版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年青海交通職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.有一批機(jī)器,編號(hào)為1,2,3,…,112,為調(diào)查機(jī)器的質(zhì)量問題,打算抽取10臺(tái),問此樣本若采用簡單的隨機(jī)抽樣方法將如何獲得?答案:本題可以采用抽簽法來抽取樣本,首先把該校學(xué)生都編上號(hào)001,002,112…用抽簽法做112個(gè)形狀、大小相同的號(hào)簽,然后將這些號(hào)簽放到同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí),每次從中抽一個(gè)號(hào)簽,連續(xù)抽取10次,就得到一個(gè)容量為10的樣本.2.用反證法證明命題“若a、b∈N,ab能被2整除,則a,b中至少有一個(gè)能被2整除”,那么反設(shè)的內(nèi)容是______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的步驟,應(yīng)先假設(shè)要證命題的否定成立,而要證命題的否定為:“a,b都不能被2整除”,故為:a、b都不能被2整除.3.兩平行直線x+3y-5=0與x+3y-10=0的距離是______.答案:根據(jù)題意,得兩平行直線x+3y-5=0與x+3y-10=0的距離為d=|-5+10|12+32=102故為:1024.若點(diǎn)P(a,b)在圓C:x2+y2=1的外部,則直線ax+by+1=0與圓C的位置關(guān)系是()
A.相切
B.相離
C.相交
D.相交或相切答案:C5.(選做題)圓內(nèi)非直徑的兩條弦AB、CD相交于圓內(nèi)一點(diǎn)P,已知PA=PB=4,PC=14PD,則CD=______.答案:連接AC、BD.∵∠A=∠D,∠C=∠B,∴△ACP∽△DBP,∴PAPD=PCPB,∴4PD=14PD4,∴PD2=64∴PD=8∴CD=PD+PC=8+2=10,故為:106.已知點(diǎn)(3,1)和(-4,6)在直線3x-2y+a=0的兩側(cè),則實(shí)數(shù)a的取值范圍是(
)
A.a<-7或a>24
B.a=7或a=24
C.-7<a<24
D.-24<a<7答案:C7.設(shè)a=20.3,b=0.32,c=log20.3,則用“>”表示a,b,c的大小關(guān)系式是______.答案:∵0<0.32<1,log20.3<0,20.3>1∴0.32<20.3<log20.3故為:a>b>c8.AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則AC長為______.答案:連接AC、BC,則∠ACD=∠ABC,又因?yàn)椤螦DC=∠ACB=90°,所以△ACD~△ACB,所以ADAC=ACAB,解得AC=23.故填:23.9.已知x+5y+3z=1,則x2+y2+z2的最小值為______.答案:證明:35(x2+y2+z2)×(1+25+9)≥(x+5y+3z)2=1∴x2+y2+z2≥135,則x2+y2+z2的最小值為135,故為:135.10.若實(shí)數(shù)X、少滿足,則的范圍是()
A.[0,4]
B.(0,4)
C.(-∝,0]U[4,+∝)
D.(-∝,0)U(4,+∝))答案:D11.紙制的正方體的六個(gè)面根據(jù)其方位分別標(biāo)記為上、下、東、南、西、北.現(xiàn)在沿該正方體的一些棱將正方體剪開、外面朝上展平,得到右側(cè)的平面圖形,則標(biāo)“△”的面的方位()
A.南
B.北
C.西
D.下
答案:B12.扇形周長為10,則扇形面積的最大值是()A.52B.254C.252D.102答案:設(shè)半徑為r,弧長為l,則周長為2r+l=10,面積為s=12lr,因?yàn)?0=2r+l≥22rl,所以rl≤252,所以s≤254故選B13.設(shè)集合A={1,2},則滿足A∪B={1,2,3}的集合B的個(gè)數(shù)是()A.1B.3C.4D.8答案:A={1,2},A∪B={1,2,3},則集合B中必含有元素3,即此題可轉(zhuǎn)化為求集合A={1,2}的子集個(gè)數(shù)問題,所以滿足題目條件的集合B共有22=4個(gè).故選擇C.14.平面α外一點(diǎn)P到平面α內(nèi)的四邊形的四條邊的距離都相等,且P在α內(nèi)的射影在四邊形內(nèi)部,則四邊形是()
A.梯形
B.圓外切四邊形
C.圓內(nèi)接四邊
D.任意四邊形答案:B15.(a+b)6的展開式的二項(xiàng)式系數(shù)之和為______.答案:根據(jù)二項(xiàng)式系數(shù)的性質(zhì):二項(xiàng)式系數(shù)和為2n所以(a+b)6展開式的二項(xiàng)式系數(shù)之和等于26=64故為:64.16.設(shè)a,b,c為正數(shù),利用排序不等式證明a3+b3+c3≥3abc.答案:證明:不妨設(shè)a≥b≥c>0,∴a2≥b2≥c2,由排序原理:順序和≥反序和,得:a3+b3≥a2b+b2a,b3+c3≥b2c+c2b,c3+a3≥a2c+c2a三式相加得2(a3+b3+c3)≥a(b2+c2)+b(c2+a2)+c(a2+b2).又a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca.所以2(a3+b3+c3)≥6abc,∴a3+b3+c3≥3abc.當(dāng)且僅當(dāng)a=b=c時(shí),等號(hào)成立.17.過點(diǎn)P(0,-2)的雙曲線C的一個(gè)焦點(diǎn)與拋物線x2=-16y的焦點(diǎn)相同,則雙曲線C的標(biāo)準(zhǔn)方程是()
A.
B.
C.
D.答案:C18.設(shè)、、是三角形的邊長,求證:
≥答案:證明見解析解析:證明:由不等式的對(duì)稱性,不防設(shè)≥≥,則≥左式-右式≥≥≥019.函數(shù)y=2|x|的定義域?yàn)閇a,b],值域?yàn)閇1,16],當(dāng)a變動(dòng)時(shí),函數(shù)b=g(a)的圖象可以是()A.
B.
C.
D.
