2023年石家莊郵電職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年石家莊郵電職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年石家莊郵電職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年石家莊郵電職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年石家莊郵電職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩42頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年石家莊郵電職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.點(diǎn)(1,2)到原點(diǎn)的距離為()

A.1

B.5

C.

D.2答案:C2.如圖,在正方體OABC-O1A1B1C1中,棱長(zhǎng)為2,E是B1B的中點(diǎn),則點(diǎn)E的坐標(biāo)為()

A.(2,2,1)

B.(2,2,)

C.(2,2,)

D.(2,2,)

答案:A3.某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人,為了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為7人,則樣本容量為()

A.35

B.25

C.15

D.7答案:C4.行駛中的汽車,在剎車時(shí)由于慣性作用,要繼續(xù)往前滑行一段距離才能停下,這段距離叫做剎車距離.在某種路面上,某種型號(hào)汽車的剎車距離s(m)與汽車的車速v(km/h)滿足下列關(guān)系:s=(n為常數(shù),且n∈N),做了兩次剎車試驗(yàn),有關(guān)試驗(yàn)數(shù)據(jù)如圖所示,其中,

(1)求n的值;

(2)要使剎車距離不超過(guò)12.6m,則行駛的最大速度是多少?答案:解:(1)依題意得,解得,又n∈N,所以n=6;(2)s=,因?yàn)関≥0,所以0≤v≤60,即行駛的最大速度為60km/h。5.設(shè)a=20.3,b=0.32,c=log20.3,則用“>”表示a,b,c的大小關(guān)系式是______.答案:∵0<0.32<1,log20.3<0,20.3>1∴0.32<20.3<log20.3故為:a>b>c6.若定義在正整數(shù)有序?qū)仙系亩瘮?shù)f滿足:①f(x,x)=x,②f(x,y)=f(y,x);③(x+y)f(x,y)=yf(x,x+y),則f(12,16)的值是()A.12B.16C.24D.48答案:依題意:∵(x+y)f(x,y)=yf(x,x+y),∴f(x,x+y)=1y(x+y)f(x,y)∴f(12,16)=f(12,12+4)=14(12+4)f(12,4)=4f(12,4)=4f(4,12)=4f(4,4+8)=4×18(4+8)f(4,8)=6f(4,8)=6f(4,4+4)=6×14(4+4)f(4,4)=12f(4,4)=12×4=48故選D7.已知O是空間任意一點(diǎn),A、B、C、D四點(diǎn)滿足任三點(diǎn)均不共線,但四點(diǎn)共面,且=2x+3y+4z,則2x+3y+4z=(

)答案:﹣18.在同一個(gè)坐標(biāo)系中畫出函數(shù)y=ax,y=sinax的部分圖象,其中a>0且a≠1,則下列所給圖象中可能正確的是()

A.

B.

C.

D.

答案:D9.同時(shí)擲兩顆骰子,得到的點(diǎn)數(shù)和為4的概率是______.答案:同時(shí)擲兩顆骰子得到的點(diǎn)數(shù)共有36種情況,即(1,1)(1,2)(1,3)(1,4)(1,5)(1,6),(2,1)(2,2)(2,3)(2,4)(2,5)(2,6),(3,1)(3,2)(3,3)(3,4)(3,5)(3,6),(4,1)(4,2)(4,3)(4,4)(4,5)(4,6),(5,1)(5,2)(5,3)(5,4)(5,5)(5,6),(6,1)(6,2)(6,3)(6,4)(6,5)(6,6),而和為4的情況數(shù)有3種,即(1,3)(2,2)(3,1)所以所求概率為336=112,故為:11210.把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標(biāo)等于_____答案:(2,-2)解析:把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標(biāo)等于_____11.命題“存在x0∈R,2x0≤0”的否定是()

A.不存在x0∈R,2x0>0

B.存在x0∈R,2x0≥0

C.對(duì)任意的x∈R,2x≤0

D.對(duì)任意的x∈R,2x>0答案:D12.某射手射擊所得環(huán)數(shù)X的分布列為:

ξ

4

5

6

7

8

9

10

P

0.02

0.04

0.06

0.09

0.28

0.29

0.22

則此射手“射擊一次命中環(huán)數(shù)大于7”的概率為()

A.0.28

B.0.88

C.0.79

D.0.51答案:C13.某企業(yè)甲、乙、丙三個(gè)生產(chǎn)車間的職工人數(shù)分別為120人,150人,180人,現(xiàn)用分層抽樣的方法抽出一個(gè)容量為n的樣本,樣本中甲車間有4人,那么此樣本的容量n=______.答案:每個(gè)個(gè)體被抽到的概率等于

4120=130,∴樣本容量n=(120+150+180)×130=15,故為:15.14.集合{x∈N*|

12

x

∈Z}中含有的元素個(gè)數(shù)為()

A.4

B.6

C.8

D.12答案:B15.x>1是x>2的()A.充分但不必要條件B.充要條件C.必要但不充分條件D.既不充分又不必要條件答案:由x>1,我們不一定能得出x>2,比如x=1.5,所以x>1不是x>2的充分條件;∵x>2>1,∴由x>2,能得出x>1,∴x>1是x>2的必要條件∴x>1是x>2的必要但不充分條件故選C.16.解不等式|2x-1|<|x|+1.答案:根據(jù)題意,對(duì)x分3種情況討論:①當(dāng)x<0時(shí),原不等式可化為-2x+1<-x+1,解得x>0,又x<0,則x不存在,此時(shí),不等式的解集為?.②當(dāng)0≤x<12時(shí),原不等式可化為-2x+1<x+1,解得x>0,又0≤x<12,此時(shí)其解集為{x|0<x<12}.③當(dāng)x≥12

