交線在同一個(gè)平面上,因此應(yīng)去除平面中的一些多余線段。如圖3-38(b)所示。圖3-37同軸圓柱組合體的截交線(2)作圖方法與步驟1)作出組合體在水平面和側(cè)面的投影。2)標(biāo)注截交線上的轉(zhuǎn)折點(diǎn):Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ的正面投影,并作出它們的其它兩面投影。3)做出截交線在側(cè)面的投影——直線。4)依次連接各點(diǎn)在水平面的投影。5)整理,將點(diǎn)Ⅱ和點(diǎn)Ⅶ間的粗實(shí)線改為虛線(原因請(qǐng)讀者自行分析)。結(jié)果如圖3-38(a)所示。6)檢查。此處無線(a)平面圖(b)立體圖圖3-38同軸圓柱體截切體的三視圖
【例3-8】請(qǐng)求出如圖3-39所示組合體在水平面和側(cè)面的投影。1.形體分析 分析組合體表面的組成情況及表面特征。 (1)由圖3-39可以看出,該組合體是由圓錐和圓柱組合而成,且圓錐的底圓直徑與圓柱的底圓直徑相等。截切平面有兩個(gè),一個(gè)為水平面,另一個(gè)是側(cè)平面。 (2)水平截切面同時(shí)截切圓錐和圓柱,并與它們的軸線相平行,因此該截切面截得的截交線是由雙曲線和矩形組合而成的平面圖形。側(cè)平截切面截切圓柱的一部分,并與圓柱的軸線相垂直,因此該截切面截得的截交線為圓弧和直線組合而成的平面圖形。 (3)組合體的立體結(jié)構(gòu)如圖3-40(a)所示。圖3-39求組合體在水平面和側(cè)面的投影2.根據(jù)組合體表面的投影特性,確定截交線投影的求解方法。 由圖3-39可知,截切平面相對(duì)于投影面和組合體都處于特殊位置,當(dāng)與軸線垂直的平面截切組合體時(shí),所得到的截交線均為圓,因此應(yīng)采用輔助平面法求截交線上的點(diǎn)。3.做出截交線在側(cè)面的投影。 截交線在側(cè)面的投影是一條直線。由截平面的正面投影直接可以根據(jù)高平齊做出。4.標(biāo)出并求出截交線上特殊點(diǎn)與中間點(diǎn)的投影。 在主視圖上標(biāo)出特殊點(diǎn)Ⅰ、Ⅳ、Ⅴ、Ⅵ、Ⅶ和中間點(diǎn)Ⅱ、Ⅲ的正面投影。并利用輔助平面法求出這些點(diǎn)的其它兩面投影。5.判別各點(diǎn)可見性,進(jìn)行光滑連線。 因水平截交線與水平面平行,因此各點(diǎn)在水平面的投影均可見。光滑依次連接各點(diǎn)。得到截交線的水平投影。6.判別整體可見性,完成作圖。 因水平截交線均在同一個(gè)平面內(nèi),因此截交線圍成一個(gè)封閉的平面圖形,點(diǎn)Ⅳ、Ⅴ間不應(yīng)有直線。結(jié)果如圖3-40(b)所示。7.檢查。 注意圓錐與圓柱相交處原有交線,被截平面截切后點(diǎn)4、5間的部分被截平面截掉,但其他部分仍存在;而圓柱與圓錐的交線僅被截掉上面一部分,下面的部分仍然存在,因此點(diǎn)4、5間應(yīng)有虛線,如圖3-40(b)所示。有實(shí)線有虛線(a)立體圖(b)平面圖圖3-40同軸圓柱、圓錐組合體的截交線六.思考與練習(xí)1.圓柱的截交線有哪幾種情況?2.圓錐的截交線有哪幾種情況?3.圓球的截線有哪幾種情況?4.求解組合體的截交線時(shí)應(yīng)注意哪些問題?5.