2023屆江西省宜春市豐城九中、高安二中、宜春一中、萬(wàn)載中學(xué)高三二診模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
2023屆江西省宜春市豐城九中、高安二中、宜春一中、萬(wàn)載中學(xué)高三二診模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
2023屆江西省宜春市豐城九中、高安二中、宜春一中、萬(wàn)載中學(xué)高三二診模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
2023屆江西省宜春市豐城九中、高安二中、宜春一中、萬(wàn)載中學(xué)高三二診模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
2023屆江西省宜春市豐城九中、高安二中、宜春一中、萬(wàn)載中學(xué)高三二診模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若實(shí)數(shù)x,y滿(mǎn)足條件,目標(biāo)函數(shù),則z的最大值為()A. B.1 C.2 D.02.一個(gè)頻率分布表(樣本容量為)不小心被損壞了一部分,只記得樣本中數(shù)據(jù)在上的頻率為,則估計(jì)樣本在、內(nèi)的數(shù)據(jù)個(gè)數(shù)共有()A. B. C. D.3.直線與拋物線C:交于A,B兩點(diǎn),直線,且l與C相切,切點(diǎn)為P,記的面積為S,則的最小值為A. B. C. D.4.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.5.已知表示兩條不同的直線,表示兩個(gè)不同的平面,且則“”是“”的()條件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要6.將函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍(縱坐標(biāo)不變),再向右平移個(gè)單位長(zhǎng)度,則所得函數(shù)圖象的一個(gè)對(duì)稱(chēng)中心為()A. B. C. D.7.某四棱錐的三視圖如圖所示,則該四棱錐的表面積為()A.8 B. C. D.8.函數(shù)的部分圖象如圖中實(shí)線所示,圖中圓與的圖象交于兩點(diǎn),且在軸上,則下列說(shuō)法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱(chēng)C.函數(shù)在單調(diào)遞增D.函數(shù)的圖象向右平移后關(guān)于原點(diǎn)成中心對(duì)稱(chēng)9.函數(shù)在的圖象大致為A. B.C. D.10.函數(shù)在上單調(diào)遞減的充要條件是()A. B. C. D.11.設(shè)α,β為兩個(gè)平面,則α∥β的充要條件是A.α內(nèi)有無(wú)數(shù)條直線與β平行B.α內(nèi)有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面12.設(shè)直線的方程為,圓的方程為,若直線被圓所截得的弦長(zhǎng)為,則實(shí)數(shù)的取值為A.或11 B.或11 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正方體中,是棱的中點(diǎn),是側(cè)面上的動(dòng)點(diǎn),且平面,記與的軌跡構(gòu)成的平面為.①,使得;②直線與直線所成角的正切值的取值范圍是;③與平面所成銳二面角的正切值為;④正方體的各個(gè)側(cè)面中,與所成的銳二面角相等的側(cè)面共四個(gè).其中正確命題的序號(hào)是________.(寫(xiě)出所有正確命題的序號(hào))14.某部隊(duì)在訓(xùn)練之余,由同一場(chǎng)地訓(xùn)練的甲?乙?丙三隊(duì)各出三人,組成小方陣開(kāi)展游戲,則來(lái)自同一隊(duì)的戰(zhàn)士既不在同一行,也不在同一列的概率為_(kāi)_____.15.已知集合,若,則__________.16.過(guò)圓的圓心且與直線垂直的直線方程為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點(diǎn).(1)求異面直線AP,BM所成角的余弦值;(2)點(diǎn)N在線段AD上,且AN=λ,若直線MN與平面PBC所成角的正弦值為,求λ的值.18.(12分)已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,滿(mǎn)足,,,,恰為等比數(shù)列的前3項(xiàng).(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和為;若對(duì)均滿(mǎn)足,求整數(shù)的最大值;(3)是否存在數(shù)列滿(mǎn)足等式成立,若存在,求出數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.19.(12分)如圖,在四棱錐中,側(cè)棱底面,,,,,是棱中點(diǎn).(1)已知點(diǎn)在棱上,且平面平面,試確定點(diǎn)的位置并說(shuō)明理由;(2)設(shè)點(diǎn)是線段上的動(dòng)點(diǎn),當(dāng)點(diǎn)在何處時(shí),直線與平面所成角最大?并求最大角的正弦值.20.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)若,求曲線與的交點(diǎn)坐標(biāo);(2)過(guò)曲線上任意一點(diǎn)作與夾角為45°的直線,交于點(diǎn),且的最大值為,求的值.21.(12分)某公園有一塊邊長(zhǎng)為3百米的正三角形空地,擬將它分割成面積相等的三個(gè)區(qū)域,用來(lái)種植三種花卉.方案是:先建造一條直道將分成面積之比為的兩部分(點(diǎn)D,E分別在邊,上);再取的中點(diǎn)M,建造直道(如圖).設(shè),,(單位:百米).(1)分別求,關(guān)于x的函數(shù)關(guān)系式;(2)試確定點(diǎn)D的位置,使兩條直道的長(zhǎng)度之和最小,并求出最小值.22.(10分)將棱長(zhǎng)為的正方體截去三棱錐后得到如圖所示幾何體,為的中點(diǎn).(1)求證:平面;(2)求二面角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)平移得到最大值.【詳解】若實(shí)數(shù)x,y滿(mǎn)足條件,目標(biāo)函數(shù)如圖:當(dāng)時(shí)函數(shù)取最大值為故答案選C【點(diǎn)睛】求線性目標(biāo)函數(shù)的最值:當(dāng)時(shí),直線過(guò)可行域且在軸上截距最大時(shí),值最大,在軸截距最小時(shí),z值最??;當(dāng)時(shí),直線過(guò)可行域且在軸上截距最大時(shí),值最小,在軸上截距最小時(shí),值最大.2、B【解析】