時(shí),原不等式可化為2x-1<x+1,解得12≤x<2,又由x≥12,此時(shí)其解集為{x|12≤x<2},?∪{x|0<x<12

}∪{x|12≤x<2

}={x|0<x<2};綜上,原不等式的解集為{x|0<x<2}.17.若0<x<1,則2x,(12)x,(0.2)x之間的大小關(guān)系為()A.2x<(0.2)x<(12)xB.2x<(12)x<(0.2)xC.(12)x<(0.2)x<2xD.(0.2)x<(12)x<2x答案:由題意考察冪函數(shù)y=xn(0<n<1),利用冪函數(shù)的性質(zhì),∵0<n<1,∴冪函數(shù)y=xn在第一象限是增函數(shù),又2>12>0.2∴2x>(12)x>(0.2)x故選D18.已知M(-2,7)、N(10,-2),點(diǎn)P是線段MN上的點(diǎn),且PN=-2PM,則P點(diǎn)的坐標(biāo)為_(kāi)_____.答案:設(shè)P(x,y),則PN=(10-x,-2-y),PM=(-2-x,7-y),∵PN=-2PM,∴10-x=-2(-2-x)-2-y=-2(7-y),∴x=2y=4∴P點(diǎn)的坐標(biāo)為(2,4).故為:(2,4)19.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,點(diǎn)M(ρ,θ)關(guān)于極點(diǎn)的對(duì)稱點(diǎn)的極坐標(biāo)是______.答案:由點(diǎn)的極坐標(biāo)的意義可得,點(diǎn)M(ρ,θ)關(guān)于極點(diǎn)的對(duì)稱點(diǎn)到極點(diǎn)的距離等于ρ,極角為π+θ,故點(diǎn)M(ρ,θ)關(guān)于極點(diǎn)的對(duì)稱點(diǎn)的極坐標(biāo)是(ρ,π+θ),故為(ρ,π+θ).20.如圖所示,設(shè)k1,k2,k3分別是直線l1,l2,l3的斜率,則()

A.k1<k2<k3

B.k3<k1<k2

C.k3<k2<k1

D.k1<k3<k2

答案:C21.

如圖梯形A1B1C1D1是一平面圖形ABCD的斜二側(cè)直觀圖,若A1D1∥O′y′A1B1∥C1D1,A1B1=C1D1=2,A1D1=1,則四邊形ABCD的面積是()

A.10

B.5

C.2

D.10

答案:B22.已知隨機(jī)變量X滿足D(X)=2,則D(3X+2)=()

A.2

B.8

C.18

D.20答案:C23.已知兩點(diǎn)A(2,1),B(3,3),則直線AB的斜率為()

A.2

B.

C.

D.-2答案:A24.已知=2+i,則復(fù)數(shù)z=()

A.-1+3i

B.1-3i

C.3+i

D.3-i答案:B25.如圖所示,已知P是平行四邊形ABCD所在平面外一點(diǎn),連結(jié)PA、PB、PC、PD,點(diǎn)E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心,求證:E、F、G、H四點(diǎn)共面答案:證明:分別延長(zhǎng)P、PF、PG、PH交對(duì)邊于M、N、Q、R.∵E、F、G、H分別是所在三角形的重心,∴M、N、Q、R為所在邊的中點(diǎn),順次連結(jié)MNQR所得四邊形為平行四邊形,且有∵M(jìn)NQR為平行四邊形,∴由共面向量定理得E、F、G、H四點(diǎn)共面.26.設(shè)ABC是坐標(biāo)平面上的一個(gè)三角形,P為平面上一點(diǎn)且AP=15AB+25AC,則△ABP的面積△ABC的面積=()A.12B.15C.25D.23答案:連接CP并延長(zhǎng)交AB于D,∵P、C、D三點(diǎn)共線,∴AP=λAD+μAC且λ+μ=1設(shè)AB=kAD,結(jié)合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C27.圓心為(-2,3),且與y軸相切的圓的方程是()A.x2+y2+4x-6y+9=0B.x2+y2+4x-6y+4=0C.x2+y2-4x+6y+9=0D.x2+y2-4x+6y+4=0答案:根據(jù)圓心坐標(biāo)(-2,3)到y(tǒng)軸的距離d=|-2|=2,則所求圓的半徑r=d=2,所以圓的方程為:(x+2)2+(y-3)2=4,化為一般式方程得:x2+y2+4x-6y+9=0.故選A28.經(jīng)過(guò)點(diǎn)P(4,-2)的拋物線的標(biāo)準(zhǔn)方程為()

A.y2=-8x

B.x2=-8y

C.y2=x或x2=-8y

D.y2=x或y2=8x答案:C29.如圖為一個(gè)求50個(gè)數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語(yǔ)句為()

A.i>50

B.i<50

C.i>=50

D.i<=50

答案:A30.(文)不等式的解集是(

)A.B.C.D.答案:D解析:【思路分析】:原不等式可化為,得,故選D.【命題分析】考查不等式的解法,要求同解變形.31.現(xiàn)有含鹽7%的食鹽水為200g,需將它制成工業(yè)生產(chǎn)上需要的含鹽5%以上且在6%以下(不含5%和6%)的食鹽水,設(shè)需要加入4%的食鹽水xg,則x的取值范圍是(

)。答案:(100,400)32.某程序框圖如圖所示,若a=3,則該程序運(yùn)行后,輸出的x值為_(kāi)_____.答案:由題意,x的初值為1,每次進(jìn)行循環(huán)體則執(zhí)行乘二加一的運(yùn)算,執(zhí)行4次后所得的結(jié)果是:1×2+1=3,3×2+1=7,7×2+1=15,15×2+1=31,故為:31.33.如圖⊙0的直徑AD=2,四邊形ABCD內(nèi)接于⊙0,直線MN切⊙0于點(diǎn)B,∠MBA=30°,則AB的長(zhǎng)為_(kāi)_____.答案:連BD,則∠MBA=∠ADB=30°,在直角三角形ABD中sin30°=ABAD,∴AB=12×2=1故為:134.①點(diǎn)P在△ABC所在的平面內(nèi),且②點(diǎn)P為△ABC內(nèi)的一點(diǎn),且使得取得最小值;③點(diǎn)P是△ABC所在平面內(nèi)一點(diǎn),且,上述三個(gè)點(diǎn)P中,是△ABC的重心的有()

A.0個(gè)

B.1個(gè)

C.2個(gè)

D.3個(gè)答案:D35.已知三角形ABC的頂點(diǎn)坐標(biāo)為A(0,3)、B(-2,-1)、C(4,3),M是BC邊上的中點(diǎn)。

(1)求AB邊所在的直線方程。

(2)求中線AM的長(zhǎng)。

(3)求點(diǎn)C關(guān)于直線AB對(duì)稱點(diǎn)的坐標(biāo)。答案:解:(1)由兩點(diǎn)式得AB邊所在的直線方程為:=即2x-y+3=0(2)由中點(diǎn)坐標(biāo)公式得M(1,1)∴|AM|==(3)設(shè)C點(diǎn)關(guān)于直線AB的對(duì)稱點(diǎn)為C′(x′,y′)則CC′⊥AB且線段CC′的中點(diǎn)在直線AB上。即解之得x′=

y′=C′點(diǎn)坐標(biāo)為(,)36.已知曲線C上的動(dòng)點(diǎn)P(x,y)滿足到點(diǎn)F(0,1)的距離比到直線l:y=-2的距離小1.

