2023年襄陽(yáng)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年襄陽(yáng)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年襄陽(yáng)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年襄陽(yáng)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年襄陽(yáng)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩44頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年襄陽(yáng)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.在△ABC中,∠ABC=60°,AB=2,BC=3,在BC上任取一點(diǎn)D,使△ABD為鈍角三角形的概率為()A.16B.13C.12D.23答案:由題意知本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件對(duì)應(yīng)的是長(zhǎng)度為3的一條線段,滿足條件的事件是組成鈍角三角形,包括兩種情況第一種∠ADB為鈍角,這種情況的分界是∠ADB=90°的時(shí)候,此時(shí)BD=1∴這種情況下,滿足要求的0<BD<1.第二種∠OAD為鈍角,這種情況的分界是∠BAD=90°的時(shí)候,此時(shí)BD=4∴這種情況下,不可能綜合兩種情況,若△ABD為鈍角三角形,則0<BD<1P=13故選B2.已知x,y之間的一組數(shù)據(jù):

x0123y1357則y與x的回歸方程必經(jīng)過(guò)()A.(2,2)B.(1,3)C.(1.5,4)D.(2,5)答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4∴這組數(shù)據(jù)的樣本中心點(diǎn)是(1.5,4)根據(jù)線性回歸方程一定過(guò)樣本中心點(diǎn),∴線性回歸方程y=a+bx所表示的直線必經(jīng)過(guò)點(diǎn)(1.5,4)故選C3.如圖,一個(gè)正方體內(nèi)接于一個(gè)球,過(guò)球心作一個(gè)截面,則截面的可能圖形為(

A.①③

B.②④

C.①②③

D.②③④答案:C4.如圖,彎曲的河流是近似的拋物線C,公路l恰好是C的準(zhǔn)線,C上的點(diǎn)O到l的距離最近,且為0.4千米,城鎮(zhèn)P位于點(diǎn)O的北偏東30°處,|OP|=10千米,現(xiàn)要在河岸邊的某處修建一座碼頭,并修建兩條公路,一條連接城鎮(zhèn),一條垂直連接公路l,以便建立水陸交通網(wǎng).

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線C的方程;

(2)為了降低修路成本,必須使修建的兩條公路總長(zhǎng)最小,請(qǐng)給出修建方案(作出圖形,在圖中標(biāo)出此時(shí)碼頭Q的位置),并求公路總長(zhǎng)的最小值(精確到0.001千米)答案:(1)過(guò)點(diǎn)O作準(zhǔn)線的垂線,垂足為A,以O(shè)A所在直線為x軸,OA的垂直平分線為y軸,建立平面直角坐標(biāo)系…(2分)由題意得,p2=0.4…(4分)所以,拋物線C:y2=1.6x…(6分)(2)設(shè)拋物線C的焦點(diǎn)為F由題意得,P(5,53)…(8分)根據(jù)拋物線的定義知,公路總長(zhǎng)=|QF|+|QP|≥|PF|≈9.806…(12分)當(dāng)Q為線段PF與拋物線C的交點(diǎn)時(shí),公路總長(zhǎng)最小,最小值為9.806千米…(16分)5.解關(guān)于x的不等式(k≥0,k≠1).答案:不等式的解集為{x|x2}解析:原不等式即,1°若k=0,原不等式的解集為空集;2°若1-k>0,即0,所以原不等式的解集為{x|x2}.</k<1,由原不等式的解集為{x|2<x<</k<1時(shí),原不等式等價(jià)于6.若P(2,-1)為曲線x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中點(diǎn),則該弦所在直線的普通方程為_(kāi)_____.答案:∵曲線x=1+5cosθy=5sinθ(0≤θ<2π),∴(x-1)2+y2=25,∵P(2,-1)為曲線x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中點(diǎn),設(shè)過(guò)點(diǎn)P(2,-1)的弦與(x-1)2+y2=25交于A(x1,y1),B(x2,y2),則x1+x2=4y1+y2=-2,把A(x1,y1),B(x2,y2)代入(x-1)2+y2=25,得(x1-1)2+y

12=25(x2-1)2+y22=25,∴x12-2x1+1+y12=25,①x22-2x2+1+y22=25,②,①-②,得4(x1-x2)-2(x1-x2)-2(y1-y2)=0,∴k=y1-y2x1-x2=1,∴該弦所在直線的普通方程為y+1=x-2,即x-y-3=0.故為:x-y-3=0.7.若圖中直線l1,l2,l3的斜率分別為k1,k2,k3,則()A.k2<k1<k3B.k3<k2<k1C.k2<k3<k1D.k1<k3<k2答案:∵直線l2的傾斜角為鈍角,∴k2<0.直線l1,l3的傾斜角為銳角,且直線l1的傾斜角小于l3的傾斜角,∴0<k1<k3.故選A.8.直線l過(guò)點(diǎn)(-3,1),且它的一個(gè)方向向量n=(2,-3),則直線l的方程為_(kāi)_____.答案:設(shè)直線l的另一個(gè)方向向量為a=(1,k),其中k是直線的斜率可得n=(2,-3)與a=(1,k)互相平行∴12=k-3?k=-32所以直線l的點(diǎn)斜式方程為:y-1=-32(x+3)化成一般式:3x+2y+7=0故為:3x+2y+7=09.如圖:在長(zhǎng)方體ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F(xiàn)分別是線段AB,BC上的點(diǎn),且EB=FB=1.

(1)求二面角C-DE-C1的大??;

(2)求異面直線EC1與FD1所成角的大??;

(3)求異面直線EC1與FD1之間的距離.答案:(1)以A為原點(diǎn)AB,AD,AA1分別為x軸、y軸、z軸的正向建立空間直角坐標(biāo)系,則有D(0,3,0),D1(0,3,2),E(3,0,0),F(xiàn)(4,1,0),C1(4,3,2).(1分)于是DE=(3,-3,0),EC1=(1,3,2),F(xiàn)D1=(-4,2,2)(3分)設(shè)向量n=(x,y,z)與平面C1DE垂直,則有n⊥DEn⊥EC1?3x-3y=0x+3y+2z=0?x=y=-12z.∴n=(-z2,-z2,z)=z2(-1,-1,2),其中z>0.取n0=(-1,-1,2),則n0是一個(gè)與平面C1DE垂直的向量,(5分)∵向量AA1=(0,0,2)與平面CDE垂直,∴n0與AA1所成的角θ為二面角C-DE-C1的平面角.(6分)∴cosθ=n0?AA1|n0||AA1|=-1×0-1×0+2×21+1+4×0+0+4=63.(7分)故二面角C-DE-C1的大小為arccos63.(8分)(2)設(shè)EC1與FD1所成角為β,(1分)則cosβ=EC1?FD1|EC1||FD1|=1×(-4)+3×2+2×21+1+4×0+0+4=2114(10分)故異面直線EC1與FD1所成角的大小為arccos2114(11分)(3)設(shè)m=(x,y,z)m⊥EC1m⊥FD1?m=(17,-57,1)又取D1C1=(4,0,0)$}}\overm}=(\frac{1}{7},-\frac{5}{7},1)$$}}\overC}_1}=(4,0,0)$(13分)設(shè)所求距離為d,則d=|m?D1C1||m|=4315$}}\overC}}_1}|}}{|\vecm|}=\frac{{4\sqrt{3}}}{15}$(14分).10.如圖1,一個(gè)“半圓錐”的主視圖是邊長(zhǎng)為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,這個(gè)幾何體的體積為()A.33πB.36πC.23πD.3π答案:由已知中“半圓錐”的主視圖是邊長(zhǎng)為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,我們可以判斷出底面的半徑為1,母線長(zhǎng)為2,則半圓錐的高為3故V=13×12×π×3=36π故選B11.寫(xiě)出系數(shù)矩陣為1221,且解為xy=11的一個(gè)線性方程組是______.答案:由題意得:線性方程組為:x+2y=32x+y=3解之得:x=1y=1;故所求的一個(gè)線性方程組是x+2y=32x+y=3故為:x+2y=32x+y=3.12.F1,F(xiàn)2是橢圓x2a2+y2b2=1的兩個(gè)焦點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),從F1引∠F1PF2的外角平分線的垂線,交F2P的延長(zhǎng)線于M,則點(diǎn)M的軌跡是______.答案:設(shè)從F1引∠F1PF2的外角平分線的垂線,垂足為R∵△PF1M中,PR⊥F1M且PR是∠F1PM的平分線∴|MP|=|F1P|,可得|PF1|+|PF2|=|PM|+|PF2|=|MF2|根據(jù)橢圓的定義,可得|PF1|+|PF2|=2a,∴|MF2|=2a,即動(dòng)點(diǎn)M到點(diǎn)F2的距離為定值2a,因此,點(diǎn)M的軌跡是以點(diǎn)F2為圓心,半徑為2a的圓.故為:以點(diǎn)F2為圓心,半徑為2a的圓.13.已知正數(shù)x,y,且x+4y=1,則xy的最大值為()

A.