答案:根據(jù)選項(xiàng)可知a≤0a變動(dòng)時(shí),函數(shù)y=2|x|的定義域?yàn)閇a,b],值域?yàn)閇1,16],∴2|b|=16,b=4故選B.20.2005年10月,我國載人航天飛船“神六”飛行獲得圓滿成功.已知“神六”飛船變軌前的運(yùn)行軌道是一個(gè)以地心為焦點(diǎn)的橢圓,飛船近地點(diǎn)、遠(yuǎn)地點(diǎn)離地面的距離分別為200公里、250公里.設(shè)地球半徑為R公里,則此時(shí)飛船軌道的離心率為______.(結(jié)果用R的式子表示)答案:(I)設(shè)橢圓的方程為x2a2+y2b2=1由題設(shè)條件得:a-c=|OA|-|OF2|=|F2A|=R+200,a+c=|OB|+|OF2|=|F2B|=R+250,解得a=225+R,c=25則此時(shí)飛船軌道的離心率為25225+R故為:25225+R.21.如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,若輸出S的值為254,則判斷框①中應(yīng)填入的條件是()A.n≤5B.n≤6C.n≤7D.n≤8答案:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是輸出滿足條件S=2+22+23+…+2n=126時(shí)S的值∵2+22+23+…+27=254,故最后一次進(jìn)行循環(huán)時(shí)n的值為7,故判斷框中的條件應(yīng)為n≤7.故選C.22.已知x、y的取值如下表:x0134y2.24.34.86.7從散點(diǎn)圖分析,y與x線性相關(guān),且回歸方程為y=0.95x+a,則a=______.答案:點(diǎn)(.x,.y)在回歸直線上,計(jì)算得.x=2,.y=4.5;代入得a=2.6;故為2.6.23.到兩定點(diǎn)A(0,0),B(3,4)距離之和為5的點(diǎn)的軌跡是()
A.橢圓
B.AB所在直線
C.線段AB
D.無軌跡答案:C24.給出20個(gè)數(shù):87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88它們的和是()A.1789B.1799C.1879D.1899答案:由題意知本題是一個(gè)求和問題,87+91+94+88+93+91+89+87+92+86+90+92+88+90+91+86+89+92+95+88=1799,故選B.25.若不共線的平面向量,,兩兩所成角相等,且||=1,||=1,||=3,則|++|等于(
)
A.2
B.5
C.2或5
D.或答案:A26.給出下列四個(gè)命題,其中正確的一個(gè)是()
A.在線性回歸模型中,相關(guān)指數(shù)R2=0.80,說明預(yù)報(bào)變量對(duì)解釋變量的貢獻(xiàn)率是80%
B.在獨(dú)立性檢驗(yàn)時(shí),兩個(gè)變量的2×2列聯(lián)表中對(duì)角線上數(shù)據(jù)的乘積相差越大,說明這兩個(gè)變量沒有關(guān)系成立的可能性就越大
C.相關(guān)指數(shù)R2用來刻畫回歸效果,R2越小,則殘差平方和越大,模型的擬合效果越差
D.隨機(jī)誤差e是衡量預(yù)報(bào)精確度的一個(gè)量,它滿足E(e)=0答案:D27.已知a,b,c為正數(shù),且兩兩不等,求證:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b).答案:證明:不妨設(shè)a>b>c>0,則(a-b)2>0,(b-c)2>0,(c-a)2>0.由于2(a3+b3+c3)-a2(b+c)+b2(a+c)+c2(a+b)=a2(a-b)+a2(a-c)+b2(b-c)+b2(b-a)+c2(c-a)+c2(c-b)
=(a-b)2(a+b)+(b-c)2(b+c)+(c-a)2(c+a)>0,故有2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)成立.28.已知函數(shù)f(x)=x2+px+q與函數(shù)y=f(f(f(x)))有一個(gè)相同的零點(diǎn),則f(0)與f(1)()
A.均為正值
B.均為負(fù)值
C.一正一負(fù)
D.至少有一個(gè)等于0答案:D29.下圖是由哪個(gè)平面圖形旋轉(zhuǎn)得到的(
)答案:A30.書架上有5本數(shù)學(xué)書,4本物理書,5本化學(xué)書,從中任取一本,不同的取法有()A.14B.25C.100D.40答案:由題意,∵書架上有5本數(shù)學(xué)書,4本物理書,5本化學(xué)書,∴從中任取一本,不同的取法有5+4+5=14種故選A.31.“所有9的倍數(shù)(M)都是3的倍數(shù)(P),某奇數(shù)(S)是9的倍數(shù)(M),故此奇數(shù)(S)是3的倍數(shù)(P)”,上述推理是()
A.小前提錯(cuò)
B.結(jié)論錯(cuò)
C.正確的
D.大前提錯(cuò)答案:C32.△ABC中,若有一個(gè)內(nèi)角不小于120°,求證:最長邊與最短邊之比不小于3.答案:設(shè)最大角為∠A,最小角為∠C,則最大邊為a,最小邊為c因?yàn)锳≥120°,所以B+C≤60°,且C≤B,所以2C≤B+C≤60°,C≤30°.所以ac=sinAsinC=sin(B+C)sinC≥sin2CsinC=2cosC≥3.33.若數(shù)列{an}是等差數(shù)列,對(duì)于bn=1n(a1+a2+…+an),則數(shù)列{bn}也是等差數(shù)列.類比上述性質(zhì),若數(shù)列{cn}是各項(xiàng)都為正數(shù)的等比數(shù)列,對(duì)于dn>0,則dn=______時(shí),數(shù)列{dn}也是等比數(shù)列.答案:在類比等差數(shù)列的性質(zhì)推理等比數(shù)列的性質(zhì)時(shí),我們一般的思路有:由加法類比推理為乘法,由減法類比推理為除法,由算術(shù)平均數(shù)類比推理為幾何平均數(shù)等,故我們可以由數(shù)列{cn}是等差數(shù)列,則對(duì)于bn=1n(a1+a2+…+an),則數(shù)列{bn}也是等差數(shù)列.類比推斷:若數(shù)列{cn}是各項(xiàng)均為正數(shù)的等比數(shù)列,則當(dāng)dn=nC1C2C3Cn時(shí),數(shù)列{dn}也是等比數(shù)列.故為:nC1C2C3Cn34.已知?jiǎng)狱c(diǎn)P(x,y)滿足(x+2)2+y2-(x-2)2+y2=2,則動(dòng)點(diǎn)P的軌跡是______.答案:∵(x+2)2+y2-(x-2)2+y2=2,即動(dòng)點(diǎn)P(x,y)到兩定點(diǎn)(-2,0),(2,0)的距離之差等于2,由雙曲線定義知?jiǎng)狱c(diǎn)P的軌跡是雙曲線的一支(右支).:雙曲線的一支(右支).35.已知A(1,2),B(-3,b)兩點(diǎn)的距離等于42,則b=______.答案:∵A(1,2),B(-3,b)∴|AB|=(-3-1)2+(b-2)2=42,解之得b=6或-2故為:6或-236.已知A(0,1),B(3,7),C(x,15)三點(diǎn)共線,則x的值是()
A.5
B.6
C.7
D.8答案:C37.設(shè)矩陣M=.32-121232.的逆矩陣是M-1=.abcd.,則a+c的值為______.答案:由題意,矩陣M的行列式為.32-121232.=32×32+12×12=1∴矩陣M=.32-121232.的逆矩陣是M-1=.3212-1232.∴a+c=3-12故為3-1238.把矩陣變?yōu)楹?,與對(duì)應(yīng)的值是()
A.
B.
C.