(Ⅰ)求曲線C的方程;

(Ⅱ)動(dòng)點(diǎn)E在直線l上,過(guò)點(diǎn)E分別作曲線C的切線EA,EB,切點(diǎn)為A、B.

(?。┣笞C:直線AB恒過(guò)一定點(diǎn),并求出該定點(diǎn)的坐標(biāo);

(ⅱ)在直線l上是否存在一點(diǎn)E,使得△ABM為等邊三角形(M點(diǎn)也在直線l上)?若存在,求出點(diǎn)E坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.答案:(Ⅰ)曲線C的方程x2=4y(5分)(Ⅱ)(?。┰O(shè)E(a,-2),A(x1,x214),B(x2,x224),∵y=x24∴y′=12x過(guò)點(diǎn)A的拋物線切線方程為y-x214=12x1(x-x1),∵切線過(guò)E點(diǎn),∴-2-x214=12x1(a-x1),整理得:x12-2ax1-8=0同理可得:x22-2ax2-8=0,∴x1,x2是方程x2-2ax-8=0的兩根,∴x1+x2=2a,x1?x2=-8可得AB中點(diǎn)為(a,a2+42)又kAB=y1-y2x1-x2=x214-x224x1-x2=x1+x24=a2,∴直線AB的方程為y-(a22+2)=a2(x-a)即y=a2x+2,∴AB過(guò)定點(diǎn)(0,2)(10分)(ⅱ)由(ⅰ)知AB中點(diǎn)N(a,a2+42),直線AB的方程為y=a2x+2當(dāng)a≠0時(shí),則AB的中垂線方程為y-a2+42=-2a(x-a),∴AB的中垂線與直線y=-2的交點(diǎn)M(a3+12a4,-2)∴|MN|2=(a3+12a4-a)2+(-2-a2+42)2=116(a2+8)2(a2+4)∵|AB|=1+a24(x1+x2)2-4x1x2=(a2+4)(a2+8)若△ABM為等邊三角形,則|MN|=32|AB|,∴116(a2+8)2(a2+4)=34(a2+4)(a2+8),解得a2=4,∴a=±2,此時(shí)E(±2,-2),當(dāng)a=0時(shí),經(jīng)檢驗(yàn)不存在滿足條件的點(diǎn)E綜上可得:滿足條件的點(diǎn)E存在,坐標(biāo)為E(±2,-2).(15分)37.如果方程x2+(m-1)x+m2-2=0的兩個(gè)實(shí)根一個(gè)小于1,另一個(gè)大于1,那么實(shí)數(shù)m的取值范圍是()

A.

B.(-2,0)

C.(-2,1)

D.(0,1)答案:C38.已知直線l:x=2+ty=1-at(t為參數(shù)),與橢圓x2+4y2=16交于A、B兩點(diǎn).

(1)若A,B的中點(diǎn)為P(2,1),求|AB|;

(2)若P(2,1)是弦AB的一個(gè)三等分點(diǎn),求直線l的直角坐標(biāo)方程.答案:(1)直線l:x=2+ty=1-at代入橢圓方程,整理得(4a2+1)t2-4(2a-1)t-8=0設(shè)A、B對(duì)應(yīng)的參數(shù)分別為t1、t2,則t1+t2=4(2a-1)4a2+1,t1t2=-84a2+1,∵A,B的中點(diǎn)為P(2,1),∴t1+t2=0解之得a=12,∴t1t2=-4,∵|AP|=12+(-12)2|t1|=52|t1|,|BP|=52|t2|,∴|AB|=52(|t1|+|t1|)=52×(t1+t2)2-4t1t2=25,(2)P(2,1)是弦AB的一個(gè)三等分點(diǎn),∴|AP|=12|PB|,∴1+a2|t1|=21+a2|t2|,?t1=-2t2,∴t1+t2=-t2=4(2a-1)4a2+1,t1t2=-2t

22=-84a2+1,∴t

22=44a2+1,∴16(2a-1)2(4a2+1)2=44a2+1,解得a=4±76,∴直線l的直角坐標(biāo)方程y-1=4±76(x-2).39.復(fù)數(shù)3+4i的模等于______.答案:|3+4i|=32+42=5,故為5.40.關(guān)于直線a,b,c以及平面M,N,給出下面命題:

①若a∥M,b∥M,則a∥b

②若a∥M,b⊥M,則b⊥a

③若a∥M,b⊥M,且c⊥a,c⊥b,則c⊥M

④若a⊥M,a∥N,則M⊥N,

其中正確命題的個(gè)數(shù)為()

A.0個(gè)

B.1個(gè)

C.2個(gè)

D.3個(gè)答案:C41.某校有老師300人,男學(xué)生1200人,女學(xué)生1000人.現(xiàn)用分層抽樣的方法從所有師生中抽取一個(gè)容量為n的樣本,已知從女學(xué)生中抽取的人數(shù)為80,則n=()

A.171

B.184

C.200

D.392答案:C42.設(shè)隨機(jī)事件A、B,P(A)=35,P(B|A)=12,則P(AB)=______.答案:由條件概率的計(jì)算公式,可得P(AB)=P(A)×P(B|A)=35×12=310;故為310.43.設(shè)A、B、C表示△ABC的三個(gè)內(nèi)角的弧度數(shù),a,b,c表示其對(duì)邊,求證:aA+bB+cCa+b+c≥π3.答案:證明:法一、不妨設(shè)A>B>C,則有a>b>c由排序原理:順序和≥亂序和∴aA+bB+cC≥aB+bC+cAaA+bB+cC≥aC+bA+cBaA+bB+cC=aA+bB+cC上述三式相加得3(aA+bB+cC)≥(A+B+C)(a+b+c)=π(a+b+c)∴aA+bB+cCa+b+c≥π3.法二、不妨設(shè)A>B>C,則有a>b>c,由排序不等式aA+bB+cC3≥A+B+C3?a+b+c3,即aA+bB+cC≥π3(a+b+c),∴aA+bB+cCa+b+c≥π3.44.到兩定點(diǎn)A(0,0),B(3,4)距離之和為5的點(diǎn)的軌跡是()