計(jì)算出樣本在的數(shù)據(jù)個(gè)數(shù),再減去樣本在的數(shù)據(jù)個(gè)數(shù)即可得出結(jié)果.【詳解】由題意可知,樣本在的數(shù)據(jù)個(gè)數(shù)為,樣本在的數(shù)據(jù)個(gè)數(shù)為,因此,樣本在、內(nèi)的數(shù)據(jù)個(gè)數(shù)為.故選:B.【點(diǎn)睛】本題考查利用頻數(shù)分布表計(jì)算頻數(shù),要理解頻數(shù)、樣本容量與頻率三者之間的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.3、D【解析】

設(shè)出坐標(biāo),聯(lián)立直線方程與拋物線方程,利用弦長(zhǎng)公式求得,再由點(diǎn)到直線的距離公式求得到的距離,得到的面積為,作差后利用導(dǎo)數(shù)求最值.【詳解】設(shè),,聯(lián)立,得則,則由,得設(shè),則,則點(diǎn)到直線的距離從而.令當(dāng)時(shí),;當(dāng)時(shí),故,即的最小值為本題正確選項(xiàng):【點(diǎn)睛】本題考查直線與拋物線位置關(guān)系的應(yīng)用,考查利用導(dǎo)數(shù)求最值的問(wèn)題.解決圓錐曲線中的面積類(lèi)最值問(wèn)題,通常采用構(gòu)造函數(shù)關(guān)系的方式,然后結(jié)合導(dǎo)數(shù)或者利用函數(shù)值域的方法來(lái)求解最值.4、B【解析】

列出每一次循環(huán),直到計(jì)數(shù)變量滿(mǎn)足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點(diǎn)睛】本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.5、B【解析】

根據(jù)充分必要條件的概念進(jìn)行判斷.【詳解】對(duì)于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【點(diǎn)睛】本題主要考查空間中線線,線面,面面的位置關(guān)系,以及充要條件的判斷,考查學(xué)生綜合運(yùn)用知識(shí)的能力.解決充要條件判斷問(wèn)題,關(guān)鍵是要弄清楚誰(shuí)是條件,誰(shuí)是結(jié)論.6、D【解析】

先化簡(jiǎn)函數(shù)解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,可得所求函數(shù)的解析式為,再由正弦函數(shù)的對(duì)稱(chēng)性得解.【詳解】,