D.答案:C39.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).試證:數(shù)列{xn}或者對(duì)任意自然數(shù)n都滿足xn<xn+1,或者對(duì)任意自然數(shù)n都滿足xn>xn+1.答案:證:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由數(shù)列{xn}的定義可知xn>0,(n=1,2,…)所以,xn+1-xn與1-xn2的符號(hào)相同.①假定x1<1,我們用數(shù)學(xué)歸納法證明1-xn2>0(n∈N)顯然,n=1時(shí),1-x12>0設(shè)n=k時(shí)1-xk2>0,那么當(dāng)n=k+1時(shí)1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,對(duì)一切自然數(shù)n都有1-xn2>0,從而對(duì)一切自然數(shù)n都有xn<xn+1②若x1>1,當(dāng)n=1時(shí),1-x12<0;設(shè)n=k時(shí)1-xk2<0,那么當(dāng)n=k+1時(shí)1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,對(duì)一切自然數(shù)n都有1-xn2<0,從而對(duì)一切自然數(shù)n都有xn>xn+140.投擲一個(gè)質(zhì)地均勻的、每個(gè)面上標(biāo)有一個(gè)數(shù)字的正方體玩具,它的六個(gè)面中,有兩個(gè)面標(biāo)的數(shù)字是0,兩個(gè)面標(biāo)的數(shù)字是2,兩個(gè)面標(biāo)的數(shù)字是4,將此玩具連續(xù)拋擲兩次,以兩次朝上一面出現(xiàn)的數(shù)字分別作為點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)
(1)求點(diǎn)P落在區(qū)域C:x2+y2≤10內(nèi)的概率;
(2)若以落在區(qū)域C上的所有點(diǎn)為頂點(diǎn)作面積最大的多邊形區(qū)域M,在區(qū)域C上隨機(jī)撒一粒豆子,求豆子落在區(qū)域M上的概率.答案:(1)點(diǎn)P的坐標(biāo)有:(0,0),(0,2),(0,4),(2,0),(2,2),(2,4),(4,0),(4,2),(4,4),共9種,其中落在區(qū)域C:x2+y2≤10上的點(diǎn)P的坐標(biāo)有:(0,0),(0,2),(2,0),(2,2),共4種D、故點(diǎn)P落在區(qū)域C:x2+y2≤10內(nèi)的概率為49.(2)區(qū)域M為一邊長為2的正方形,其面積為4,區(qū)域C的面積為10π,則豆子落在區(qū)域M上的概率為25π.41.某醫(yī)療研究所為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計(jì)算得Χ2≈3.918,經(jīng)查對(duì)臨界值表知P(Χ2≥3.841)≈0.05.則下列結(jié)論中,正確結(jié)論的序號(hào)是______
(1)有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”
(2)若某人未使用該血清,那么他在一年中有95%的可能性得感冒
(3)這種血清預(yù)防感冒的有效率為95%
(4)這種血清預(yù)防感冒的有效率為5%答案:查對(duì)臨界值表知P(Χ2≥3.841)≈0.05,故有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”950/0僅是指“血清與預(yù)防感冒”可信程度,但也有“在100個(gè)使用血清的人中一個(gè)患感冒的人也沒有”的可能.故為:(1).42.已知F1=i+2j+3k,F(xiàn)2=2i+3j-k,F(xiàn)3=3i-4j+5k,若F1,F(xiàn)2,F(xiàn)3共同作用于一物體上,使物體從點(diǎn)M(1,-2,1)移動(dòng)到N(3,1,2),則合力所作的功是______.答案:由題意可得F1=(1,2,3)F2=(2,3,-1),F(xiàn)3=(3,-4,5),故合力F=F1+F2+F3=(6,1,7),位移S=MN=(3,1,2)-(1,-2,1)=(2,3,1),故合力所作的功W=F?S=6×2+1×3+7×1=22故為:2243.設(shè)求證:答案:證明見解析解析:證明:∵
∴∴,∴本題利用,對(duì)中每項(xiàng)都進(jìn)行了放縮,從而得到可以求和的數(shù)列,達(dá)到化簡的目的。44.在市場上供應(yīng)的燈泡中,甲廠產(chǎn)品占70%,乙廠占30%,甲廠產(chǎn)品的合格率是95%,乙廠的合格率是80%,則從市場上買到一個(gè)甲廠生產(chǎn)的合格燈泡的概率是______.答案:由題意知本題是一個(gè)相互獨(dú)立事件同時(shí)發(fā)生的概率,∵甲廠產(chǎn)品占70%,甲廠產(chǎn)品的合格率是95%,∴從市場上買到一個(gè)甲廠生產(chǎn)的合格燈泡的概率是0.7×0.95=0.665故為:0.66545.(坐標(biāo)系與參數(shù)方程選做題)過點(diǎn)(2,π3)且平行于極軸的直線的極坐標(biāo)方程為______.答案:法一:先將極坐標(biāo)化成直角坐標(biāo)表示,(2,π3)化為(1,3),過(1,3)且平行于x軸的直線為y=3,再化成極坐標(biāo)表示,即ρsinθ=3.法二:在極坐標(biāo)系中,直接構(gòu)造直角三角形由其邊角關(guān)系得方程ρsinθ=3.設(shè)A(ρ,θ)是直線上的任一點(diǎn),A到極軸的距離AH=2sinπ3=3,直接構(gòu)造直角三角形由其邊角關(guān)系得方程ρsinθ=3.故為:ρsinθ=346.△ABC所在平面內(nèi)點(diǎn)O、P,滿足OP=OA+λ(AB+12BC),λ∈[0,+∞),則點(diǎn)P的軌跡一定經(jīng)過△ABC的()A.重心B.垂心C.內(nèi)心D.外心答案:設(shè)BC的中點(diǎn)為D,則∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中線∴點(diǎn)P的軌跡一定經(jīng)過△ABC的重心故選A.47.已知函數(shù)f(x)=|log2x-1|+|log2x-2|,解不等式f(x)>4.答案:f(x)=|log2x-1|+|log2x-2|,取絕對(duì)值得:f(x)=3-2log2x,0<x<21,2≤x≤42log2x-3,x>4所以f(x)>4等價(jià)于:0<x≤23-2log2x>4或x≥42log2x-3>4,解得:0<x<22或x>82.48.用數(shù)學(xué)歸納法證明不等式:1n+1n+1+1n+2+…+1n2>1(n∈N*且n.1).答案:證明:(1)當(dāng)n=2時(shí),左邊=12+13+14=1312>1,∴n=2時(shí)成立(2分)(2)假設(shè)當(dāng)n=k(k≥2)時(shí)成立,即1k+1k+1+1k+2+…+1k2>1那么當(dāng)n=k+1時(shí),左邊=1k+1+1k+2+1k+3+…+1(k+1)2=1k+1k+1+1k+2+1k+3+…+1k2+2k+1(k+1)2-1k>1+1k2+1+1k2+2+…+1(k+1)2-1k>1+(2k+1)?1(k+1)2-1k>1+k2-k-1k2+2k+1>1∴n=k+1時(shí)也成立(7分)根據(jù)(1)(2)可得不等式對(duì)所有的n>1都成立(8分)49.已知隨機(jī)變量X的分布列為:P(X=k)=,k=1,2,…,則P(2<X≤4)等于()
A.
B.
C.