A.橢圓

B.AB所在直線

C.線段AB

D.無(wú)軌跡答案:C45.已知

p:所有國(guó)產(chǎn)手機(jī)都有陷阱消費(fèi),則¬p是()

A.所有國(guó)產(chǎn)手機(jī)都沒(méi)有陷阱消費(fèi)

B.有一部國(guó)產(chǎn)手機(jī)有陷阱消費(fèi)

C.有一部國(guó)產(chǎn)手機(jī)沒(méi)有陷阱消費(fèi)

D.國(guó)外產(chǎn)手機(jī)沒(méi)有陷阱消費(fèi)答案:C46.若直線ax+by+c=0(a,b,c都是正數(shù))與圓x2+y2=1相切,則以a,b,c為邊長(zhǎng)的三角形是()

A.銳角三角形

B.直角三角形

C.鈍角三角形

D.不能確定答案:B47.已知定直線l及定點(diǎn)A(A不在l上),n為過(guò)點(diǎn)A且垂直于l的直線,設(shè)N為l上任意一點(diǎn),線段AN的垂直平分線交n于B,點(diǎn)B關(guān)于AN的對(duì)稱點(diǎn)為P,求證:點(diǎn)P的軌跡為拋物線.答案:證明:如圖所示,建立平面直角坐標(biāo)系,并且連結(jié)PA,PN,NB.由題意知PB垂直平分AN,且點(diǎn)B關(guān)于AN的對(duì)稱點(diǎn)為P,∴AN也垂直平分PB.∴四邊形PABN為菱形,∴PA=PN.∵AB⊥l,∴PN⊥l.故點(diǎn)P符合拋物線上點(diǎn)的條件:到定點(diǎn)A的距離和到定直線l的距離相等,∴點(diǎn)P的軌跡為拋物線.48.已知函數(shù)f(x)滿足:f(p+q)=f(p)f(q),f(1)=2,則:f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=______答案:∵f(p+q)=f(p)f(q),∴f(p+1)=f(p)f(1)即f(p+1)f(p)=f(1)=2,∴f(2)f(1)=2,f(4)f(3)=2…f(2006)f(2005)=2即f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=2×1003=2006故為:200649.從一堆蘋果中任取5只,稱得它們的質(zhì)量為(單位:克):125124121123127,則該樣本標(biāo)準(zhǔn)差s=______(克)(用數(shù)字作答).答案:由題意得:樣本平均數(shù)x=15(125+124+121+123+127)=124,樣本方差s2=15(12+02+32+12+32)=4,∴s=2.故為2.50.定義xn+1yn+1=1011xnyn為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個(gè)矩陣變換,其中O是坐標(biāo)原點(diǎn),n∈N*.已知OP1=(2,0),則OP2011的坐標(biāo)為_(kāi)_____.答案:由題意,xn+1=xnyn+1=xn+yn∴向量的橫坐標(biāo)不變,縱坐標(biāo)構(gòu)成以0為首項(xiàng),2為公差的等差數(shù)列∴OP2011的坐標(biāo)為(2,4020)故為:(2,4020)第2卷一.綜合題(共50題)1.已知θ是三角形內(nèi)角且sinθ+cosθ=,則表示答案:C2.已知x2a2+y2b2=1(a>b>0),則a2+b2與(x+y)2的大小關(guān)系為

______.答案:由已知x2a2+y2b2=1(a>b>0)和柯西不等式的二維形式.得a2+b2=(a2+b2)(x2a2+y2b2)≥(a?xa+b?yb)2=(x+y)2.故為a2+b2≥(x+y)2.3.在平面直角坐標(biāo)系內(nèi)第二象限的點(diǎn)組成的集合為_(kāi)_____.答案:∵平面直角坐標(biāo)系內(nèi)第二象限的點(diǎn),橫坐標(biāo)小于0,縱坐標(biāo)大于0,∴在平面直角坐標(biāo)系內(nèi)第二象限的點(diǎn)組成的集合為{(x,y)|x<0且y>0},故為:{(x,y)|x<0且y>0}.4.(幾何證明選講選做題)已知AD是△ABC的外角∠EAC的平分線,交BC的延長(zhǎng)線于點(diǎn)D,延長(zhǎng)DA交△ABC的外接圓于點(diǎn)F,連接FB,F(xiàn)C.

(1)求證:FB=FC;

(2)若AB是△ABC外接圓的直徑,∠EAC=120°,BC=33,求AD的長(zhǎng).答案:(1)證明:∵AD平分∠EAC,∴∠EAD=∠DAC;∵四邊形AFBC內(nèi)接于圓,∴∠DAC=∠FBC;

…2′∵∠EAD=∠FAB=∠FCB∴∠FBC=∠FCB∴FB=FC.…5(2)∵AB是圓的直徑,∴∠ACD=90°∵∠EAC=120°,∴∠DAC=60°,∴∠D=30°…7′在Rt△ACB中,∵BC=33,∠BAC=60°,∴AC=3又在Rt△ACD中,∠D=30°,AC=3,∴AD=6

…10′5.已知圓C的極坐標(biāo)方程是ρ=2sinθ,那么該圓的直角坐標(biāo)方程為

______,半徑長(zhǎng)是

______.答案:把極坐標(biāo)方程是ρ=2sinθ的兩邊同時(shí)乘以ρ得:ρ2=2ρsinθ,∴x2+y2=2y,即x2+(y-1)2=1,表示以(0,1)為圓心,半徑等于1的圓,故為:x2+(y-1)2=1;1.6.設(shè)兩個(gè)正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲線如圖所示,則有()

A.μ1<μ2,σ1>σ2

B.μ1<μ2,σ1<σ2

C.μ1>μ2,σ1>σ2

D.μ1>μ2,σ1<σ2

答案:A7.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),滿足條件(c-a)?(2b)=-2,則x=______.答案:c-a=(0,0,1-x),(c-a)?(2b)

=(2,4,2)?(0,0,1-x)=2(1-x)=-2,解得x=2,故為2.8.滿足f(xy)=f(x)+f(y)(x>0,y>0)且f(3)=2的函數(shù)可以是f(x)=______.答案:若函數(shù)為對(duì)數(shù)函數(shù),不妨令f(x)=logax則f(xy)=loga(xy)=logax+logay=f(x)+f(y)滿足條件又∵f(3)=2∴l(xiāng)oga3=2解得a=3故f(x)=log3x故為:log3x9.直線y=3x+3的傾斜角的大小為_(kāi)_____.答案:∵直線y=3x+3的斜率等于3,設(shè)傾斜角等于α,則0°≤α<180°,且tanα=3,∴α=60°,故為60°.10.(幾何證明選講選做題)

如圖,已知PA是圓O的切線,切點(diǎn)為A,直線PO交圓O于B,C兩點(diǎn),AC=2,∠PAB=120°,則切線PA的長(zhǎng)度等于______.答案:∵∠PAB=120°,∴優(yōu)弧ACB=240°,∴劣弧AB=120°,∴∠ACB=60°,又∵OA=OC故∠AOP=60°,OA=AC=2,∠又∵PA是圓O的切線,切點(diǎn)為A,∴∠OAP=90°∴PA=3OA=23故為:2311.若A,B,C是直線存在實(shí)數(shù)x使得,實(shí)數(shù)x為()

A.-1

B.0

C.