將函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍,所得函數(shù)的解析式為,

再向右平移個(gè)單位長(zhǎng)度,所得函數(shù)的解析式為,,可得函數(shù)圖象的一個(gè)對(duì)稱(chēng)中心為,故選D.【點(diǎn)睛】三角函數(shù)的圖象與性質(zhì)是高考考查的熱點(diǎn)之一,經(jīng)??疾槎x域、值域、周期性、對(duì)稱(chēng)性、奇偶性、單調(diào)性、最值等,其中公式運(yùn)用及其變形能力、運(yùn)算能力、方程思想等可以在這些問(wèn)題中進(jìn)行體現(xiàn),在復(fù)習(xí)時(shí)要注意基礎(chǔ)知識(shí)的理解與落實(shí).三角函數(shù)的性質(zhì)由函數(shù)的解析式確定,在解答三角函數(shù)性質(zhì)的綜合試題時(shí)要抓住函數(shù)解析式這個(gè)關(guān)鍵,在函數(shù)解析式較為復(fù)雜時(shí)要注意使用三角恒等變換公式把函數(shù)解析式化為一個(gè)角的一個(gè)三角函數(shù)形式,然后利用正弦(余弦)函數(shù)的性質(zhì)求解.7、D【解析】

根據(jù)三視圖還原幾何體為四棱錐,即可求出幾何體的表面積.【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側(cè)棱與底面垂直,四棱錐的底面是正方形,邊長(zhǎng)為2,棱錐的高為2,所以,故選:【點(diǎn)睛】本題主要考查了由三視圖還原幾何體,棱錐表面積的計(jì)算,考查了學(xué)生的運(yùn)算能力,屬于中檔題.8、B【解析】

根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質(zhì),即可求解,得到答案.【詳解】根據(jù)給定函數(shù)的圖象,可得點(diǎn)的橫坐標(biāo)為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當(dāng)時(shí),,即函數(shù)的一個(gè)對(duì)稱(chēng)中心為,即函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱(chēng).故選B.【點(diǎn)睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì),其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質(zhì)求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.9、A【解析】

因?yàn)?,所以排除C、D.當(dāng)從負(fù)方向趨近于0時(shí),,可得.故選A.10、C【解析】

先求導(dǎo)函數(shù),函數(shù)在上單調(diào)遞減則恒成立,對(duì)導(dǎo)函數(shù)不等式換元成二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結(jié)合圖象可知,,解得故.故選:C.【點(diǎn)睛】本題考查求三角函數(shù)單調(diào)區(qū)間.求三角函數(shù)單調(diào)區(qū)間的兩種方法:(1)代換法:就是將比較復(fù)雜的三角函數(shù)含自變量的代數(shù)式整體當(dāng)作一個(gè)角(或),利用基本三角函數(shù)的單調(diào)性列不等式求解;(2)圖象法:畫(huà)出三角函數(shù)的正、余弦曲線,結(jié)合圖象求它的單調(diào)區(qū)間.11、B【解析】

本題考查了空間兩個(gè)平面的判定與性質(zhì)及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質(zhì)定理即可作出判斷.【詳解】由面面平行的判定定理知:內(nèi)兩條相交直線都與平行是的充分條件,由面面平行性質(zhì)定理知,若,則內(nèi)任意一條直線都與平行,所以?xún)?nèi)兩條相交直線都與平行是的必要條件,故選B.【點(diǎn)睛】面面平行的判定問(wèn)題要緊扣面面平行判定定理,最容易犯的錯(cuò)誤為定理記不住,憑主觀臆斷,如:“若,則”此類(lèi)的錯(cuò)誤.12、A【解析】

圓的圓心坐標(biāo)為(1,1),該圓心到直線的距離,結(jié)合弦長(zhǎng)公式得,解得或,故選A.二、填空題:本題共4小題,每小題5分,共20分。13、①②③④【解析】