D.答案:A50.已知雙曲線x2-y23=1,過P(2,1)點(diǎn)作一直線交雙曲線于A、B兩點(diǎn),并使P為AB的中點(diǎn),則直線AB的斜率為______.答案:設(shè)A(x1,y1)、B(x2,y2),代入雙曲線方程x2-y23=1相減得直線AB的斜率kAB=y1-y2x1-x2=3(x1+x2)y1+y2=3×x1+x22y1+y22=3×21=6.故為:6第2卷一.綜合題(共50題)1.設(shè)方程lgx+x=3的實(shí)數(shù)根為x0,則x0所在的一個(gè)區(qū)間是()A.(3,+∝)B.(2,3)C.(1,2)D.(0,1)答案:由lgx+x=3得:lgx=3-x.分別畫出等式:lgx=3-x兩邊對(duì)應(yīng)的函數(shù)圖象:如圖.由圖知:它們的交點(diǎn)x0在區(qū)間(2,3)內(nèi),故選B.2.若關(guān)于x的方程3x2-5x+a=0的一個(gè)根在(-2,0)內(nèi),另一個(gè)根在(1,3)內(nèi),求a的取值范圍。答案:解:設(shè)f(x)=3x2-5x+a,則f(x)為開口向上的拋物線,如右圖所示,∵f(x)=0的兩根分別在區(qū)間(-2,0),(1,3)內(nèi),∴,即,解得-12<a<0,故所求a的取值范圍是{a|-12<a<0}。3.四名志愿者和兩名運(yùn)動(dòng)員排成一排照相,要求兩名運(yùn)動(dòng)員必須站在一起,則不同的排列方法為()A.A44A22B.A55A22C.A55D.A66A22答案:根據(jù)題意,要求兩名運(yùn)動(dòng)員站在一起,所以使用捆綁法,兩名運(yùn)動(dòng)員站在一起,有A22種情況,將其當(dāng)做一個(gè)元素,與其他四名志愿者全排列,有A55種情況,結(jié)合分步計(jì)數(shù)原理,其不同的排列方法為A55A22種,故選B.4.若A(x,5-x,2x-1),B(1,x+2,2-x),當(dāng)||取最小值時(shí),x的值等于(
)
A.
B.
C.
D.答案:C5.如圖,AB是平面a的斜線段,A為斜足,若點(diǎn)P在平面a內(nèi)運(yùn)動(dòng),使得△ABP的面積為定值,則動(dòng)點(diǎn)P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:本題其實(shí)就是一個(gè)平面斜截一個(gè)圓柱表面的問題,因?yàn)槿切蚊娣e為定值,以AB為底,則底邊長一定,從而可得P到直線AB的距離為定值,分析可得,點(diǎn)P的軌跡為一以AB為軸線的圓柱面,與平面α的交線,且α與圓柱的軸線斜交,由平面與圓柱面的截面的性質(zhì)判斷,可得P的軌跡為橢圓.6.三棱錐A-BCD中,平面ABD與平面BCD的法向量分別為n1,n2,若<n1,n2>=,則二面角A-BD-C的大小為()
A.
B.
C.或
D.或答案:C7.若a、b是直線,α、β是平面,a⊥α,b⊥β,向量m在a上,向量n在b上,m=(0,3,4),n=(3,4,0),則α、β所成二面角中較小的一個(gè)余弦值為______.答案:由題意,∵m=(0,3,4),n=(3,4,0),∵cos<m,n>=m?n|m||n|=125?5=1225∵a⊥α,b⊥β,向量m在a上,向量n在b上,∴α、β所成二面角中較小的一個(gè)余弦值為1225故為12258.已知圓O的兩弦AB和CD延長相交于E,過E點(diǎn)引EF∥CB交AD的延長線于F,過F點(diǎn)作圓O的切線FG,求證:EF=FG.答案:證明:∵FG為⊙O的切線,而FDA為⊙O的割線,∴FG2=FD?FA①又∵EF∥CB,∴∠1=∠2.而∠2=∠3,∴∠1=∠3,∠EFD=∠AFE為公共角∴△EFD∽△AFE,F(xiàn)DEF=EFFA,即EF2=FD?FA②由①,②可得EF2=FG2∴EF=FG.9.將函數(shù)="2x"+1的圖像按向量平移得函數(shù)=的圖像則
A=(1)B=(1,1)C=()
D(1,1)答案:C解析:分析:本小題主要考查函數(shù)圖象的平移與向量的關(guān)系問題.依題由函數(shù)y=2x+1的圖象得到函數(shù)y=2x+1的圖象,需將函數(shù)y=2x+1的圖象向左平移1個(gè)單位,向下平移1個(gè)單位;故=(-1,-1).解:設(shè)=(h,k)則函數(shù)y=2x+1的圖象平移向量后所得圖象的解析式為y=2x-h+1+k∴∴∴=(-1,-1)故答案為:C.10.設(shè)A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},A∩B={2}.
(1)求a的值及集合A、B;
(2)設(shè)全集U=A∪B,求(CUA)∪(CUB)的所有子集.答案:解:(1)∵A∩B={2},∴2∈A,∴8+2a+2=0,∴a=﹣5;B={2,﹣5}(2)U=A∪B=,∴CUA={﹣5},CUB=∴(CUA)∪(CUB)=∴(CUA)∪(CUB)的所有子集為:,{﹣5},{},{﹣5,}.11.平面α的一個(gè)法向量為v1=(1,2,1),平面β的一個(gè)法向量為為v2=(-2,-4,10),則平面α與平面β()A.平行B.垂直C.相交D.不確定答案:∵平面α的一個(gè)法向量為v1=(1,2,1),平面β的一個(gè)法向量為v2=(-2,-4,10),∵v1?v2=1×(-2)+2×(-4)+1×10=0∴v1⊥v2,∴平面α⊥平面β故選B12.為了了解某社區(qū)居民是否準(zhǔn)備收看奧運(yùn)會(huì)開幕式,某記者分別從社區(qū)的60~70歲,40~50歲,20~30歲的三個(gè)年齡段中的160,240,X人中,采用分層抽樣的方法共抽出了30人進(jìn)行調(diào)查,若60~70歲這個(gè)年齡段中抽查了8人,那么x為()
A.90
B.120
C.180
D.200答案:D13.某小組有3名女生、4名男生,從中選出3名代表,要求至少女生與男生各有一名,共有______種不同的選法.(要求用數(shù)字作答)答案:由題意知本題是一個(gè)分類計(jì)數(shù)問題,要求至少女生與男生各有一名有兩個(gè)種不同的結(jié)果,即一個(gè)女生兩個(gè)男生和一個(gè)男生兩個(gè)女生,∴共有C31C42+C32C41=30種結(jié)果,故為:3014.命題“存在x0∈R,使x02+1<0”的否定是______.答案:∵命題“存在x0∈R,使x02+1<0”是一個(gè)特稱命題∴命題“存在x0∈R,使x02+1<0”的否定是“對(duì)任意x0∈R,使x02+1≥0”故為:對(duì)任意x0∈R,使x02+1≥015.如果直線l1,l2的斜率分別為二次方程x2-4x+1=0的兩個(gè)根,那么l1與l2的夾角為()
A.