D.答案:A12.甲射擊運(yùn)動(dòng)員擊中目標(biāo)為事件A,乙射擊運(yùn)動(dòng)員擊中目標(biāo)為事件B,則事件A,B為()

A.互斥事件

B.獨(dú)立事件

C.對(duì)立事件

D.不相互獨(dú)立事件答案:B13.在極坐標(biāo)系中,已知點(diǎn)P(2,),則過(guò)點(diǎn)P且平行于極軸的直線的方程是()

A.ρsinθ=1

B.ρsinθ=

C.ρcosθ=1

D.ρcosθ=答案:A14.若將推理“四邊形的內(nèi)角和為360°,所以平行四邊形的內(nèi)角和為360°”改為三段論的形式,則它的小前提是______.答案:將推理“四邊形的內(nèi)角和為360°,所以平行四邊形的內(nèi)角和為360°”改為三段論的形式,因?yàn)樗倪呅蔚膬?nèi)角和為360°,平行四邊形是四邊形,所以平行四邊形的內(nèi)角和為360°大前提:四邊形的內(nèi)角和為360°;小前提:平行四邊形是四邊形;結(jié)論:平行四邊形的內(nèi)角和為360°.故為:平行四邊形是四邊形.15.求過(guò)點(diǎn)A(2,3)且被兩直線3x+4y-7=0,3x+4y+8=0截得線段為32的直線方程.答案:設(shè)所求直線l的斜率為k,∵|MN|=32,又在Rt△MNB中,|MB|=3,∴∠MNB=45°,即2條直線的夾角為45°,∴|

k-(-34)1+k(-34)|=tan45°=1,解得k=17,或k=-7,所求直線的方程為y-3=17(x-2),或y-3=-7(x-2),即x-7y+19=0,或7x+y-17=0.16.如圖,平面內(nèi)有三個(gè)向量OA,OB,OC,其中OA與OB的夾角為120°,OA與OC的夾角為30°.且|OA|=1,|OB|=1,|OC|=23,若|OC|=λOA+μOB(λ,μ∈R),求λ+μ的值.答案:如圖,OC=OD+OE=λOA+μOB,在△OCD中,∠OD=30°,∠OCD=∠COB=90°,可求|OD|=4,同理可求|OE|=2,∴λ=4,μ=2,∴λ+μ=6.17.如圖,四邊形ABCD內(nèi)接于圓O,且AC、BD交于點(diǎn)E,則此圖形中一定相似的三角形有()對(duì).

A.0

B.3

C.2

D.1

答案:C18.設(shè)非零向量、、滿足||=||=||,+=,則<,>=()

A.150°

B.120°

C.60°

D.30°答案:B19.已知曲線,

θ∈[0,2π)上一點(diǎn)P到點(diǎn)A(-2,0)、B(2,0)的距離之差為2,則△PAB是()

A.銳角三角形

B.鈍角三角形

C.直角三角形

D.等腰三角形答案:C20.如圖,從圓O外一點(diǎn)A引切線AD和割線ABC,AB=3,BC=2,則切線AD的長(zhǎng)為_(kāi)_____.答案:由切割線定理可得AD2=AB?AC=3×5,∴AD=15.故為15.21.已知f(x)=,則不等式xf(x)+x≤2的解集是(

)。答案:{x|x≤1}22.有一個(gè)正四棱臺(tái)形狀的油槽,可以裝油190L,假如它的兩底面邊長(zhǎng)分別等于60cm和40cm,求它的深度.答案:由于臺(tái)體的體積V=13(S+SS′+S′)h,則h=3VS+SS′+S′=3×1900003600+2400+1600=75cm.故它的深度為75cm.23.(本小題滿分10分)選修4-1:幾何證明選講

如圖,的角平分線的延長(zhǎng)線交它的外接圓于點(diǎn).

(Ⅰ)證明:;

(Ⅱ)若的面積,求的大小.答案:(Ⅰ)證明見(jiàn)解析(Ⅱ)90°解析:本題主要考查平面幾何中與圓有關(guān)的定理及性質(zhì)的應(yīng)用、三角形相似及性質(zhì)的應(yīng)用.證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.因?yàn)椤螦EB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.故△ABE∽△ADC.(Ⅱ)因?yàn)椤鰽BE∽△ADC,所以,即AB·AC=AD·AE.又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE.則sin∠BAC=1,又∠BAC為三角形內(nèi)角,所以∠BAC=90°.【點(diǎn)評(píng)】在圓的有關(guān)問(wèn)題中經(jīng)常要用到弦切角定理、圓周角定理、相交弦定理等結(jié)論,解題時(shí)要注意根據(jù)已知條件進(jìn)行靈活的選擇,同時(shí)三角形相似是證明一些與比例有關(guān)問(wèn)題的的最好的方法.24.已知F是拋物線C:y2=4x的焦點(diǎn),過(guò)F且斜率為1的直線交C于A,B兩點(diǎn).設(shè)|FA|>|FB|,則|FA|與|FB|的比值等于______.答案:設(shè)A(x1,y1)B(x2,y2)由y=x-1y2=4x?x2-6x+1=0?x1=3+22,x2=3-22,(x1>x2)∴由拋物線的定義知|FA||FB|=x1+1x2+1=4+224-22=2+22-2=3+22故為:3+2225.證明空間任意無(wú)三點(diǎn)共線的四點(diǎn)A、B、C、D共面的充分必要條件是:對(duì)于空間任一點(diǎn)O,存在實(shí)數(shù)x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.答案:(必要性)依題意知,B、C、D三點(diǎn)不共線,則由共面向量定理的推論知:四點(diǎn)A、B、C、D共面?對(duì)空間任一點(diǎn)O,存在實(shí)數(shù)x1、y1,使得OA=OB+x1BC+y1BD=OB+x1(OC-OB)+y1(OD-OB)=(1-x1-y1)OB+x1OC+y1OD,取x=1-x1-y1、y=x1、z=y1,則有OA=xOB+yOC+zOD,且x+y+z=1.(充分性)對(duì)于空間任一點(diǎn)O,存在實(shí)數(shù)x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.所以x=1-y-z得OA=(1-y-z)OB+yOC+zOD.OA=OB+yBC+zBD,即:BA=yBC+zBD,所以四點(diǎn)A、B、C、D共面.所以,空間任意無(wú)三點(diǎn)共線的四點(diǎn)A、B、C、D共面的充分必要條件是:對(duì)于空間任一點(diǎn)O,存在實(shí)數(shù)x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.26.將y=sin2x的圖象向右按作最小的平移,使平移后的圖象在[k,k+](kz)上遞減,試求平移后的函數(shù)解析式和.答案:y=-cos2x,