B.

C.

D.答案:C14.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在AB上,DE⊥EB.

(Ⅰ)求證:AC是△BDE的外接圓的切線;

(Ⅱ)若AD=23,AE=6,求EC的長(zhǎng).答案:證明:(Ⅰ)取BD的中點(diǎn)O,連接OE.∵BE平分∠ABC,∴∠CBE=∠OBE.又∵OB=OE,∴∠OBE=∠BEO,∴∠CBE=∠BEO,∴BC∥OE.…(3分)∵∠C=90°,∴OE⊥AC,∴AC是△BDE的外接圓的切線.

…(5分)(Ⅱ)設(shè)⊙O的半徑為r,則在△AOE中,OA2=OE2+AE2,即(r+23)2=r2+62,解得r=23,…(7分)∴OA=2OE,∴∠A=30°,∠AOE=60°.∴∠CBE=∠OBE=30°.∴在Rt△BCE中,可得EC=12BE=12×3r=12×3×23=3.

…(10分)15.平行線l1:3x-2y-5=0與l2:6x-4y+3=0之間的距離為_(kāi)_____.答案:將l1:3x-2y-5=0化成6x-4y-10=0∴l(xiāng)1:3x-2y-5=0與l2:6x-4y+3=0之間的距離為d=|-10-3|62+(-4)2=1352=132故為:13216.設(shè)四邊形ABCD中,有且,則這個(gè)四邊形是()

A.平行四邊形

B.矩形

C.等腰梯形

D.菱形答案:C17.不等式的解集

.答案:;解析:略18.已知點(diǎn)P為△ABC所在平面上的一點(diǎn),且,其中t為實(shí)數(shù),若點(diǎn)P落在△ABC的內(nèi)部,則t的取值范圍是()

A.

B.

C.

D.答案:D19.(參數(shù)方程與極坐標(biāo)選講)在極坐標(biāo)系中,圓C的極坐標(biāo)方程為:ρ2+2ρcosθ=0,點(diǎn)P的極坐標(biāo)為(2,π2),過(guò)點(diǎn)P作圓C的切線,則兩條切線夾角的正切值是______.答案:圓C的極坐標(biāo)方程ρ2+2ρcosθ=0,化為普通方程為x2+y2+2x=0,即(x-1)2+y2=1.它表示以C(1,0)為圓心,以1為半徑的圓.點(diǎn)P的極坐標(biāo)為(2,π2),化為直角坐標(biāo)為(0,2).設(shè)兩條切線夾角為2θ,則sinθ=15,cosθ25,故tanθ=12.再由tan2θ=2tanθ1-tan2θ=43,故為43.20.以過(guò)橢圓+=1(a>b>0)的右焦點(diǎn)的弦為直徑的圓與直線l:x=的位置關(guān)系是()

A.相交

B.相切

C.相離

D.不能確定答案:C21.如圖,小圓圈表示網(wǎng)絡(luò)的結(jié)點(diǎn),結(jié)點(diǎn)之間的連線表示它們有網(wǎng)線相聯(lián),連線標(biāo)注的數(shù)字表示該段網(wǎng)線單位時(shí)間內(nèi)可以通過(guò)的最大信息量,現(xiàn)從結(jié)點(diǎn)B向結(jié)點(diǎn)A傳遞信息,信息可以分開(kāi)沿不同的路線同時(shí)傳遞,則單位時(shí)間內(nèi)傳遞的最大信息量為()

A.26

B.24

C.20

D.19

答案:D22.已知直線經(jīng)過(guò)點(diǎn),傾斜角,設(shè)與圓相交與兩點(diǎn),求點(diǎn)到兩點(diǎn)的距離之積。答案:2解析:把直線代入得,則點(diǎn)到兩點(diǎn)的距離之積為23.在極坐標(biāo)系中,點(diǎn)A的極坐標(biāo)為(2,0),直線l的極坐標(biāo)方程為ρ(cosθ+sinθ)+2=0,則點(diǎn)A到直線l的距離為_(kāi)_____.答案:由題意得點(diǎn)A(2,0),直線l為

ρ(cosθ+sinθ)+2=0,即

x+y+2=0,∴點(diǎn)A到直線l的距離為

|2+0+2|2=22,故為22.24.設(shè)D為△ABC的邊AB上一點(diǎn),P為△ABC內(nèi)一點(diǎn),且滿足AD=23AB,AP=AD+14BC,則S△APDS△ABC=()A.29B.16C.754D.427答案:由題意,AP=AD+DP,AP=AD+14BC∴DP=14BC∴三角形ADP的高三角形ABC=ADAB=23∴S△APDS△ABC=23×14=16故選B.25.已知點(diǎn)A(5,0)和⊙B:(x+5)2+y2=36,P是⊙B上的動(dòng)點(diǎn),直線BP與線段AP的垂直平分線交于點(diǎn)Q.

(1)證明點(diǎn)Q的軌跡是雙曲線,并求出軌跡方程.

(2)若(BQ+BA)?QA=0,求點(diǎn)Q的坐標(biāo).答案:(1)∵點(diǎn)Q在線段AP的垂直平分線上,∴|QP|=|QA|,∴||BQ|-|PQ||=||BQ|-|AQ||=6.∴點(diǎn)Q的軌跡是以A、B為焦點(diǎn)的雙曲線.(4′)其軌跡方程是x29-y216=1.(7′)(2)以A、B、Q為三個(gè)頂點(diǎn)作平行四邊形ABQC,則BQ+BA=BC∵(BQ+BA)?QA=0,∴BC?QC=0,∴平行四邊形ABQC是菱形,∴|BA|=|BQ|.(8′)∴點(diǎn)Q在圓(x+5)2+y2=100上.解方程組(x+5)2+y2=100x29-y216=1.(10′)得Q(-395,±485)或Q(215,±865).(12′)26.對(duì)任意實(shí)數(shù)x,y,定義運(yùn)算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算。已知1*2=3,2*3=4,并且有一個(gè)非零常數(shù)m,使得對(duì)任意實(shí)數(shù)x,都有x*m=x,則m的值是(

A.4

B.-4

C.-5

D.6答案:A27.已知拋物線的參數(shù)方程為(t為參數(shù)),其中p>0,焦點(diǎn)為F,準(zhǔn)線為l,過(guò)拋物線上一點(diǎn)M作l的垂線,垂足為E.若|EF|=|MF|,點(diǎn)M的橫坐標(biāo)是3,則p=(

)。答案:228.過(guò)點(diǎn)A(a,4)和B(-1,a)的直線的傾斜角等于45°,則a的值是______.答案:∵過(guò)點(diǎn)A(a,4)和B(-1,a)的直線的傾斜角等于45°,∴kAB=a-4-1-a=tan45°=1,∴a=32.故為:32.29.根據(jù)下面的要求,求滿足1+2+3+…+n>500的最小的自然數(shù)n.