B.
C.
D.答案:A16.設(shè),,,則P,Q,R的大小順序是(
)
A.P>Q>R
B.P>R>Q
C.Q>P>R
D.Q>R>P答案:B17.(1)把二進(jìn)制數(shù)化為十進(jìn)制數(shù);(2)把化為二進(jìn)制數(shù).答案:(1)45,(2)解析:(1)先把二進(jìn)制數(shù)寫成不同位上數(shù)字與2的冪的乘積之和的形式,再按照十進(jìn)制的運(yùn)算規(guī)則計(jì)算出結(jié)果;(2)根據(jù)二進(jìn)制數(shù)“滿二進(jìn)一”的原則,可以用連續(xù)去除或所得商,然后取余數(shù).(1)(2),,,,.所以..這種算法叫做除2余法,還可以用下面的除法算式表示;把上式中各步所得的余數(shù)從下到上排列,得到【名師指引】直接插入排序和冒泡排序是兩種常用的排序方法,通過該例,我們對(duì)比可以發(fā)現(xiàn),直接插入排序比冒泡排序更有效一些,執(zhí)行的操作步驟更少一些..18.在極坐標(biāo)系中,若等邊三角形ABC(頂點(diǎn)A,B,C按順時(shí)針方向排列)的頂點(diǎn)A,B的極坐標(biāo)分別為(2,π6),(2,7π6),則頂點(diǎn)C的極坐標(biāo)為______.答案:如圖所示:由于A,B的極坐標(biāo)(2,π6),(2,7π6),故極點(diǎn)O為線段AB的中點(diǎn).故等邊三角形ABC的邊長為4,AB邊上的高(即點(diǎn)C到AB的距離)OC等于23.設(shè)點(diǎn)C的極坐標(biāo)為(23,π6+π2),即(23,2π3),故為(23,2π3).19.命題“若A∪B=A,則A∩B=B”的否命題是()A.若A∪B≠A,則A∩B≠BB.若A∩B=B,則A∪B=AC.若A∩B≠A,則A∪B≠BD.若A∪B=B,則A∩B=A答案:“若A∪B=A,則A∩B=B”的否命題:“若A∪B≠A則A∩B≠B”故選A.20.方程y=ax+b和a2x2+y2=b2(a>b>1)在同一坐標(biāo)系中的圖形可能是()A.
B.
C.
D.
答案:∵a>b>1,∴方程y=ax+b的圖象與y軸交于y軸的正半軸,且函數(shù)是增函數(shù),由此排除選項(xiàng)B和D,∵a>b>1,a2x2+y2=b2?x2(ba)2+y2b2=1,∴橢圓焦點(diǎn)在y軸,由此排除A.故選C.21.已知正四棱柱的對(duì)角線的長為6,且對(duì)角線與底面所成角的余弦值為33,則該正四棱柱的體積等于______.答案::如圖可知:∵AC1=6,cos∠AC1A1=33∴A1C1=2,AA1=2∴正四棱柱的體積等于A1B12?AA1=2故為:222.直線y=1與直線y=3x+3的夾角為______答案:l1與l2表示的圖象為(如下圖所示)y=1與x軸平行,y=3x+3與x軸傾斜角為60°,所以y=1與y=3x+3的夾角為60°.故為60°23.設(shè)a=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,則實(shí)數(shù)m,n的值分別為______.答案:因?yàn)閍=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,根據(jù)空間向量平行的坐標(biāo)表示公式,
所以24=2m-32m+124=n+23n-2,解得:m=12,n=6.故為:m=12,n=6.24.已知原點(diǎn)O(0,0),則點(diǎn)O到直線4x+3y+5=0的距離等于
______.答案:利用點(diǎn)到直線的距離公式得到d=|5|42+32=1,故為1.25.已知隨機(jī)變量ξ服從正態(tài)分布N(2,σ2),且P(ξ<0)=0.2,則P(ξ>4)=()
A.0.6
B.0.4
C.0.3
D.0.2答案:D26.在研究打酣與患心臟病之間的關(guān)系中,通過收集數(shù)據(jù)、整理分析數(shù)據(jù)得“打酣與患心臟病有關(guān)”的結(jié)論,并且有99%以上的把握認(rèn)為這個(gè)結(jié)論是成立的.下列說法中正確的是()
A.100個(gè)心臟病患者中至少有99人打酣
B.1個(gè)人患心臟病,則這個(gè)人有99%的概率打酣
C.100個(gè)心臟病患者中一定有打酣的人
D.100個(gè)心臟病患者中可能一個(gè)打酣的人都沒有答案:D27.下列說法中正確的是()
A.以直角三角形的一邊為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓錐
B.以直角梯形的一腰為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓臺(tái)
C.圓柱、圓錐、圓臺(tái)的底面都是圓
D.圓錐側(cè)面展開圖為扇形,這個(gè)扇形所在圓的半徑等于圓錐的底面圓的半徑答案:C28.
若向量,滿足||=||=2,與的夾角為60°,則|+|=()
A.