=(,0)解析:將y=sin2x的圖象向右按作最小的平移,使平移后的圖象在[k,k+](kz)上遞減,試求平移后的函數(shù)解析式和.27.已知f(x)=x2+4x+8,則f(3)=______.答案:f(3)=32+4×3+8=29,故為:29.28.在空間直角坐標(biāo)系0xyz中有兩點(diǎn)A(2,5,1)和B(2,4,-1),則|AB|=______.答案:∵點(diǎn)A(2,5,1)和B(2,4,-1),∴AB=(0,-1,-2).∴|AB|=0+(-1)2+(-2)2=5.故為5.29.圓的極坐標(biāo)方程是ρ=2cosθ+2sinθ,則其圓心的極坐標(biāo)是()

A.(2,)

B.(2,)

C.(1,)

D.(1,)答案:A30.設(shè)集合A={0,1,3},B={1,3,4},則A∩B=______.答案:∵集合A={0,1,3},B={1,3,4},A∩B={1,3}.故為:{1,3}.31.設(shè)、、為實(shí)數(shù),,則下列四個(gè)結(jié)論中正確的是(

)A.B.C.且D.且答案:D解析:若,則,則.若,則對(duì)于二次函數(shù),由可得結(jié)論.32.如圖程序輸出的結(jié)果是()

a=3,

b=4,

a=b,

b=a,

PRINTa,b

END

A.3,4

B.4,4

C.3,3

D.4,3答案:B33.平行線l1:3x-2y-5=0與l2:6x-4y+3=0之間的距離為_(kāi)_____.答案:將l1:3x-2y-5=0化成6x-4y-10=0∴l(xiāng)1:3x-2y-5=0與l2:6x-4y+3=0之間的距離為d=|-10-3|62+(-4)2=1352=132故為:13234.在大小相同的5個(gè)球中,2個(gè)是紅球,3個(gè)是白球,若從中任取2個(gè),則所取的2個(gè)球中至少有一個(gè)紅球的概率是______.答案:由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的基本事件有C52=10種結(jié)果,其中至少有一個(gè)紅球的事件包括C22+C21C31=7個(gè)基本事件,根據(jù)古典概型公式得到P=710,故為:710.35.今天為星期六,則今天后的第22010天是()A.星期一B.星期二C.星期四D.星期日答案:∵22010=8670=(7+1)670=C6700×7670×10+C6701×7669×11+C6702×7668×12+…+C6702010×70×1670∴22010除7的余數(shù)是1故今天為星期六,則今天后的第22010天是星期日故選D36.若與垂直,則k的值是()

A.2

B.1

C.0

D.答案:D37.中心在坐標(biāo)原點(diǎn),離心率為的雙曲線的焦點(diǎn)在y軸上,則它的漸近線方程為()

A.

B.

C.

D.答案:D38.若直線x-y-1=0與直線x-ay=0的夾角為,則實(shí)數(shù)a等于()

A.

B.0

C.

D.0或答案:D39.已知正方形的邊長(zhǎng)為2,AB=a,BC=b,AC=c,則|a+b+c|=()A.0B.2C.2D.4答案:由題意可得:AB+BC=AC,所以c=a+b,所以|a+b+c|=2|c|.因?yàn)檎叫蔚倪呴L(zhǎng)為2,所以|AC|=|c|=2,所以|a+b+c|=2|c|=4.故選D.40.“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來(lái),睡了一覺(jué),當(dāng)它醒來(lái)時(shí),發(fā)現(xiàn)烏龜快到終點(diǎn)了,于是急忙追趕,但為時(shí)已晚,烏龜還是先到達(dá)了終點(diǎn)…,用S1、S2分別表示烏龜和兔子所行的路程,t為時(shí)間,則下圖與故事情節(jié)相吻合的是()

A.

B.

C.

D.

答案:B41.若雙曲線的漸近線方程為y=±34x,則雙曲線的離心率為_(kāi)_____.答案:由題意可得,當(dāng)焦點(diǎn)在x軸上時(shí),ba=34,∴ca=a2+b2a=a2+(3a4)2a=54.當(dāng)焦點(diǎn)在y軸上時(shí),ab=34,∴ca=a2+b2a=a2+(4a3)2a=53,故為:53

或54.42.用反證法證明:“a>b”,應(yīng)假設(shè)為()

A.a(chǎn)>b

B.a(chǎn)<b

C.a(chǎn)=b

D.a(chǎn)≤b答案:D43.已知?jiǎng)狱c(diǎn)M到定點(diǎn)F(1,0)的距離比M到定直線x=-2的距離小1.