(1)畫(huà)出執(zhí)行該問(wèn)題的程序框圖;

(2)以下是解決該問(wèn)題的一個(gè)程序,但有2處錯(cuò)誤,請(qǐng)找出錯(cuò)誤并予以更正.答案:(12分)(1)程序框圖如圖:(兩者選其一即可,不唯一)(2)①直到型循環(huán)結(jié)構(gòu)是直到滿足條件退出循環(huán),While錯(cuò)誤,應(yīng)改成LOOP

UNTIL;②根據(jù)循環(huán)次數(shù)可知輸出n+1

應(yīng)改為輸出n;30.如圖,AB是⊙O的直徑,AD是⊙O的切線,點(diǎn)C在⊙O上,BC∥OD,AB=2,OD=3,則BC的長(zhǎng)為_(kāi)_____.答案:∵OD∥BC,∴∠AOD=∠B;∵AD是⊙O的切線,∴BA⊥AD,即∠OAD=∠ACB=90°,∴Rt△AOD∽R(shí)t△CBA,∴BCOA=ABOD,即BC1=23,故BC=23.31.若直線l經(jīng)過(guò)點(diǎn)M(1,5),且傾斜角為2π3,則直線l的參數(shù)方程為_(kāi)_____.答案:由于過(guò)點(diǎn)(a,b)傾斜角為α的直線的參數(shù)方程為x=a+t?cosαy=b+t?sinα(t是參數(shù)),∵直線l經(jīng)過(guò)點(diǎn)M(1,5),且傾斜角為2π3,故直線的參數(shù)方程是x=1+t?cos2π3y=5+t?sin2π3即x=1-12ty=5+32t(t為參數(shù)).故為:x=1-12ty=5+32t(t為參數(shù)).32.設(shè)某批產(chǎn)品合格率為,不合格率為,現(xiàn)對(duì)該產(chǎn)品進(jìn)行測(cè)試,設(shè)第ε次首次取到正品,則P(ε=3)等于()

A.

B.

C.

D.答案:C33.設(shè)點(diǎn)P對(duì)應(yīng)的復(fù)數(shù)為-3+3i,以原點(diǎn)為極點(diǎn),實(shí)軸正半軸為極軸建立極坐標(biāo)系,則點(diǎn)P的極坐標(biāo)為()

A.(3,π)

B.(-3,π)

C.(3,π)

D.(-3,π)答案:A34.棱長(zhǎng)為a的正四面體中,AB?BC+AC?BD=______.答案:棱長(zhǎng)為a的正四面體中,AB=BC=a,且AB與BC的夾角為120°,AC⊥BD.∴AB?BC+AC?BD=a?acos120°+0=-a22,故為:-12.35.如圖所示的圓盤由八個(gè)全等的扇形構(gòu)成,指針繞中心旋轉(zhuǎn),可能隨機(jī)停止,則指針停止在陰影部分的概率為()A.12B.14C.16D.18答案:如圖:轉(zhuǎn)動(dòng)轉(zhuǎn)盤被均勻分成8部分,陰影部分占1份,則指針停止在陰影部分的概率是P=18.故選D.36.命題“所以奇數(shù)的立方是奇數(shù)”的否定是()

A.所有奇數(shù)的立方不是奇數(shù)

B.不存在一個(gè)奇數(shù),它的立方不是奇數(shù)

C.存在一個(gè)奇數(shù),它的立方不是奇數(shù)

D.不存在一個(gè)奇數(shù),它的立方是奇數(shù)答案:C37.半徑為R的球內(nèi)接一個(gè)正方體,則該正方體的體積為()A.22RB.4π3R3C.893R3D.193R3答案:∵半徑為R的球內(nèi)接一個(gè)正方體,設(shè)正方體棱長(zhǎng)為a,正方體的對(duì)角線過(guò)球心,可得正方體對(duì)角線長(zhǎng)為:a2+a2+a2=2R,可得a=2R3,∴正方體的體積為a3=(2R3)3=83R39,故選C;38.點(diǎn)P(,)與圓x2+y2=1的位置關(guān)系是()

A.在圓內(nèi)

B.在圓外

C.在圓上

D.與t有關(guān)答案:C39.若關(guān)于x的一元二次實(shí)系數(shù)方程x2+px+q=0有一個(gè)根為1+i(i是虛數(shù)單位),則p+q的值是()

A.-1

B.0

C.2

D.-2答案:B40.直線l與拋物線y2=2x相交于A、B兩點(diǎn),O為拋物線的頂點(diǎn),若OA⊥OB.證明:直線l過(guò)定點(diǎn).答案:證明:設(shè)點(diǎn)A,B的坐標(biāo)分別為(x1,y1),(x2,y2)(I)當(dāng)直線l有存在斜率時(shí),設(shè)直線方程為y=kx+b,顯然k≠0且b≠0.(2分)聯(lián)立方程得:y=kx+by2=2x消去y得k2x2+(2kb-2)x+b2=0由題意:x1x2=b2k2,&

y1y2=(kx1+b)(kx2+b)=2bk(5分)又由OA⊥OB得x1x2+y1y2=0,(7分)即b2k2+2bk=0,解得b=0(舍去)或b=-2k(9分)故直線l的方程為:y=kx-2k=k(x-2),故直線過(guò)定點(diǎn)(2,0)(11分)(II)當(dāng)直線l不存在斜率時(shí),設(shè)它的方程為x=m,顯然m>0聯(lián)立方程得:x=my2=2x解得y=±2m,即y1y2=-2m又由OA⊥OB得x1x2+y1y2=0,即m2-2m=0,解得m=0(舍去)或m=2可知直線l方程為:x=2,故直線過(guò)定點(diǎn)(2,0)綜合(1)(2)可知,滿足條件的直線過(guò)定點(diǎn)(2,0).41.如果輸入2,那么執(zhí)行圖中算法的結(jié)果是()A.輸出2B.輸出3C.輸出4D.程序出錯(cuò),輸不出任何結(jié)果答案:第一步:輸入n=2第二步:n=2+1=3第三步:n=3+1=4第四步:輸出4故為C.42.應(yīng)用反證法推出矛盾的推導(dǎo)過(guò)程中要把下列哪些作為條件使用()

①結(jié)論相反的判斷,即假設(shè)

②原命題的條件

③公理、定理、定義等

④原結(jié)論

A.①②

B.①②④

C.①②③

D.②③答案:C43.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點(diǎn),過(guò)

B作BD⊥AC于D,BD交⊙O于E點(diǎn),若AE平分

∠BAD,則∠BAD=()

A.30°

B.45°

C.50°

D.60°

答案:D44.若A(x,5-x,2x-1),B(1,x+2,2-x),當(dāng)||取最小值時(shí),x的值等于(

A.

B.

C.

D.答案:C45.在同一平面直角坐標(biāo)系中,直線變成直線的伸縮變換是()A.B.C.D.答案:A解析:解:設(shè)直線上任意一點(diǎn)(x′,y′),變換前的坐標(biāo)為(x,y),則根據(jù)直線變成直線則伸縮變換是,選A46.若a為實(shí)數(shù),,則a等于()

A.

B.-

C.2

D.-2答案:B47.已知四邊形ABCD,

點(diǎn)E、

F、

G、

H分別是AB、BC、CD、DA的中點(diǎn),

求證:

EF=HG.答案:證明:∵E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),∴HG=12AC,EF=12AC,∴EF=HG.48.制作一個(gè)面積為1

m2,形狀為直角三角形的鐵架框,有下列四種長(zhǎng)度的鐵管供選擇,較經(jīng)濟(jì)的(既夠用又耗材量少)是().A.5.2mB.5mC.4.8mD.4.6m答案:設(shè)一條直角邊為x,則另一條直角邊是2x,斜邊長(zhǎng)為x2+4x2故周長(zhǎng)

l=x+2x+x2+4x2≥22+2≈4.82當(dāng)且僅當(dāng)x=2時(shí)等號(hào)成立,故較經(jīng)濟(jì)的(既夠用又耗材量少)是5m故應(yīng)選B.49.為了檢查某超市貨架上的奶粉是否含有三聚氰胺,要從編號(hào)依次為1到50的袋裝奶粉中抽取5袋進(jìn)行檢驗(yàn),用每部分選取的號(hào)碼間隔一樣的系統(tǒng)抽樣方法確定所選取的5袋奶粉的編號(hào)可能是()

A.5,10,15,20,25

B.2,4,8,16,32

C.1,2,3,4,5

D.7,17,27,37,47答案:D50.在數(shù)學(xué)歸納法證明多邊形內(nèi)角和定理時(shí),第一步應(yīng)驗(yàn)證()