B.2
C.4
D.12答案:B29.用反證法證明某命題時(shí),對(duì)結(jié)論:“自然數(shù)a,b,c中恰有一個(gè)偶數(shù)”正確的假設(shè)為()
A.a(chǎn),b,c都是奇數(shù)
B.a(chǎn),b,c都是偶數(shù)
C.a(chǎn),b,c中至少有兩個(gè)偶數(shù)
D.a(chǎn),b,c中至少有兩個(gè)偶數(shù)或都是奇數(shù)答案:D30.如圖,在復(fù)平面內(nèi),點(diǎn)A表示復(fù)數(shù)z的共軛復(fù)數(shù),則復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)是()A.AB.BC.CD.D答案:兩個(gè)復(fù)數(shù)是共軛復(fù)數(shù),兩個(gè)復(fù)數(shù)的實(shí)部相同,下部相反,對(duì)應(yīng)的點(diǎn)關(guān)于x軸對(duì)稱.所以點(diǎn)A表示復(fù)數(shù)z的共軛復(fù)數(shù)的點(diǎn)是B.故選B.31.雙曲線C的焦點(diǎn)在x軸上,離心率e=2,且經(jīng)過點(diǎn)P(2,3),則雙曲線C的標(biāo)準(zhǔn)方程是______.答案:設(shè)雙曲線C的標(biāo)準(zhǔn)方程x2a2-y2b2=1,∵經(jīng)過點(diǎn)P(2,3),∴2a2-3b2=1
①,又∵e=2=a2+b2a
②,由①②聯(lián)立方程組并解得
a2=1,b2=3,雙曲線C的標(biāo)準(zhǔn)方程是x2-y23=1,故為:x2-y23=1.32.設(shè),求證:。答案:證明略解析:證明:因?yàn)?,所以有。又,故有?!?0分于是有得證。
…………20分33.在極坐標(biāo)系中,曲線ρ=4sinθ和ρcosθ=1相交于點(diǎn)A、B,則|AB|=______.答案:將其化為直角坐標(biāo)方程為x2+y2-4y=0,和x=1,代入得:y2-4y+1=0,則|AB|=|y1-y2|=(y1+y2)2-4y1y1=(4)2-4=23.故為:23.34.參數(shù)方程(θ為參數(shù))化為普通方程是()
A.2x-y+4=0
B.2x+y-4=0
C.2x-y+4=0,x∈[2,3]
D.2x+y-4=0,x∈[2,3]答案:D35.設(shè)a、b為單位向量,它們的夾角為90°,那么|a+3b|等于()A.7B.10C.13D.4答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10,|a+3b|=10.故選B.36.鐵路托運(yùn)行李,從甲地到乙地,按規(guī)定每張客票托運(yùn)行李不超過50kg時(shí),每千克0.2元,超過50kg時(shí),超過部分按每千克0.25元計(jì)算,畫出計(jì)算行李價(jià)格的算法框圖.答案:程序框圖:37.已知二階矩陣A=2ab0屬于特征值-1的一個(gè)特征向量為1-3,求矩陣A的逆矩陣.答案:由矩陣A屬于特征值-1的一個(gè)特征向量為α1=1-3,可得2ab01-3=-1-3,得2-3a=-1b=3即a=1,b=3;
…(3分)解得A=2130,…(8分)∴A逆矩陣是A-1=dad-bc-bad-bc-cad-bcaad-bc=0131-23.38.按ABO血型系統(tǒng)學(xué)說,每個(gè)人的血型為A、B、O、AB型四種之一,依血型遺傳學(xué),當(dāng)且僅當(dāng)父母中至少有一人的血型是AB型時(shí),子女的血型一定不是O型,若某人的血型為O型,則其父母血型的所有可能情況有()
A.12種
B.6種
C.10種
D.9種答案:D39.若一個(gè)底面為正三角形、側(cè)棱與底面垂直的棱柱的三視圖如下圖所示,則這個(gè)棱柱的體積為()A.123B.363C.273D.6答案:此幾何體為一個(gè)三棱柱,棱柱的高是4,底面正三角形的高是33,設(shè)底面邊長為a,則32a=33,∴a=6,故三棱柱體積V=12?62?32?4=363.故選B40.設(shè)a、b為單位向量,它們的夾角為90°,那么|a+3b|等于______.答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10∴|a+3b|=10故為1041.把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標(biāo)等于_____答案:(2,-2)解析:把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標(biāo)等于_____42.若圖中的直線l1,l2,l3的斜率為k1,k2,k3則()
A.k1<k2<k3
B.k3<k1<k2
C.k2<k1<k3
D.k3<k2<k1
答案:C43.計(jì)算:x10÷x5=______.答案:根據(jù)有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):x10÷x5=x5故為:x544.如圖,PA,PB切⊙O于
A,B兩點(diǎn),AC⊥PB,且與⊙O相交于
D,若∠DBC=22°,則∠APB═______.答案:連接AB根據(jù)弦切角有∠DBC=∠DAB=22°
∠PAC=∠DBA因?yàn)榇怪薄螪CB=90°根據(jù)外角∠ADB=∠DBC+∠DCB=112°
∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故為:44°45.如圖,平面內(nèi)有三個(gè)向量OA、OB、OC,其中與OA與OB的夾角為120°,OA與OC的夾角為30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),則λ+μ的值為______.答案:過C作OA與OB的平行線與它們的延長線相交,可得平行四邊形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四邊形的邊長為2和4,λ+μ=2+4=6.故為6.46.(選做題)在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知射線θ=與曲線(t為參數(shù))相較于A,B來兩點(diǎn),則線段AB的中點(diǎn)的直角坐標(biāo)為(
)。答案:(2.5,2.5)47.設(shè)隨機(jī)變量ξ服從正態(tài)分布N(μ,σ2),且函數(shù)f(x)=x2+4x+ξ沒有零點(diǎn)的概率為,則μ為()
A.1
B.4
C.2
D.不能確定答案:B48.用秦九韶算法求多項(xiàng)式
在的值.答案:.解析:可根據(jù)秦九韶算法原理,將所給多項(xiàng)式改寫,然后由內(nèi)到外逐次計(jì)算即可.
而,所以有,,,,,.即.【名師指引】利用秦九韶算法計(jì)算多項(xiàng)式值關(guān)鍵是能正確地將所給多項(xiàng)式改寫,然后由內(nèi)到外逐次計(jì)算,由于后項(xiàng)計(jì)算需用到前項(xiàng)的結(jié)果,故應(yīng)認(rèn)真、細(xì)心,確保中間結(jié)果的準(zhǔn)確性.49.設(shè)15000件產(chǎn)品中有1000件次品,從中抽取150件進(jìn)行檢查,則查得次品數(shù)的數(shù)學(xué)期望為______.答案:∵15000件產(chǎn)品中有1000件次品,從中抽取150件進(jìn)行檢查,∴查得次品數(shù)的數(shù)學(xué)期望為150×100015000=10.故為10.50.設(shè)m∈R,向量=(1,m).若||=2,則m等于()
A.1
B.
C.±1
D.±答案:D第3卷一.綜合題(共50題)1.已知向量a,b,向量c=2a+b,且|a|=1,|b|=2,a與b的夾角為60°
(1)求|c|2;(2)若向量d=ma-b,且d∥c,求實(shí)數(shù)m的值.答案:(1)∵|a|=1,|b|=2,a和b的夾角為60°∴a?b=|a||b|cos60°=1∴|c|2=(
2a+b)2=4a2+4ab+b2=4+4+4=12(2)∵d∥c∴存在實(shí)數(shù)λ使得d=λc即ma-b=λ(2a+b)又∵a,b不共線∴2λ=m,λ=-1∴m=-22.以下關(guān)于排序的說法中,正確的是(
)A.排序就是將數(shù)按從小到大的順序排序B.排序只有兩種方法,即直接插入排序和冒泡排序C.用冒泡排序把一列數(shù)從小到大排序時(shí),最小的數(shù)逐趟向上漂浮D.用冒泡排序把一列數(shù)從小到大排序時(shí),最大的數(shù)逐趟向上漂浮答案:C解析:由冒泡排序的特點(diǎn)知C正確.3.一射手對(duì)靶射擊,直到第一次命中為止每次命中的概率為0.6,現(xiàn)有4顆子彈,命中后的剩余子彈數(shù)目ξ的期望為()
A.2.44
B.3.376
C.2.376
D.2.4答案:C4.集合{1,2,3}的真子集總共有()A.8個(gè)B.7個(gè)C.6個(gè)D.5個(gè)答案:集合{1,2,3}的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7個(gè).故選B.5.設(shè)隨機(jī)變量ζ~N(2,p),隨機(jī)變量η~N(3,p),若,則P(η≥1)=()
A.
B.
C.