(1)求證:M點(diǎn)的軌跡是拋物線,并求出其方程;

(2)大家知道,過(guò)圓上任意一點(diǎn)P,任意作互相垂直的弦PA、PB,則弦AB必過(guò)圓心(定點(diǎn)).受此啟發(fā),研究下面問(wèn)題:

1過(guò)(1)中的拋物線的頂點(diǎn)O任意作互相垂直的弦OA、OB,問(wèn):弦AB是否經(jīng)過(guò)一個(gè)定點(diǎn)?若經(jīng)過(guò),請(qǐng)求出定點(diǎn)坐標(biāo),否則說(shuō)明理由;2研究:對(duì)于拋物線上某一定點(diǎn)P(非頂點(diǎn)),過(guò)P任意作互相垂直的弦PA、PB,弦AB是否經(jīng)過(guò)定點(diǎn)?答案:(1)證明:由題意可知:動(dòng)點(diǎn)M到定點(diǎn)F(1,0)的距離等于M到定直線x=-1的距離根據(jù)拋物線的定義可知,M的軌跡是拋物線所以拋物線方程為:y2=4x(2)(i)設(shè)A(x1,y1),B(x2,y2),lAB:y=kx+b,(b≠0)由y=kx+by2=4x消去y得:k2x2+(2bk-4)kx+b2=0,x1x2=b2k2.∵OA⊥OB,∴OA?OB=0,∴x1x2+y1y2=0,y1y2=4bk所以x1x2+(x1x2)2=0,b≠0,∴b=-2k,∴直線AB過(guò)定點(diǎn)M(1,0),(ii)設(shè)p(x0,y0)設(shè)AB的方程為y=mx+n,代入y2=2x得y2-2my=-2n=0∴y1+y2=2m,y1y2-2n其中y1,y2分別是A,B的縱坐標(biāo)∵AP⊥PB∴kmax?kmin=-1即y1-y0x1-x0?y2-y0x2-x0=1∴(y1+y0)(y2+y0)=-4?y1y2+(y1+y2)y0+y02-4=0(-2n)+2my0+2x0+4=0,=my0+x0+2直線PQ的方程為x=my+my0+x0+2,即x=m(y+y0)+x0+2,它一定過(guò)點(diǎn)(x0+2,-y0)44.“a>1”是“1a<1”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由1a<1得:當(dāng)a>0時(shí),有1<a,即a>1;當(dāng)a<0時(shí),不等式恒成立.所以1a<1?a>1或a<0從而a>1是1a<1的充分不必要條件.故應(yīng)選:A45.命題“方程|x|=1的解是x=±1”中,使用邏輯詞的情況是()A.沒(méi)有使用邏輯連接詞B.使用了邏輯連接詞“或”C.使用了邏輯連接詞“且”D.使用了邏輯連接詞“或”與“且”答案:∵命題“方程|x|=1的解是x=±1”等價(jià)于命題“方程|x|=1的解是x=1或x=-1.”∴該命題使用了邏輯連接詞“或”.故選B.46.一個(gè)箱中原來(lái)裝有大小相同的

5

個(gè)球,其中

3

個(gè)紅球,2

個(gè)白球.規(guī)定:進(jìn)行一次操

作是指“從箱中隨機(jī)取出一個(gè)球,如果取出的是紅球,則把它放回箱中;如果取出的是白

球,則該球不放回,并另補(bǔ)一個(gè)紅球放到箱中.”

(1)求進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)為

4

的概率;

(2)求進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)的分布列和數(shù)學(xué)期望.答案:(1)設(shè)A1表示事件“第一次操作從箱中取出的是紅球”,B1表示事件“第一次操作從箱中取出的是白球”,A2表示事件“第二次操作從箱中取出的是紅球”,B2表示事件“第二次操作從箱中取出的是白球”.則A1B2表示事件“第一次操作從箱中取出的是紅球,第二次操作從箱中取出的是白球”.由條件概率計(jì)算公式得P(A1B2)=P(A1)P(B2|A1)=35×25=625.B1A2表示事件“第一次操作從箱中取出的是白球,第二次操作從箱中取出的是紅球”.由條件概率計(jì)算公式得P(B1A2)=P(B1)P(A2|B1)=25×45=825.A1B2+B1A2表示“進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)為

4”,又A1B2與B1A2是互斥事件.∴P(A1B2+B1A2)=P(A1B2)+P(B1A2)=625+825=1425.(2)設(shè)進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)為X,則X=3,4,5.P(X=3)35×35=925,P(X=4)=1425,P(X=5)=25×15=225.進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)X的分布列為:進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)X的數(shù)學(xué)期望EX=3×925+4×1425+5×225=9325.47.方程y=ax+b和a2x2+y2=b2(a>b>1)在同一坐標(biāo)系中的圖形可能是()A.

B.

C.

D.

答案:∵a>b>1,∴方程y=ax+b的圖象與y軸交于y軸的正半軸,且函數(shù)是增函數(shù),由此排除選項(xiàng)B和D,∵a>b>1,a2x2+y2=b2?x2(ba)2+y2b2=1,∴橢圓焦點(diǎn)在y軸,由此排除A.故選C.48.意大利數(shù)學(xué)家菲波拉契,在1202年出版的一書里提出了這樣的一個(gè)問(wèn)題:一對(duì)兔子飼養(yǎng)到第二個(gè)月進(jìn)入成年,第三個(gè)月生一對(duì)小兔,以后每個(gè)月生一對(duì)小兔,所生小兔能全部存活并且也是第二個(gè)月成年,第三個(gè)月生一對(duì)小兔,以后每月生一對(duì)小兔.問(wèn)這樣下去到年底應(yīng)有多少對(duì)兔子?試畫出解決此問(wèn)題的程序框圖,并編寫相應(yīng)的程序.答案:見(jiàn)解析解析:解:根據(jù)題意可知,第一個(gè)月有對(duì)小兔,第二個(gè)月有對(duì)成年兔子,第三個(gè)月有兩對(duì)兔子,從第三個(gè)月開(kāi)始,每個(gè)月的兔子對(duì)數(shù)是前面兩個(gè)月兔子對(duì)數(shù)的和,設(shè)第個(gè)月有對(duì)兔子,第個(gè)月有對(duì)兔子,第個(gè)月有對(duì)兔子,則有,一個(gè)月后,即第個(gè)月時(shí),式中變量的新值應(yīng)變第個(gè)月兔子的對(duì)數(shù)(的舊值),變量的新值應(yīng)變?yōu)榈趥€(gè)月兔子的對(duì)數(shù)(的舊值),這樣,用求出變量的新值就是個(gè)月兔子的數(shù),依此類推,可以得到一個(gè)數(shù)序列,數(shù)序列的第項(xiàng)就是年底應(yīng)有兔子對(duì)數(shù),我們可以先確定前兩個(gè)月的兔子對(duì)數(shù)均為,以此為基準(zhǔn),構(gòu)造一個(gè)循環(huán)程序,讓表示“第×個(gè)月的從逐次增加,一直變化到,最后一次循環(huán)得到的就是所求結(jié)果.流程圖和程序如下:S=1Q=1I=3WHILE