A.n=1成立

B.n=2成立

C.n=3成立

D.n=4成立答案:C第2卷一.綜合題(共50題)1.函數(shù)f(x)=2x2+1,&x∈[0,2],則函數(shù)f(x)的值域?yàn)椋ǎ〢.[1,32]B.[4,32]C.[2,32]D.[2,4]答案:∵f(x)=2x2+1,x∈[0,2],∴設(shè)y=2t,t=x2+1∈[1,5],∵y=2t是增函數(shù),∴t=1時(shí),ymin=2;t=5時(shí),ymax=25=32.∴函數(shù)f(x)的值域?yàn)閇2,32].故為:C.2.探測(cè)某片森林知道,可采伐的木材有10萬(wàn)立方米.設(shè)森林可采伐木材的年平均增長(zhǎng)率為8%,則經(jīng)過(guò)______年,可采伐的木材增加到40萬(wàn)立方米.答案:設(shè)經(jīng)過(guò)n年可采伐本材達(dá)到40萬(wàn)立方米則有10×(1+8%)n=40即(1+8%)n=4故有n=log1.084,解得n≈19即經(jīng)過(guò)19年,可采伐的木材增加到40萬(wàn)立方米故為193.設(shè)、、為實(shí)數(shù),,則下列四個(gè)結(jié)論中正確的是(

)A.B.C.且D.且答案:D解析:若,則,則.若,則對(duì)于二次函數(shù),由可得結(jié)論.4.已知正三角形的外接圓半徑為63cm,求它的邊長(zhǎng).答案:設(shè)正三角形的邊長(zhǎng)為a,則12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的邊長(zhǎng)為18cm.5.已知直線l的參數(shù)方程為x=-4+4ty=-1-2t(t為參數(shù)),圓C的極坐標(biāo)方程為ρ=22cos(θ+π4),則圓心C到直線l的距離是______.答案:直線l的普通方程為x+2y+6=0,圓C的直角坐標(biāo)方程為x2+y2-2x+2y=0.所以圓心C(1,-1)到直線l的距離d=|1-2+6|5=5.故為5.6.直線2x-3y+10=0的法向量的坐標(biāo)可以是答案:C7.為了檢查某超市貨架上的奶粉是否含有三聚氰胺,要從編號(hào)依次為1到50的袋裝奶粉中抽取5袋進(jìn)行檢驗(yàn),用每部分選取的號(hào)碼間隔一樣的系統(tǒng)抽樣方法確定所選取的5袋奶粉的編號(hào)可能是()

A.5,10,15,20,25

B.2,4,8,16,32

C.1,2,3,4,5

D.7,17,27,37,47答案:D8.已知復(fù)數(shù)z的模為1,且復(fù)數(shù)z的實(shí)部為13,則復(fù)數(shù)z的虛部為_(kāi)_____.答案:設(shè)復(fù)數(shù)的虛部是b,∵復(fù)數(shù)z的模為1,且復(fù)數(shù)z的實(shí)部為13,∴(13)2+b2=1,∴b2=89,∴b=±223故為:±2239.若命題“p∧q”為假,且“¬p”為假,則()A.p或q為假B.q假C.q真D.不能判斷q的真假答案:因?yàn)椤?p”為假,所以p為真;又因?yàn)椤皃∧q”為假,所以q為假.對(duì)于A,p或q為真,對(duì)于C,D,顯然錯(cuò),故選B.10.下列哪組中的兩個(gè)函數(shù)是同一函數(shù)()A.y=(x)2與y=xB.y=(3x)3與y=xC.y=x2與y=(x)2D.y=3x3與y=x2x答案:A、y=x與y=x2的定義域不同,故不是同一函數(shù).B、y=(3x)3=x與y=x的對(duì)應(yīng)關(guān)系相同,定義域?yàn)镽,故是同一函數(shù).C、fy=x2與y=(x)2的定義域不同,故不是同一函數(shù).D、y=3x3與y=x2x

具的定義域不同,故不是同一函數(shù).故選B.11.點(diǎn)P(4,-2)與圓x2+y2=4上任一點(diǎn)連線的中點(diǎn)軌跡方程是______.答案:設(shè)圓上任意一點(diǎn)為A(x1,y1),AP中點(diǎn)為(x,y),則x=x1+42y=y1-22,∴x1=2x-4y1=2y+2代入x2+y2=4得(2x-4)2+(2y+2)2=4,化簡(jiǎn)得(x-2)2+(y+1)2=1.故為:(x-2)2+(y+1)2=112.Rt△ABC中,AB=3,BC=4,AC=5,將三角形繞直角邊AB旋轉(zhuǎn)一周形成一個(gè)新的幾何體,想象幾何體的結(jié)構(gòu),畫(huà)出它的三視圖,求出它的表面積和體積.答案:以繞AB邊旋轉(zhuǎn)為例,其直觀圖、正(側(cè))視圖、俯視圖依次分別為:其表面是扇形的表面,所以其表面積為S=πRL=36π,V=13×π×BC2×AB=16π.13.已知直線l過(guò)點(diǎn)P(1,0,-1),平行于向量=(2,1,1),平面α過(guò)直線l與點(diǎn)M(1,2,3),則平面α的法向量不可能是()

A.(1,-4,2)

B.(,-1,)

C.(-,-1,-)

D.(0,-1,1)答案:D14.已知曲線C的參數(shù)方程為x=4t2y=t(t為參數(shù)),若點(diǎn)P(m,2)在曲線C上,則m=______.答案:因?yàn)榍€C的參數(shù)方程為x=4t2y=t(t為參數(shù)),消去參數(shù)t得:x=4y2;∵點(diǎn)P(m,2)在曲線C上,所以m=4×4=16.故為:16.15.設(shè)F為拋物線y2=ax(a>0)的焦點(diǎn),點(diǎn)P在拋物線上,且其到y(tǒng)軸的距離與到點(diǎn)F的距離之比為1:2,則|PF|等于()

A.

B.a(chǎn)

C.

D.答案:D16.兩封信隨機(jī)投入A、B、C三個(gè)空郵箱,則A郵箱的信件數(shù)ξ的數(shù)學(xué)期望Eξ=______;答案:由題意知ξ的取值有0,1,2,當(dāng)ξ=0時(shí),即A郵箱的信件數(shù)為0,由分步計(jì)數(shù)原理知兩封信隨機(jī)投入A、B、C三個(gè)空郵箱,共有3×3種結(jié)果,而滿足條件的A郵箱的信件數(shù)為0的結(jié)果數(shù)是2×2,由古典概型公式得到ξ=0時(shí)的概率,同理可得ξ=1時(shí),ξ=2時(shí),ξ=3時(shí)的概率p(ξ=0)=2×29=49,p(ξ=1)=C12C129=49,p(ξ=2)=19,∴Eξ=0×49+1×49+2×19=23故為:23.17.擬定從甲地到乙地通話m分鐘的電話費(fèi)由f(x)=1.06×(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數(shù),若通話費(fèi)為10.6元,則通話時(shí)間m∈______.答案:∵10.6=1.06(0.50×[m]+1),∴0.5[m]=9,∴[m]=18,∴m∈(17,18].故為:(17,18].18.與直線2x+y+1=0的距離為的直線的方程是()

A.2x+y=0

B.2x+y-2=0

C.2x+y=0或2x+y-2=0

D.2x+y=0或2x+y+2=0答案:D19.在班級(jí)隨機(jī)地抽取8名學(xué)生,得到一組數(shù)學(xué)成績(jī)與物理成績(jī)的數(shù)據(jù):

數(shù)學(xué)成績(jī)6090115809513580145物理成績(jī)4060754070856090(1)計(jì)算出數(shù)學(xué)成績(jī)與物理成績(jī)的平均分及方差;

(2)求相關(guān)系數(shù)r的值,并判斷相關(guān)性的強(qiáng)弱;(r≥0.75為強(qiáng))