一立體的不完全投影如圖3-41所示,請(qǐng)根據(jù)已有的投影想像其空間結(jié)構(gòu),補(bǔ)全其各面投影。6.如圖3-42所示,兩圓柱正交,其三視圖如何表達(dá)?圖3-41練習(xí)圖任務(wù)5相交立體的投影一.任務(wù)內(nèi)容 兩圓柱正交,如圖3-42所示,請(qǐng)繪制其三視圖。圖3-42任務(wù)圖二.任務(wù)目的1.學(xué)習(xí)相貫線的有關(guān)概念。2.掌握相貫線的求解方法。三.任務(wù)知識(shí)1.相貫線的概念 工程制圖中將立體表面間的交線稱為相貫線,如圖3-43所示。工程上畫出相貫線的意義,在于用它來完整、清晰地表達(dá)出零件各部分的形狀和相對(duì)位置,為準(zhǔn)確讀圖和制造零件提供條件。工程上最常見的相貫線是回轉(zhuǎn)體表面間的交線。相貫線相貫線圖3-43相貫線2.相貫線的性質(zhì)(1)共有性:相貫線是兩相交立體表面的共有線,也是兩立體表面的分界線,則相貫線上的點(diǎn)為兩立體表面的共有點(diǎn)。(2)封閉性:由于立體結(jié)構(gòu)形狀具有一定的空間范圍,故相貫線一般為封閉的空間曲線,特殊的為平面曲線或平面多邊形。(3)相貫線的形狀:相貫線的形狀與相交兩立體的表面特征有關(guān),與相交兩立體間的相對(duì)位置有關(guān)。3.求相貫線投影的方法 求相貫線投影最常用的方法是表面取點(diǎn)法。表面取點(diǎn)法是指通過求取相貫線上各點(diǎn)的各面投影,并將各點(diǎn)同面投影依次光滑連接起來近似代替相貫線投影的方法。4.求相貫線的步驟(1)形體分析。分析相貫體表面的組成情況及表面特征,推斷相貫線的結(jié)構(gòu)形狀。(2)根據(jù)相貫體表面的投影特性,確定相貫線上點(diǎn)投影的求取方法。(3)標(biāo)出并求出相貫線上特殊點(diǎn)與中間點(diǎn)的各面投影。(4)判別各點(diǎn)可見性,進(jìn)行光滑連線。(5)判別整體可見性,完成作圖。(6)檢查。四.任務(wù)實(shí)施任務(wù)分析(1)大小圓柱軸線分別垂直于側(cè)面,水平面。交線為一條封閉的空間曲線。(2)由大小圓柱位置可知:大圓柱在側(cè)面,小圓柱在水平面投影具有積聚性,且都是積聚成圓。(3)因相貫線上的所有點(diǎn)都在小圓柱的表面上,而小圓柱表面上的所有點(diǎn)在水平面的投影都積聚在水平面的小圓上,因此,相貫線在水平上的投影就是水平面上的小圓。(4)因相貫線上的所有點(diǎn)都在大圓柱的表面上,而大圓柱表面上的所有點(diǎn)在側(cè)面的投影都積聚在側(cè)面的大圓上,因此,相貫線在側(cè)面上的投影就是側(cè)面大圓上的一段(大圓柱與小圓柱重合部分)。(5)因相貫線前后對(duì)稱,因此相貫線在正面的投影形狀如圖3-44所示。(6)根據(jù)本題的特點(diǎn),相貫線上的點(diǎn)的求解可以有兩種方法。一種方法為積聚性法,根據(jù)相貫線上所有點(diǎn)在水平面的投影均在小圓柱水平投影那個(gè)圓上,進(jìn)而求出這些點(diǎn)在其它兩面的投影;第二種方法為輔助面法,可以假想用一輔助水平面與兩圓柱均相交,因假想的是一水平面,因此該輔助平面與小圓柱的截交線是圓,而與大圓柱的交線是矩形,則矩形與圓的交點(diǎn)必為相貫線上的點(diǎn),根據(jù)這種原理來求解相貫線上點(diǎn)的投影。