D.答案:D6.若a>0,b>0,則不等式-b<aA.<x<0或0<x<
答案:D解析:試題分析:7.要使直線y=kx+1(k∈R)與焦點(diǎn)在x軸上的橢圓x27+y2a=1總有公共點(diǎn),實(shí)數(shù)a的取值范圍是______.答案:要使方程x27+y2a=1表示焦點(diǎn)在x軸上的橢圓,需a<7,由直線y=kx+1(k∈R)恒過定點(diǎn)(0,1),所以要使直線y=kx+1(k∈R)與橢圓x27+y2a=1總有公共點(diǎn),則(0,1)應(yīng)在橢圓上或其內(nèi)部,即a>1,所以實(shí)數(shù)a的取值范圍是[1,7).故為[1,7).8.已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,拋物線上一點(diǎn)A的橫坐標(biāo)為x1(x1>0),過點(diǎn)A作拋物線C的切線l1交x軸于點(diǎn)D,交y軸于點(diǎn)Q,交直線l:y=p2于點(diǎn)M,當(dāng)|FD|=2時(shí),∠AFD=60°.
(1)求證:△AFQ為等腰三角形,并求拋物線C的方程;
(2)若B位于y軸左側(cè)的拋物線C上,過點(diǎn)B作拋物線C的切線l2交直線l1于點(diǎn)P,交直線l于點(diǎn)N,求△PMN面積的最小值,并求取到最小值時(shí)的x1值.答案:(1)設(shè)A(x1,x122p),則A處的切線方程為l1:y=x1px-x122p,可得:D(x12,0),Q(0,-x212p)∴|FQ|=p2+x212p=|AF|;∴△AFQ為等腰三角形.由點(diǎn)A,Q,D的坐標(biāo)可知:D為線段AQ的中點(diǎn),∴|AF|=4,得:p2+x212p=4x21+p2=16∴p=2,C:x2=4y.(2)設(shè)B(x2,y2)(x2<0),則B處的切線方程為y=x22x-x224聯(lián)立y=x22x-x224y=x12x-x214得到點(diǎn)P(x1+x22,x1x24),聯(lián)立y=x12x-x214y=1得到點(diǎn)M(x12+2x1,1).同理N(x22+2x2,1),設(shè)h為點(diǎn)P到MN的距離,則S△=12|MN|?h=12×(x12+2x1-x22-2x2)(1-x1x24)=(x2-x1)(4-x1x2)216x1x2
①設(shè)AB的方程為y=kx+b,則b>0,由y=kx+bx2=4y得到x2-4kx-4b=0,得x1+x2=4kx1x2=-4b代入①得:S△=16k2+16b(4+4b)264b=(1+b)2k2+bb,要使面積最小,則應(yīng)k=0,得到S△=(1+b)2bb②令b=t,得S△(t)=(1+t2)2t=t3+2t+1t,則S′△(t)=(3t2-1)(t2+1)t2,所以當(dāng)t∈(0,33)時(shí),S(t)單調(diào)遞減;當(dāng)t∈(33,+∞)時(shí),S(t)單調(diào)遞增,所以當(dāng)t=33時(shí),S取到最小值為1639,此時(shí)b=t2=13,k=0,所以y1=13,解得x1=233.故△PMN面積取得最小值時(shí)的x1值為233.9.將包含甲、乙兩人的4位同學(xué)平均分成2個(gè)小組參加某項(xiàng)公益活動(dòng),則甲、乙兩名同學(xué)分在同一小組的概率為()
A.
B.
C.
D.答案:C10.已知三個(gè)數(shù)a=60.7,b=0.76,c=log0.76,則a,b,c從小到大的順序?yàn)開_____.答案:因?yàn)閍=60.7>60=1,b=0.76<0.70=1,且b>0,c=log0.76<0,所以c<b<a.故為c<b<a.11.a=(2,1),b=(3,4),則向量a在向量b方向上的投影為______.答案:根據(jù)向量在另一個(gè)向量上投影的定義向量a在向量b方向上的投影為a?b|b|∵a=(2,1),b=(3,4),∴a?b=10,|b|=5∴a?b|b|=2故為:212.執(zhí)行如圖所示的程序框圖,輸出的M的值為()
A.17
B.53
C.161
D.485
答案:C13.若A(0,2,198),B(1,-1,58),C(-2,1,58)是平面α內(nèi)的三點(diǎn),設(shè)平面α的法向量a=(x,y,z),則x:y:z=______.答案:AB=(1,-3,-74),AC=(-2,-1,-74),α?AB=0,α?AC=0,∴x=23yz=-43y,x:y:z=23y:y:(-43y)=2:3:(-4).故為2:3:-4.14.若向量的起點(diǎn)與終點(diǎn)M、A、B、C互不重合且無三點(diǎn)共線,且滿足下列關(guān)系(O為空間任一點(diǎn)),則能使向量成為空間一組基底的關(guān)系是()
A.
B.
C.
D.答案:C15.要證明,可選擇的方法有以下幾種,其中最合理的是()
A.綜合法
B.分析法
C.反證法
D.歸納法答案:B16.紙制的正方體的六個(gè)面根據(jù)其方位分別標(biāo)記為上、下、東、南、西、北.現(xiàn)在沿該正方體的一些棱將正方體剪開、外面朝上展平,得到右側(cè)的平面圖形,則標(biāo)“△”的面的方位()
A.南
B.北
C.西
D.下
答案:B17.半徑為5,圓心在y軸上,且與直線y=6相切的圓的方程為______.答案:如圖所示,因?yàn)榘霃綖?,圓心在y軸上,且與直線y=6相切,所以可知有兩個(gè)圓,上圓圓心為(0,11),下圓圓心為(0,1),所以圓的方程為x2+(y-1)2=25或x2+(y-11)2=25.18.在(1+2x)5的展開式中,x2的系數(shù)等于______.(用數(shù)字作答)答案:由于(1+2x)5的展開式的通項(xiàng)公式為Tr+1=Cr5?(2x)r,令r=2求得x2的系數(shù)等于C25×22=40,故為40.19.賦值語句M=M+3表示的意義()
A.將M的值賦給M+3
B.將M的值加3后再賦給M
C.M和M+3的值相等
D.以上說法都不對(duì)答案:B20.已知D是△ABC所在平面內(nèi)一點(diǎn),,則()
A.
B.
C.=
D.答案:A21.如果如圖所示的程序中運(yùn)行后輸出的結(jié)果為132,那么在程序While后面的“條件”應(yīng)為______.答案:第一次循環(huán)之后s=12,i=11;第二次循環(huán)之后結(jié)果是s=132,i=10,已滿足題意跳出循環(huán).由于此循環(huán)體是當(dāng)型循環(huán)i=12、11都滿足條件,i=10不滿足條件.故為:i≥1122.下列各個(gè)對(duì)應(yīng)中,從A到B構(gòu)成映射的是()A.
B.
C.
D.