(3)求出數(shù)學(xué)成績(jī)x與物理成績(jī)y的線性回歸直線方程,并預(yù)測(cè)數(shù)學(xué)成績(jī)?yōu)?10的同學(xué)的物理成績(jī).答案:(1)計(jì)算出數(shù)學(xué)成績(jī)與物理成績(jī)的平均分及方差;.x=100,.y=65,數(shù)學(xué)成績(jī)方差為750,物理成績(jī)方差為306.25;(4分)(2)求相關(guān)系數(shù)r的值,并判斷相關(guān)性的強(qiáng)弱;r=6675≈0.94>0.75,相關(guān)性較強(qiáng);(8分)(3)求出數(shù)學(xué)成績(jī)x與物理成績(jī)y的線性回歸直線方程,并預(yù)測(cè)數(shù)學(xué)成績(jī)?yōu)?10的同學(xué)的物理成績(jī).y=0.6x+5,預(yù)測(cè)數(shù)學(xué)成績(jī)?yōu)?10的同學(xué)的物理成績(jī)?yōu)?1.(12分)20.口袋內(nèi)有100個(gè)大小相同的紅球、白球和黑球,其中有45個(gè)紅球,從中摸出1個(gè)球,摸出白球的概率為0.23,則摸出黑球的概率為_(kāi)_____.答案:∵口袋內(nèi)有100個(gè)大小相同的紅球、白球和黑球從中摸出1個(gè)球,摸出白球的概率為0.23,∴口袋內(nèi)白球數(shù)為32個(gè),又∵有45個(gè)紅球,∴為32個(gè).從中摸出1個(gè)球,摸出黑球的概率為32100=0.32故為0.3221.設(shè)d1與d2都是直線Ax+By+C=0(AB≠0)的方向向量,則下列關(guān)于d1與d2的敘述正確的是()A.d1=d2B.d1與d2同向C.d1∥d2D.d1與d2有相同的位置向量答案:根據(jù)直線的方向向量定義,把直線上的非零向量以及與之共線的非零向量叫做直線的方向向量.因此,線Ax+By+C=0(AB≠0)的方向向量都應(yīng)該是共線的故選C.22.把平面上一切單位向量的始點(diǎn)放在同一點(diǎn),那么這些向量的終點(diǎn)所構(gòu)成的圖形是()

A.一條線段

B.一段圓弧

C.圓上一群孤立點(diǎn)

D.一個(gè)單位圓答案:D23.若不等式的解集,則實(shí)數(shù)=___________.答案:-424.下面程序框圖輸出的S表示什么?虛線框表示什么結(jié)構(gòu)?答案:由框圖知,當(dāng)r=5時(shí),輸出的s=πr2所以程序框圖輸出的S表示:求半徑為5的圓的面積的算法的程序框圖,虛線框是一個(gè)順序結(jié)構(gòu).25.已知集合{2x,x+y}={7,4},則整數(shù)x=______,y=______.答案:∵{2x,x+y}={7,4},∴2x=4x+y=7或2x=7x+y=4解得x=2y=5或x=3.5y=0.5不是整數(shù),舍去故為:2,526.已知當(dāng)m∈R時(shí),函數(shù)f(x)=m(x2-1)+x-a的圖象和x軸恒有公共點(diǎn),求實(shí)數(shù)a的取值范圍.答案:(1)m=0時(shí),f(x)=x-a是一次函數(shù),它的圖象恒與x軸相交,此時(shí)a∈R.(2)m≠0時(shí),由題意知,方程mx2+x-(m+a)=0恒有實(shí)數(shù)解,其充要條件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0時(shí),a∈R;m≠0時(shí),a∈[-1,1].27.已知事件A與B互斥,且P(A)=0.3,P(B)=0.6,則P(A|.B)=______.答案:∵P(B)=0.6,∴P(.B)=0.4.又事件A與B互斥,且P(A)=0.3,∴P(A|.B)=P(A)P(.B)=0.30.4=34.故為:34.28.已知a,b,c,d都是正數(shù),S=aa+b+d+bb+c+a+cc+d+a+dd+a+c,則S的取值范圍是______.答案:∵a,b,c,d都是正數(shù),∴S=aa+b+d+bb+c+a+cc+d+a+dd+a+c>aa+b+c+d+ba+b+c+d+ca+b+c+d+da+b+c+d=a+b+c+da+b+c+d=1;S=aa+b+d+bb+c+a+cc+d+a+dd+a+c<aa+b+bb+a+cc+d+dd+c=2∴1<S<2.故為:(1,2)29.已知A,B,C三點(diǎn)不共線,O為平面ABC外一點(diǎn),若由向量OP=15OA+23OB+λOC確定的點(diǎn)P與A,B,C共面,那么λ=______.答案:由題意A,B,C三點(diǎn)不共線,點(diǎn)O是平面ABC外一點(diǎn),若由向量OP=15OA+23OB+λOC確定的點(diǎn)P與A,B,C共面,∴15+23+λ=1解得λ=215故為:21530.下列在曲線上的點(diǎn)是(

A.

B.

C.

D.答案:B31.已知函數(shù)y=f(x)是偶函數(shù),其圖象與x軸有四個(gè)交點(diǎn),則f(x)=0的所有實(shí)數(shù)根之和為_(kāi)_____.答案:∵函數(shù)y=f(x)是偶函數(shù)∴其圖象關(guān)于y軸對(duì)稱∴其圖象與x軸有四個(gè)交點(diǎn)也關(guān)于y軸對(duì)稱∴方程f(x)=0的所有實(shí)根之和為0故為:032.某品牌平板電腦的采購(gòu)商指導(dǎo)價(jià)為每臺(tái)2000元,若一次采購(gòu)數(shù)量達(dá)到一定量,還可享受折扣.如圖為某位采購(gòu)商根據(jù)折扣情況設(shè)計(jì)的算法程序框圖,若一次采購(gòu)85臺(tái)該平板電腦,則S=______元.答案:分析程序中各變量、各語(yǔ)句,其作用是:表示一次采購(gòu)共需花費(fèi)的金額,再根據(jù)流程圖所示的順序,可知:該程序的作用是計(jì)算分段函數(shù)S=200×0.8?x,x>100200×0.9?x,50<x≤100200?x,0<x≤50的值,∵x=85,∴S=200×0.9×85=15300(元),故為:15300.33.如圖是將二進(jìn)制數(shù)11111(2)化為十進(jìn)制數(shù)的一個(gè)程序框圖,判斷框內(nèi)應(yīng)填入的條件是()A.i≤5B.i≤4C.i>5D.i>4答案:首先將二進(jìn)制數(shù)11111(2)化為十進(jìn)制數(shù),11111(2)=1×20+1×21+1×22+1×23+1×24=31,由框圖對(duì)累加變量S和循環(huán)變量i的賦值S=1,i=1,i不滿足判斷框中的條件,執(zhí)行S=1+2×S=1+2×1=3,i=1+1=2,i不滿足條件,執(zhí)行S=1+2×3=7,i=2+1=3,i不滿足條件,執(zhí)行S=1+2×7=15,i=3+1=4,i仍不滿足條件,執(zhí)行S=1+2×15=31,此時(shí)31是要輸出的S值,說(shuō)明i不滿足判斷框中的條件,由此可知,判斷框中的條件應(yīng)為i>4.故選D.34.如圖,在等腰△ABC中,AC=AB,以AB為直徑的⊙O交BC于點(diǎn)E,過(guò)點(diǎn)E作⊙O的切線交AC于點(diǎn)D,交AB的延長(zhǎng)線于點(diǎn)P.問(wèn):PD與AC是否互相垂直?請(qǐng)說(shuō)明理由.答案:PD與AC互相垂直.理由如下:連接OE,則OE⊥PD;∵AC=AB,OE=OB,∴∠OEB=∠B=∠C,∴OE∥AC,∴PD與AC互相垂直.35.不等式:>0的解集為A.(-2,1)B.(2,+∞)C.(-2,1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)答案:C解析:不等式:>0,∴,原不等式的解集為(-2,1)∪(2,+∞),選C。36.已知向量,,則“,λ∈R”成立的必要不充分條件是()

A.

B與方向相同

C.