2.任務(wù)實(shí)施過程(1)作相貫線在水平面的投影——小圓,如圖3-44所示。(2)求取相貫線上的點(diǎn)的投影方法一:積聚性法方法二:輔助面法(3)作相貫線在側(cè)面上的投影,即為3"和7"之間的圓弧。(4)在正面依次光滑連接各點(diǎn),即為所求相貫線在正面的投影。因4'與6'、3'與7'、2'與8'是重影點(diǎn),因此,6'、7'、8'不可見,結(jié)果如圖3-44所示。(5)補(bǔ)全大小圓柱在水平面和側(cè)面的投影,結(jié)果如圖3-44所示。(6)檢查。方法一:積聚性法1)在相貫線的水平面上的投影——圓上取特殊點(diǎn)Ⅰ、Ⅲ、Ⅴ、Ⅶ并求出這些點(diǎn)在正面和側(cè)面上的投影,如圖3-44所示。2)在相貫線的水平面上的投影——圓上取中間點(diǎn)Ⅱ、Ⅳ、Ⅵ、Ⅷ,并求出這些點(diǎn)在正面和側(cè)面上的投影,如圖3-44所示。方法二:輔助面法1)在相貫線的水平面上的投影——圓上取特殊點(diǎn)Ⅰ、Ⅲ、Ⅴ、Ⅶ,并求出這些點(diǎn)在正面和側(cè)面上的投影。2)在正面投影上合適位置作輔助水平面PV與兩圓柱均相交,并求出該輔助平面與兩圓柱的截交線各面投影。兩截交線投影的交點(diǎn)Ⅱ、Ⅳ、Ⅵ、Ⅷ,即為相貫線上點(diǎn)的投影。 如圖3-44所示。圖3-44一般畫法求相貫線五.相關(guān)知識(shí)1.本任務(wù)的簡化畫法(1)分析: 該結(jié)構(gòu)為兩圓柱正交。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025土地承包合同終止范例
- 2025知識(shí)產(chǎn)權(quán)委托代理合同
- 2025地下車庫買賣合同書
- 2025貨樣買賣合同范本
- 二零二五年度文化產(chǎn)業(yè)公司股權(quán)受讓協(xié)議書范例3篇
- 二零二五年度特色農(nóng)產(chǎn)品種植基地土地永久轉(zhuǎn)讓協(xié)議
- 2025年度農(nóng)機(jī)購置與農(nóng)業(yè)人才培訓(xùn)合同3篇
- 二零二五年度物聯(lián)網(wǎng)技術(shù)合伙協(xié)議3篇
- 2025年度綜合交通樞紐停車場租賃與交通換乘服務(wù)合同3篇
- 2025年度高端裝備制造企業(yè)整體轉(zhuǎn)讓協(xié)議版3篇
- ODM合作方案教學(xué)課件
- 醫(yī)藥公司知識(shí)產(chǎn)權(quán)
- GB/T 1196-2023重熔用鋁錠
- Revit軟件學(xué)習(xí)實(shí)習(xí)報(bào)告
- 2024版國開電大本科《行政領(lǐng)導(dǎo)學(xué)》在線形考(形考任務(wù)一至四)試題及答案
- 風(fēng)電教育培訓(xùn)體系建設(shè)
- 《機(jī)械基礎(chǔ)(第七版)》期末考試復(fù)習(xí)題庫(含答案)
- 長龍山抽水蓄能電站500kv開關(guān)站工程環(huán)境影響報(bào)告書
- 2023年中考語文一輪復(fù)習(xí):童話示例與訓(xùn)練
- 自助畫室創(chuàng)業(yè)計(jì)劃書
- 生產(chǎn)車間薪酬管理制度
評(píng)論
0/150
提交評(píng)論