取中點(diǎn),中點(diǎn),中點(diǎn),先利用中位線的性質(zhì)判斷點(diǎn)的運(yùn)動(dòng)軌跡為線段,平面即為平面,畫(huà)出圖形,再依次判斷:①利用等腰三角形的性質(zhì)即可判斷;②直線與直線所成角即為直線與直線所成角,設(shè)正方體的棱長(zhǎng)為2,進(jìn)而求解;③由,取為中點(diǎn),則,則即為與平面所成的銳二面角,進(jìn)而求解;④由平行的性質(zhì)及圖形判斷即可.【詳解】取中點(diǎn),連接,則,所以,所以平面即為平面,取中點(diǎn),中點(diǎn),連接,則易證得,所以平面平面,所以點(diǎn)的運(yùn)動(dòng)軌跡為線段,平面即為平面.①取為中點(diǎn),因?yàn)槭堑妊切?所以,又因?yàn)?所以,故①正確;②直線與直線所成角即為直線與直線所成角,設(shè)正方體的棱長(zhǎng)為2,當(dāng)點(diǎn)為中點(diǎn)時(shí),直線與直線所成角最小,此時(shí),;當(dāng)點(diǎn)與點(diǎn)或點(diǎn)重合時(shí),直線與直線所成角最大,此時(shí),所以直線與直線所成角的正切值的取值范圍是,②正確;③與平面的交線為,且,取為中點(diǎn),則即為與平面所成的銳二面角,,所以③正確;④正方體的各個(gè)側(cè)面中,平面,平面,平面,平面與平面所成的角相等,所以④正確.故答案為:①②③④【點(diǎn)睛】本題考查直線與平面的空間位置關(guān)系,考查異面直線成角,二面角,考查空間想象能力與轉(zhuǎn)化思想.14、【解析】

分兩步進(jìn)行:首先,先排第一行,再排第二行,最后排第三行;其次,對(duì)每一行選人;最后,利用計(jì)算出概率即可.【詳解】首先,第一行隊(duì)伍的排法有種;第二行隊(duì)伍的排法有2種;第三行隊(duì)伍的排法有1種;然后,第一行的每個(gè)位置的人員安排有種;第二行的每個(gè)位置的人員安排有種;第三行的每個(gè)位置的人員安排有種.所以來(lái)自同一隊(duì)的戰(zhàn)士既不在同一行,也不在同一列的概率.故答案為:.【點(diǎn)睛】本題考查了分步計(jì)數(shù)原理,排列與組合知識(shí),考查了轉(zhuǎn)化能力,屬于中檔題.15、1【解析】

分別代入集合中的元素,求出值,再結(jié)合集合中元素的互異性進(jìn)行取舍可解.【詳解】依題意,分別令,,,由集合的互異性,解得,則.故答案為:【點(diǎn)睛】本題考查集合元素的特性:確定性、互異性、無(wú)序性.確定集合中元素,要注意檢驗(yàn)集合中的元素是否滿(mǎn)足互異性.16、【解析】

根據(jù)與已知直線垂直關(guān)系,設(shè)出所求直線方程,將已知圓圓心坐標(biāo)代入,即可求解.【詳解】圓心為,所求直線與直線垂直,設(shè)為,圓心代入,可得,所以所求的直線方程為.故答案為:.【點(diǎn)睛】本題考查圓的方程、直線方程求法,注意直線垂直關(guān)系的靈活應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1).(2)1【解析】

(1)先根據(jù)題意建立空間直角坐標(biāo)系,求得向量和向量的坐標(biāo),再利用線線角的向量方法求解.(2,由AN=λ,設(shè)N(0,λ,0)(0≤λ≤4),則=(-1,λ-1,-2),再求得平面PBC的一個(gè)法向量,利用直線MN與平面PBC所成角的正弦值為,由|cos〈,〉|===求解.【詳解】(1)因?yàn)镻A⊥平面ABCD,且AB,AD?平面ABCD,所以PA⊥AB,PA⊥AD.又因?yàn)椤螧AD=90°,所以PA,AB,AD兩兩互相垂直.分別以AB,AD,AP為x,y,z軸建立空間直角坐標(biāo)系,則由AD=2AB=2BC=4,PA=4可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4).又因?yàn)镸為PC的中點(diǎn),所以M(1,1,2).所以=(-1,1,2),=(0,0,4),所以cos〈,〉===,所以異面直線AP,BM所成角的余弦值為.(2)因?yàn)锳N=λ,所以N(0,λ,0)(0≤λ≤4),則=(-1,λ-1,-2),=(0,2,0),=(2,0,-4).設(shè)平面PBC的法向量為=(x,y,z),則即令x=2,解得y=0,z=1,所以=(2,0,1)是平面PBC的一個(gè)法向量.因?yàn)橹本€MN與平面PBC所成角的正弦值為,所以|cos〈,〉|===,解得λ=1∈[0,4],所以λ的值為1.【點(diǎn)睛】本題主要考查了空間向量法研究空間中線線角,線面角的求法及應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.18、(2),(2),的最大整數(shù)是2.(3)存在,【解析】