D.答案:D37.已知向量a=(0,-1,1),b=(4,1,0),|λa+b|=57且λ>0,則λ=______.答案:∵λa+b=λ(0,-1,1)+(4,1,0)=(4,1-λ,λ),|λa+b|=57,∴42+(1-λ)2+λ2=57,化為λ2-λ-20=0,又λ>0,解得λ=5.故為5.38.圓ρ=5cosθ-5sinθ的圓心的極坐標(biāo)是()

A.(-5,-)

B.(-5,)

C.(5,)

D.(-5,)答案:A39.如圖,O是正方形ABCD對(duì)角線的交點(diǎn),四邊形OAED,OCFB都是正方形,在圖中所示的向量中:

(1)與AO相等的向量有

______;

(2)寫(xiě)出與AO共線的向量有

______;

(3)寫(xiě)出與AO的模相等的向量有

______;

(4)向量AO與CO是否相等?答

______.答案:(1)與AO相等的向量有BF(2)與AO共線的向量有DE,CO,BF(3)與AO的模相等的向量有DE,

DO,AE,CO,CF,BF,BO(4)模相等,方向相反故AO與CO不相等40.將一個(gè)等腰梯形繞著它的較長(zhǎng)的底邊所在的直線旋轉(zhuǎn)一周,所得的幾何體是(

)答案:B41.如果圓x2+y2+Gx+Ey+F=0與x軸相切于原點(diǎn),那么()A.F=0,G≠0,E≠0B.E=0,F(xiàn)=0,G≠0C.G=0,F(xiàn)=0,E≠0D.G=0,E=0,F(xiàn)≠0答案:圓與x軸相切于原點(diǎn),則圓心在y軸上,G=0,圓心的縱坐標(biāo)的絕對(duì)值等于半徑,F(xiàn)=0,E≠0.故選C.42.拋擲兩枚骰子各一次,記第一枚骰子擲出的點(diǎn)數(shù)與第二枚骰子擲出的點(diǎn)數(shù)的差為X,則“X>4”表示試驗(yàn)的結(jié)果為()

A.第一枚為5點(diǎn),第二枚為1點(diǎn)

B.第一枚大于4點(diǎn),第二枚也大于4點(diǎn)

C.第一枚為6點(diǎn),第二枚為1點(diǎn)

D.第一枚為4點(diǎn),第二枚為1點(diǎn)答案:C43.若圓O1方程為(x+1)2+(y+1)2=4,圓O2方程為(x-3)2+(y-2)2=1,則方程(x+1)2+(y+1)2-4=(x-3)2+(y-2)2-1表示的軌跡是()

A.經(jīng)過(guò)兩點(diǎn)O1,O2的直線

B.線段O1O2的中垂線

C.兩圓公共弦所在的直線

D.一條直線且該直線上的點(diǎn)到兩圓的切線長(zhǎng)相等答案:D44.設(shè)四邊形ABCD中,有且,則這個(gè)四邊形是()

A.平行四邊形

B.矩形

C.等腰梯形

D.菱形答案:C45.某校選修乒乓球課程的學(xué)生中,高一年級(jí)有40名,高二年級(jí)有50名,現(xiàn)用分層抽樣的方法在這90名學(xué)生中抽取一個(gè)樣本,已知在高一年級(jí)的學(xué)生中抽取了8名,則在高二年級(jí)的學(xué)生中應(yīng)抽取的人數(shù)為_(kāi)_____.答案:∵高一年級(jí)有40名學(xué)生,在高一年級(jí)的學(xué)生中抽取了8名,∴每個(gè)個(gè)體被抽到的概率是

840=15∵高二年級(jí)有50名學(xué)生,∴要抽取50×15=10名學(xué)生,故為:10.46.如圖,中心均為原點(diǎn)O的雙曲線與橢圓有公共焦點(diǎn),M,N是雙曲線的兩頂點(diǎn).若M,O,N將橢圓長(zhǎng)軸四等分,則雙曲線與橢圓的離心率的比值是()A.3B.2C.3D.2答案:∵M(jìn),N是雙曲線的兩頂點(diǎn),M,O,N將橢圓長(zhǎng)軸四等分∴橢圓的長(zhǎng)軸長(zhǎng)是雙曲線實(shí)軸長(zhǎng)的2倍∵雙曲線與橢圓有公共焦點(diǎn),∴雙曲線與橢圓的離心率的比值是2故選B.47.兩弦相交,一弦被分為12cm和18cm兩段,另一弦被分為3:8,求另一弦長(zhǎng)______.答案:設(shè)另一弦長(zhǎng)xcm;由于另一弦被分為3:8的兩段,故兩段的長(zhǎng)分別為311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故為:33cm48.編號(hào)為A、B、C、D、E的五個(gè)小球放在如圖所示的五個(gè)盒子中,要求每個(gè)盒子只能放一個(gè)小球,且A不能放1,2號(hào),B必需放在與A相鄰的盒子中,則不同的放法有()種.A.42B.36C.30D.28答案:根據(jù)題意,A不能放1,2號(hào),則A可以放在3、4、5號(hào)盒子,分2種情況討論:①當(dāng)A在4、5號(hào)盒子時(shí),B有1種放法,剩下3個(gè)有A33=6種不同放法,此時(shí),共有2×1×6=12種情況;②當(dāng)A在3號(hào)盒子時(shí),B有3種放法,剩下3個(gè)有A33=6種不同放法,此時(shí),共有1×3×6=18種情況;由加法原理,計(jì)算可得共有12+18=30種不同情況;故選C.49.如圖,四邊形ABCD內(nèi)接于圓O,且AC、BD交于點(diǎn)E,則此圖形中一定相似的三角形有()對(duì).

A.0

B.3

C.2

D.1

答案:C50.下列四個(gè)命題中,正確的有

個(gè)

①;

②;

③,使;

④,使為29的約數(shù).答案:兩解析::①∵(-3)2-4×2×40,∴①正確;②∵2×(-1)+1=-1x,∴③不正確;④x=1是29的約數(shù),∴④正確;∴正確的有兩個(gè)點(diǎn)評(píng):本題考查全稱命題、特稱命題,容易題第3卷一.綜合題(共50題)1.不等式log2(x+1)<1的解集為()

A.{x|0<x<1}

B.{x|-1<x≤0}

C.{x|-1<x<1}

D.{x|x>-1}答案:C2.每一噸鑄鐵成本y

(元)與鑄件廢品率x%建立的回歸方程y=56+8x,下列說(shuō)法正確的是()A.廢品率每增加1%,成本每噸增加64元B.廢品率每增加1%,成本每噸增加8%C.廢品率每增加1%,成本每噸增加8元D.如果廢品率增加1%,則每噸成本為56元答案:∵回歸方程y=56+8x,∴當(dāng)x增加一個(gè)單位時(shí),對(duì)應(yīng)的y要增加8個(gè)單位,這里是平均增加8個(gè)單位,故選C.3.用反證法證明命題:“三角形三個(gè)內(nèi)角至少有一個(gè)不大于60°”時(shí),應(yīng)假設(shè)______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的方法和步驟,先把要證的結(jié)論進(jìn)行否定,得到要證的結(jié)論的反面,而命題:“三角形三個(gè)內(nèi)角至少有一個(gè)不大于60°”的否定為“三個(gè)內(nèi)角都大于60°”,故為三個(gè)內(nèi)角都大于60°.4.已知

p:所有國(guó)產(chǎn)手機(jī)都有陷阱消費(fèi),則¬p是()

A.所有國(guó)產(chǎn)手機(jī)都沒(méi)有陷阱消費(fèi)

B.有一部國(guó)產(chǎn)手機(jī)有陷阱消費(fèi)

C.有一部國(guó)產(chǎn)手機(jī)沒(méi)有陷阱消費(fèi)