答案:按照映射的定義,A中的任何一個(gè)元素在集合B中都有唯一確定的元素與之對(duì)應(yīng).而在選項(xiàng)A和選項(xiàng)B中,前一個(gè)集合中的元素2在后一個(gè)集合中沒有元素與之對(duì)應(yīng),故不符合映射的定義.選項(xiàng)C中,前一個(gè)集合中的元素1在后一集合中有2個(gè)元素和它對(duì)應(yīng),也不符合映射的定義,只有選項(xiàng)D滿足映射的定義,故選D.23.設(shè)P是邊長為23的正△ABC內(nèi)的一點(diǎn),x,y,z是P到三角形三邊的距離,則x+y+z的最大值為______.答案:正三角形的邊長為a=23,可得它的高等于32a=3∵P是正三角形內(nèi)部一點(diǎn)∴點(diǎn)P到三角形三邊的距離之和等于正三角形的高,即x+y+z=3∵(x+y+z)2=(1×x+1×y+1×z)2≤(1+1+1)(x+y+z)=9∴x+y+z≤3,當(dāng)且僅當(dāng)x=y=z=1時(shí),x+y+z的最大值為3故為:324.已知函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個(gè)零點(diǎn)比1大,一個(gè)零點(diǎn)比1小,則實(shí)數(shù)a的取值范圍______.答案:∵函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個(gè)零點(diǎn)比1大,一個(gè)零點(diǎn)比1小∴f(1)<0∴1+a2-1+a-2<0∴a2+a-2<0∴-2<a<1∴實(shí)數(shù)a的取值范圍為(-2,1)故為:(-2,1)25.若由一個(gè)2*2列聯(lián)表中的數(shù)據(jù)計(jì)算得k2=4.013,那么有()把握認(rèn)為兩個(gè)變量有關(guān)系.
A.95%
B.97.5%
C.99%
D.99.9%答案:A26.ab>0,則①|(zhì)a+b|>|a|②|a+b|<|b|③|a+b|<|a-b|④|a+b|>|a-b|四個(gè)式中正確的是()
A.①②
B.②③
C.①④
D.②④答案:C27.設(shè)拋物線y2=8x的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),PA⊥l,A為垂足.如果直線AF的斜率為-3,那么|PF|=()A.43B.8C.83D.16答案:拋物線的焦點(diǎn)F(2,0),準(zhǔn)線方程為x=-2,直線AF的方程為y=-3(x-2),所以點(diǎn)A(-2,43)、P(6,43),從而|PF|=6+2=8故選B.28.設(shè)k>1,則關(guān)于x,y的方程(1-k)x2+y2=k2-1所表示的曲線是()
A.長軸在x軸上的橢圓
B.長軸在y軸上的橢圓
C.實(shí)軸在x軸上的雙曲線
D.實(shí)軸在y軸上的雙曲線答案:D29.已知點(diǎn)G是△ABC的重心,過G作直線與AB,AC兩邊分別交于M,N兩點(diǎn),且,則的值()
A.3
B.
C.2
D.答案:B30.拋物線y=4x2的焦點(diǎn)坐標(biāo)為()
A.(1,0)
B.(0,)
C.(0,1)
D.(,0)答案:B31.在下列四個(gè)命題中,正確的共有()
①坐標(biāo)平面內(nèi)的任何一條直線均有傾斜角和斜率;
②直線的傾斜角的取值范圍是[0,π];
③若一條直線的斜率為tanα,則此直線的傾斜角為α;
④若一條直線的傾斜角為α,則此直線的斜率為tanα.
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)答案:A32.有一個(gè)正四棱錐,它的底面邊長與側(cè)棱長均為a,現(xiàn)用一張正方形包裝紙將其完全包?。ú荒懿眉艏垼梢哉郫B),那么包裝紙的最小邊長應(yīng)為()A.2+62aB.(2+6)aC.1+32aD.(1+3)a答案:由題意可知:當(dāng)正四棱錐沿底面將側(cè)面都展開時(shí)如圖所示:分析易知當(dāng)以PP′為正方形的對(duì)角線時(shí),所需正方形的包裝紙的面積最小,此時(shí)邊長最小.設(shè)此時(shí)的正方形邊長為x則:(PP′)2=2x2,又因?yàn)镻P′=a+2×32a=a+3a,∴(
a+3a)2=2x2,解得:x=6+22a.故選A33.已知點(diǎn)M的極坐標(biāo)為,下列所給四個(gè)坐標(biāo)中能表示點(diǎn)M的坐標(biāo)是()
A.
B.
C.
D.答案:D34.若兩圓x2+y2=m和x2+y2+6x-8y-11=0有公共點(diǎn),則實(shí)數(shù)m的取值范圍是(
)
A.(-∞,1)
B.(121,+∞)
C.[1,121]
D.(1,121)答案:C35.已知P(B|A)=,P(A)=,則P(AB)等于()
A.
B.
C.
D.答案:C36.某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為()
A.9
B.18
C.27
D.36答案:B37.1
甲、乙、丙三臺(tái)機(jī)床各自獨(dú)立地加工同一種零件,已知甲機(jī)床加工的零件是一等品而乙機(jī)床加工的零件不是一等品的概率為,乙機(jī)床加工的零件是一等品而丙機(jī)床加工的零件不是一等品的概率為,甲、丙兩臺(tái)機(jī)床加工的零件都是一等品的概率為
(1)分別求甲、乙、丙三臺(tái)機(jī)床各自加工零件是一等品的概率;
(2)從甲、乙、丙加工的零件中各取一個(gè)檢驗(yàn),求至少有一個(gè)一等品的概
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 購銷合同樣本家具
- 招標(biāo)價(jià)格比較分析報(bào)告
- 私人裝修服務(wù)承諾
- 標(biāo)準(zhǔn)施工招標(biāo)文件的文本解析
- 電腦技術(shù)支持服務(wù)
- 補(bǔ)充協(xié)議之延期合同編寫
- 會(huì)議室音響設(shè)備采購合同供應(yīng)商比較
- 凹型方管采購合同制度
- 保障升學(xué)教育服務(wù)合同
- 定制化保安服務(wù)合同樣本
- 2024個(gè)稅內(nèi)部培訓(xùn)
- 辦公樓外立面玻璃更換施工方案
- 出生醫(yī)學(xué)證明警示教育培訓(xùn)
- 2024-2025學(xué)年人教版道法八年級(jí)上冊(cè) 第一學(xué)期期末測(cè)試卷01
- DB11-T 2324-2024腳手架鋼板立網(wǎng)防護(hù)應(yīng)用技術(shù)規(guī)程
- 期末試卷(試題)-2024-2025學(xué)年四年級(jí)上冊(cè)數(shù)學(xué)滬教版
- 期末復(fù)習(xí)知識(shí)點(diǎn)-2024-2025學(xué)年統(tǒng)編版道德與法治九年級(jí)上冊(cè)
- 中圖版地理八年級(jí)上冊(cè) 第二章 第一節(jié) 世界的氣溫和降水教案
- 工程咨詢質(zhì)量管理制度
- 基于深度教學(xué)構(gòu)建高品質(zhì)課堂
- 2024年礦山(提升機(jī)操作作業(yè)員)安全及技能資格證考試題庫與答案
評(píng)論
0/150
提交評(píng)論