(2)由可得(),然后把這兩個(gè)等式相減,化簡(jiǎn)得,公差為2,因?yàn)?,,為等比?shù)列,所以,化簡(jiǎn)計(jì)算得,,從而得到數(shù)列的通項(xiàng)公式,再計(jì)算出,,,從而可求出數(shù)列的通項(xiàng)公式;(2)令,化簡(jiǎn)計(jì)算得,從而可得數(shù)列是遞增的,所以只要的最小值大于即可,而的最小值為,所以可得答案;(3)由題意可知,,即,這個(gè)可看成一個(gè)數(shù)列的前項(xiàng)和,再寫(xiě)出其前()項(xiàng)和,兩式相減得,,利用同樣的方法可得.【詳解】解:(2)由題,當(dāng)時(shí),,即當(dāng)時(shí),①②①-②得,整理得,又因?yàn)楦黜?xiàng)均為正數(shù)的數(shù)列.故是從第二項(xiàng)的等差數(shù)列,公差為2.又恰為等比數(shù)列的前3項(xiàng),故,解得.又,故,因?yàn)橐渤闪ⅲ适且詾槭醉?xiàng),2為公差的等差數(shù)列.故.即2,4,8恰為等比數(shù)列的前3項(xiàng),故是以為首項(xiàng),公比為的等比數(shù)列,故.綜上,(2)令,則所以數(shù)列是遞增的,若對(duì)均滿(mǎn)足,只要的最小值大于即可因?yàn)榈淖钚≈禐?,所以,所以的最大整?shù)是2.(3)由,得,③④③-④得,⑤,⑥⑤-⑥得,,所以存在這樣的數(shù)列,【點(diǎn)睛】此題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式,最值,恒成立問(wèn)題,考查了推理能力與計(jì)算能力,屬于中檔題.19、(1)為中點(diǎn),理由見(jiàn)解析;(2)當(dāng)點(diǎn)在線段靠近的三等分點(diǎn)時(shí),直線與平面所成角最大,最大角的正弦值.【解析】

(1)為中點(diǎn),可利用中位線與平行四邊形性質(zhì)證明,,從而證明平面平面;(2)以A為原點(diǎn),分別以,,所在直線為、、軸建立空間直角坐標(biāo)系,利用向量法求出當(dāng)點(diǎn)在線段靠近的三等分點(diǎn)時(shí),直線與平面所成角最大,并可求出最大角的正弦值.【詳解】(1)為中點(diǎn),證明如下:分別為中點(diǎn),又平面平面平面又,且四邊形為平行四邊形,同理,平面,又平面平面(2)以A為原點(diǎn),分別以,,所在直線為、、軸建立空間直角坐標(biāo)系則,設(shè)直線與平面所成角為,則取平面的法向量為則令,則所以當(dāng)時(shí),等號(hào)成立即當(dāng)點(diǎn)在線段靠近的三等分點(diǎn)時(shí),直線與平面所成角最大,最大角的正弦值.【點(diǎn)睛】本題主要考查了平面與平面的平行,直線與平面所成角的求解,考查了學(xué)生的直觀想象與運(yùn)算求解能力.20、(1),;(2)或【解析】

(1)將曲線的極坐標(biāo)方程和直線的參數(shù)方程化為直角坐標(biāo)方程,聯(lián)立方程,即可求得曲線與的交點(diǎn)坐標(biāo);(2)由直線的普通方程為,故上任意一點(diǎn),根據(jù)點(diǎn)到直線距離公式求得到直線的距離,根據(jù)三角函數(shù)的有界性,即可求得答案.【詳解】(1),.由,得,曲線的直角坐標(biāo)方程為.當(dāng)時(shí),直線的普通方程為由解得或.從而與的交點(diǎn)坐標(biāo)為,.(2)由題意知直線的普通方程為,的參數(shù)方程為(為參數(shù))故上任意一點(diǎn)到的距離為則.當(dāng)時(shí),的最大值為所以;當(dāng)時(shí),的最大值為,所以.綜上所述,或【點(diǎn)睛】解題關(guān)鍵是掌握極坐標(biāo)和參數(shù)方程化為直角坐標(biāo)方程的方法,和點(diǎn)到直線距離公式,考查了分析能力和計(jì)算能力,屬于中檔題.21、(1),.,.(2)當(dāng)百米時(shí),兩條直

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論