D.國(guó)外產(chǎn)手機(jī)沒(méi)有陷阱消費(fèi)答案:C5.已知直線l經(jīng)過(guò)點(diǎn)P(3,1),且被兩平行直線l1;x+y+1=0和l2:x+y+6=0截得的線段之長(zhǎng)為5,求直線l的方程.答案:解法一:若直線l的斜率不存在,則直線l的方程為x=3,此時(shí)與l1、l2的交點(diǎn)分別為A′(3,-4)或B′(3,-9),截得的線段AB的長(zhǎng)|AB|=|-4+9|=5,符合題意.若直線l的斜率存在,則設(shè)直線l的方程為y=k(x-3)+1.解方程組y=k(x-3)+1x+y+1=0得A(3k-2k+1,-4k-1k+1).解方程組y=k(x-3)+1x+y+6=0得B(3k-7k+1,-9k-1k+1).由|AB|=5.得(3k-2k+1-3k-7k+1)2+(-4k-1k+1+9k-1k+1)2=52.解之,得k=0,直線方程為y=1.綜上可知,所求l的方程為x=3或y=1.解法二:由題意,直線l1、l2之間的距離為d=|1-6|2=522,且直線L被平行直線l1、l2所截得的線段AB的長(zhǎng)為5,設(shè)直線l與直線l1的夾角為θ,則sinθ=5225=22,故θ=45°.由直線l1:x+y+1=0的傾斜角為135°,知直線l的傾斜角為0°或90°,又由直線l過(guò)點(diǎn)P(3,1),故直線l的方程為:x=3或y=1.解法三:設(shè)直線l與l1、l2分別相交A(x1,y1)、B(x2,y2),則x1+y1+1=0,x2+y2+6=0.兩式相減,得(x1-x2)+(y1-y2)=5.①又(x1-x2)2+(y1-y2)2=25.②聯(lián)立①、②可得x1-x2=5y1-y2=0或x1-x2=0y1-y2=5由上可知,直線l的傾斜角分別為0°或90°.故所求的直線方程為x=3或y=1.6.用反證法證明:“方程ax2+bx+c=0,且a,b,c都是奇數(shù),則方程沒(méi)有整數(shù)根”正確的假設(shè)是方程存在實(shí)數(shù)根x0為()

A.整數(shù)

B.奇數(shù)或偶數(shù)

C.正整數(shù)或負(fù)整數(shù)

D.自然數(shù)或負(fù)整數(shù)答案:A7.“a=2”是“直線ax+2y=0平行于直線x+y=1”的(

A.充分而不必要條件

B.必要而不充分條件

C.充分必要條件

D.既不充分也不必要條件答案:C8.若兩圓x2+y2=m和x2+y2+6x-8y-11=0有公共點(diǎn),則實(shí)數(shù)m的取值范圍是(

A.(-∞,1)

B.(121,+∞)

C.[1,121]

D.(1,121)答案:C9.栽培甲、乙兩種果樹(shù),先要培育成苗,然后再進(jìn)行移栽.已知甲、乙兩種果樹(shù)成苗的概率分別為,,移栽后成活的概率分別為,.

(1)求甲、乙兩種果樹(shù)至少有一種果樹(shù)成苗的概率;

(2)求恰好有一種果樹(shù)能培育成苗且移栽成活的概率.答案:(1)甲、乙兩種果樹(shù)至少有一種成苗的概率為;(2).恰好有一種果樹(shù)培育成苗且移栽成活的概率為.解析:分別記甲、乙兩種果樹(shù)成苗為事件,;分別記甲、乙兩種果樹(shù)苗移栽成活為事件,,,,,.(1)甲、乙兩種果樹(shù)至少有一種成苗的概率為;(2)解法一:分別記兩種果樹(shù)培育成苗且移栽成活為事件,則,.恰好有一種果樹(shù)培育成苗且移栽成活的概率為.解法二:恰好有一種果樹(shù)栽培成活的概率為.10.如圖,AB是⊙O的直徑,P是AB延長(zhǎng)線上的一點(diǎn).過(guò)P作⊙O的切線,切點(diǎn)為C,PC=23,若∠CAP=30°,則⊙O的直徑AB=______.答案:連接BC,設(shè)圓的直徑是x則三角形ABC是一個(gè)含有30°角的三角形,∴BC=12AB,三角形BPC是一個(gè)等腰三角形,BC=BP=12AB,∵PC是圓的切線,PA是圓的割線,∴PC2=PB?PC=12x?32x=34x2,∵PC=23,∴x=4,故為:411.下列命題中為真命題的是(

A.平行直線的傾斜角相等

B.平行直線的斜率相等

C.互相垂直的兩直線的傾斜角互補(bǔ)

D.互相垂直的兩直線的斜率互為相反數(shù)答案:A12.已知向量a=(2,0),b=(1,x),且a、b的夾角為π3,則x=______.答案:由兩個(gè)向量的數(shù)量積的定義、數(shù)量積公式可得a?b=2+0=21+x2cosπ3=21+x2=12,x2=3,∴x=±3,故為±3.13.若矩陣A=

72

69

67

65

62

59

81

74

68

64

59

52

85

79

76

72

69

64

228

219

211

204

195

183

是表示我校2011屆學(xué)生高二上學(xué)期的期中成績(jī)矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語(yǔ)文成績(jī),i=2表示數(shù)學(xué)成績(jī),i=3表示英語(yǔ)成績(jī),i=4表示語(yǔ)數(shù)外三門總分成績(jī)j=k,k∈N*表示第50k名分?jǐn)?shù).若經(jīng)過(guò)一定量的努力,各科能前進(jìn)的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分?jǐn)?shù),那么他應(yīng)把努力方向主要放在哪一門學(xué)科上()

A.語(yǔ)文

B.?dāng)?shù)學(xué)

C.外語(yǔ)

D.都一樣答案:B14.△ABC所在平面內(nèi)點(diǎn)O、P,滿足OP=OA+λ(AB+12BC),λ∈[0,+∞),則點(diǎn)P的軌跡一定經(jīng)過(guò)△ABC的()A.重心B.垂心C.內(nèi)心D.外心答案:設(shè)BC的中點(diǎn)為D,則∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中線∴點(diǎn)P的軌跡一定經(jīng)過(guò)△ABC的重心故選A.15.直線l1:y=ax+b,l2:y=bx+a

(a≠0,b≠0,a≠b),在同一坐標(biāo)系中的圖形大致是()

A.

B.

C.

D.

答案:C16.已知直線l1,l2的夾角平分線所在直線方程為y=x,如果l1的方程是ax+by+c=0(ab>0),那么l2的方程是()

A.bx+ay+c=0

B.a(chǎn)x-by+c=0

C.bx+ay-c=0

D.bx-ay+c=0答案:A17.命題“梯形的兩對(duì)角線互相不平分”的命題形式為()A.p或qB.p且qC.非pD.簡(jiǎn)單命題答案:記命題p:梯形的兩對(duì)角線互相平分,

而原命題是“梯形的兩對(duì)角線互相不平分”,是命題p的否定形式

故選C18.已知=(1,2),=(x,1),當(dāng)(+2)⊥(2-)時(shí),實(shí)數(shù)x的值為(

A.6

B.2

C.-2

D.或-2答案:D19.如圖,PA,PB切⊙O于

A,B兩點(diǎn),AC⊥PB,且與⊙O相交于

D,若∠DBC=22°,則∠APB═______.答案:連接AB根據(jù)弦切角有∠DBC=∠DAB=22°

∠PAC=∠DBA因?yàn)榇怪薄螪CB=90°根據(jù)外角∠ADB=∠DBC+∠DCB=112°

∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故為:44°20.設(shè)P點(diǎn)在x軸上,Q點(diǎn)在y軸上,PQ的中點(diǎn)是M(-1,2),則|PQ|等于______.答案:設(shè)P(a,0),Q(0,b),∵PQ的中點(diǎn)是M(-1,2),∴由中點(diǎn)坐標(biāo)公式得a+02=-10+b2=2,解之得a=-2b=4,因此可得P(-2,0),Q(0,4),∴|PQ|=(-2-0)2+(0-4)2=25.故為:2521.沿著正四面體OABC的三條棱OA、OB、OC的方向有大小等于1、2、3的三個(gè)力f1、f2、f3.試求此三個(gè)力的合力f的大小以及此合力與三條棱所夾角的余弦.答案:用a、b、c分別代表棱OA、OB、OC上的三個(gè)單位向量,則f1=a,f2=2b,f3=3c,則f=f1+f2+f3=a+2b+3c,∴|f|2=(a+2b+3c)?(a+2b+3c)=|a|2+4|b|2+9|c|2+4a?b+6a?c+12b?c=1+4+9+4|a||b|cos<a,b>+6|a||c|cos<a,c>+12|b||c|cos<b,c>=14+4cos60°+6cos60°+12cos60°=14+2+3+6=25.∴|f|=5,即所求合力的大小為5,且cos<f,a>=f?a|f||a|=|a|2+2a?b+3a?c5=1+1+325=710.同理,可得cos<f,b>=45,cos<f,c>=910.22.在曲線(t為參數(shù))上的點(diǎn)是()

A.(1,-1)

B.(4,21)

C.(7,89)

D.答案:A23.直三棱柱ABC-A1B1C1

中,若CA=a,CB=b,CC1=c,則A1B=______.答案:向量加法的三角形法則,得到A1B=A1C+CB=A1C1+C1C+CB=-CA-CC1+CB=-a-c+b.故為:-a-c+b.24.某廠一批產(chǎn)品的合格率是98%,檢驗(yàn)單位從中有放回地隨機(jī)抽取10件,則計(jì)算抽出的10件產(chǎn)品中正品數(shù)的方差是______.答案:用X表示抽得的正品數(shù),由于是有放回地隨機(jī)抽取,所以X服從二項(xiàng)分布B(10,0.98),所以方差D(X)=10×0.98×0.02=0.196故為:0.196.25.在△ABC中,已知向量=(cos18°,cos72°),=(2cos63°,2cos27°),則△ABC的面積等于()

A.

B.

C.

D.

答案:A26.下列函數(shù)f(x)與g(x)表示同一函數(shù)的是

()A.f(x)=x0與g(x)=1B.f(x)=2lgx與g(x)=lgx2C.f(x)=|x|與g(x)=(x)2D.f(x)=x與g(x)=3x3答案:A、∵f(x)=x0,其定義域?yàn)閧x|x≠0},而g(x)的定義域?yàn)镽,故A錯(cuò)誤;B、∵f(x)=2lgx,的定義域?yàn)閧x|x>0},而g(x)=lgx2的定義域?yàn)镽,故B錯(cuò)誤;C、∵f(x)=|x|與g(x)=(x)2=x,其中f(x)的定義域?yàn)镽,g(x)的定義域?yàn)閧x|x≥0},故C錯(cuò)誤;D、∵f(x)=x與g(x)=3x3=x,其中f(x)與g(x)的定義域?yàn)镽,故D正確.故選D.27.已知圓(x+2)2+y2=36的圓心為M,設(shè)A為圓上任一點(diǎn),N(2,0),線段AN的垂直平分線交MA于點(diǎn)P,則動(dòng)點(diǎn)P的軌跡是()

A.圓

B.橢圓

C.雙曲線

D.拋物線答案:B28.已知二次函數(shù)f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個(gè)不同的交點(diǎn),若f(c)=0,且0<x<c時(shí),f(x)>0

(1)證明:1a是f(x)的一個(gè)根;(2)試比較1a與c的大小.答案:證明:(1)∵f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個(gè)不同的交點(diǎn),f(x)=0的兩個(gè)根x1,x2滿足x1x2=ca,又f(c)=0,不妨設(shè)x1=c∴x2=1a,即1a是f(x)=0的一個(gè)根.(2)假設(shè)1a<c,又1a>0由0<x<c時(shí),f(x)>0,得f(1a)>0,與f(1a)=0矛盾∴1a≥c又:f(x)=0的兩個(gè)根不相等∴1a≠c,只有1a>c29.在空間直角坐標(biāo)系中,已知點(diǎn)A(1,0,2),B(1,-3,1),點(diǎn)M在y軸上,且M到A與到B的距離相等,則M的坐標(biāo)是______.答案:設(shè)M(0,y,0)由12+y2+4=1+(y+3)2+1可得y=-1故M(0,-1,0)故為:(0,-1,0).30.圓(x+3)2+(y-1)2=25上的點(diǎn)到原點(diǎn)的最大距離是()

A.5-

B.5+

C

D.10答案:B31.設(shè)a1,a2,…,a2n+1均為整數(shù),性質(zhì)P為:對(duì)a1,a2,…,a2n+1中任意2n個(gè)數(shù),存在一種分法可將其分為兩組,每組n個(gè)數(shù),使得兩組所有元素的和相等求證:a1,a2,…,a2n+1全部相等當(dāng)且僅當(dāng)a1,a2,…,a2n+1具有性質(zhì)P.答案:證明:①當(dāng)a1,a2,…,a2n+1全部相等時(shí),從中任意2n個(gè)數(shù),將其分為兩組,每組n個(gè)數(shù),兩組所有元素的和相等,故性質(zhì)P成立.②下面證明:當(dāng)a1,a2,…,a2n+1具有性質(zhì)P時(shí),a1,a2,…,a2n+1全部相等.反證法:假設(shè)a1,a2,…,a2n+1不全部相等,則其中至少有一個(gè)整數(shù)和其它的整數(shù)不同,不妨設(shè)此數(shù)為a1,若a1在取出的2n個(gè)數(shù)中,將其分為兩組,每組n個(gè)數(shù),則a1在的那個(gè)組所有元素的和與另一個(gè)組所有元素的和不相等,這與性質(zhì)P矛盾,故假設(shè)不成立,所以,當(dāng)a1,a2,…,a2n+1具有性質(zhì)P時(shí),a1,a2,…,a2n+1全部相等.綜上,a1,a2,…,a2n+1全部相等當(dāng)且僅當(dāng)a1,a2,…,a2n+1具有性質(zhì)P.32.設(shè)A(1,-1,1),B(3,1,5),則線段AB的中點(diǎn)在空間直角坐標(biāo)系中的位置是()

A.在y軸上

B.在xOy面內(nèi)

C.在xOz面內(nèi)

D.在yOz面內(nèi)答案:C33.如圖,F(xiàn)1,F(xiàn)2分別為橢圓x2a2+y2b2=1的左、右焦點(diǎn),點(diǎn)P在橢圓上,△POF2是面積為3的正三角形,則b2的值是______.答案:∵△POF2是面積為3的正三角形,∴S=34|PF2|2=3,|PF2|=2.∴c=2,∵△PF1F2為直角三角形,∴a=3+1,故為23.34.函數(shù)f(x)=log2(3x+1)的值域?yàn)椋ǎ?/p>

A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)答案:根據(jù)對(duì)數(shù)函數(shù)的定義可知,真數(shù)3x+1>0恒成立,解得x∈R.因此,該函數(shù)的定義域?yàn)镽,原函數(shù)f(x)=log2(3x+1)是由對(duì)數(shù)函數(shù)y=log2t和t=3x+1復(fù)合的復(fù)合函數(shù).由復(fù)合函數(shù)的單調(diào)性定義(同増異減)知道,原函數(shù)在定義域R上是單調(diào)遞增的.根據(jù)指數(shù)函數(shù)的性質(zhì)可知,3x>0,所以,3x+1>1,所以f(x)=log2(3x+1)>log21=0,故選A.解析:試題分析35.半徑為R的球內(nèi)接一個(gè)正方體,則該正方體的體積為()A.22RB.4π3R3C.893R3D.193R3答案:∵半徑為R的球內(nèi)接一個(gè)正方體,設(shè)正方體棱長(zhǎng)為a,正方體的對(duì)角線過(guò)球心,可得正方體對(duì)角線長(zhǎng)為:a2+a2+a2=2R,可得a=2R3,∴正方體的體積為a3=(2R3)3=83R39,故選C;36.為了考察兩個(gè)變量x和y之間的線性相關(guān)性,甲、乙兩位同學(xué)各自獨(dú)立地做10次和15次試驗(yàn),并且利用線性回歸方法,求得回歸直線分別為l1和l2,已知兩個(gè)人在試驗(yàn)中發(fā)現(xiàn)對(duì)變量x的觀測(cè)數(shù)據(jù)的平均值都是s,對(duì)變量y的觀測(cè)數(shù)據(jù)的平均值都是t,那么下列說(shuō)法正確的是()

A.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論