I<=12F=S+QQ=SS=FI=I+1WENDPRINT

FEND49.已知圓的極坐標(biāo)方程為ρ=4cosθ,圓心為C,點(diǎn)P的極坐標(biāo)為(4,π3),則|CP|=______.答案:圓的極坐標(biāo)方程為ρ=4cosθ,圓的方程為:x2+y2=4x,圓心為C(2,0),點(diǎn)P的極坐標(biāo)為(4,π3),所以P的直角坐標(biāo)(2,23),所以|CP|=(2-2)2+(23-0)2=23.故為:23.50.已知x、y之間的一組數(shù)據(jù)如下:

x0123y8264則線性回歸方程y=a+bx所表示的直線必經(jīng)過(guò)點(diǎn)()A.(0,0)B.(2,6)C.(1.5,5)D.(1,5)答案:∵.x=0+1+2+34=1.5,.y=8+2+6+44=5∴線性回歸方程y=a+bx所表示的直線必經(jīng)過(guò)點(diǎn)(1.5,5)故選C第3卷一.綜合題(共50題)1.定義直線關(guān)于圓的圓心距單位λ為圓心到直線的距離與圓的半徑之比.若圓C滿足:①與x軸相切于點(diǎn)A(3,0);②直線y=x關(guān)于圓C的圓心距單位λ=2,試寫出一個(gè)滿足條件的圓C的方程______.答案:由題意可得圓心的橫坐標(biāo)為3,設(shè)圓心的縱坐標(biāo)為r,則半徑為|r|>0,則圓心的坐標(biāo)為(3,r).設(shè)圓心到直線y=x的距離為d,d=|3-r|2,則由題意可得λ=d|r|=2,求得r=1,或r=-3,故一個(gè)滿足條件的圓C的方程是(x-3)2+(y-1)2=1,故為(x-3)2+(y-1)2=12.隨機(jī)地向某個(gè)區(qū)域拋撒了100粒種子,在面積為10m2的地方有2粒種子發(fā)芽,假設(shè)種子的發(fā)芽率為100%,則整個(gè)撒種區(qū)域的面積大約有______m2.答案:設(shè)整個(gè)撒種區(qū)域的面積大約xm2,由于假設(shè)種子的發(fā)芽率為100%,所以在面積為10m2的地方有2粒種子發(fā)芽,意味著在面積為10m2的地方有2粒種子,從而有:100x=210,∴x=500,故為:500.3.已知x∈R,i為虛數(shù)單位,若(x-2)i-1-i為純虛數(shù),則x的值為()A.1B.-1C.2D.-2答案:(x-2)i-1-i=[(x-2)i-1]?i-i?i=(x-2)i2-i=(2-x)-i由純虛數(shù)的定義可得2-x=0,故x=2故選C4.已知方程x2-6x+a=0的兩個(gè)不等實(shí)根均大于2,則實(shí)數(shù)a的取值范圍為()

A.[4,9)

B.(4,9]

C.(4,9)

D.(8,9)答案:D5.直線m的傾斜角為30°,則此直線的斜率等于()A.12B.1C.33D.3答案:因?yàn)橹本€的斜率k和傾斜角θ的關(guān)系是:k=tanθ∴傾斜角為30°時(shí),對(duì)應(yīng)的斜率k=tan30°=33故選:C.6.平面內(nèi)有n條直線,其中無(wú)任何兩條平行,也無(wú)任何三條共點(diǎn),求證:這n條直線把平面分割成12(n2+n+2)塊.答案:證明:(1)當(dāng)n=1時(shí),1條直線把平面分成2塊,又12(12+1+2)=2,命題成立.(2)假設(shè)n=k時(shí),k≥1命題成立,即k條滿足題設(shè)的直線把平面分成12(k2+k+2)塊,那么當(dāng)n=k+1時(shí),第k+1條直線被k條直線分成k+1段,每段把它們所在的平面塊又分成了2塊,因此,增加了k+1個(gè)平面塊.所以k+1條直線把平面分成了12(k2+k+2)+k+1=12[(k+1)2+(k+1)+2]塊,這說(shuō)明當(dāng)n=k+1時(shí),命題也成立.由(1)(2)知,對(duì)一切n∈N*,命題都成立.7.如圖所示,面積為S的平面凸四邊形的第i條邊的邊長(zhǎng)記為ai(i=1,2,3,4),此四邊形內(nèi)任一點(diǎn)P到第i條邊的距離記為hi(i=1,2,3,4),若a11=a22=a33=a44=k,則4

i=1(ihi)=2Sk.類比以上性質(zhì),體積為V的三棱錐的第i個(gè)面的面積記為Si(i=1,2,3,4),此三棱錐內(nèi)任一點(diǎn)Q到第i個(gè)面的距離記為Hi(i=1,2,3,4),若S11=S22=S33=S44=K,則4

i=1(iHi)=()A.4VKB.3VKC.2VKD.VK答案:根據(jù)三棱錐的體積公式V=13Sh得:13S1H1+13S2H2+13S3H3+13S4H4=V,即S1H1+2S2H2+3S3H3+4S4H4=3V,∴H1+2H2+3H3+4H4=3VK,即4i=1(iHi)=3VK.故選B.8.如圖,直線l1、l2、l3的斜率分別為k1、k2、k3,則必有()A.k1<k3<k2B.k3<k1<k2C.k1<k2<k3D.k3<k2<k1答案:設(shè)直線l1、l2、l3的傾斜角分別為α1,α2,α3.由已知為α1為鈍角,α2>α3,且均為銳角.由于正切函數(shù)y=tanx在(0,π2)上單調(diào)遞增,且函數(shù)值為正,所以tanα2>tanα3>0,即k2>k3>0.當(dāng)α為鈍角時(shí),tanα為負(fù),所以k1=tanα1<0.綜上k1<k3<k2,故選A.9.直線l1:y=ax+b,l2:y=bx+a

(a≠0,b≠0,a≠b),在同一坐標(biāo)系中的圖形大致是()

A.

B.

C.

D.

答案:C10.設(shè)向量a=(1,0),b=(sinθ,cosθ),0≤θ≤π,則|a+b|的最大值為

______.答案:|a|=1因?yàn)閨b|=1,所以|a+b|2=a2+b2+2a?b=2+2sinθ因?yàn)?≤θ≤π,所以0≤sinθ≤1,所以2+2sinθ≤4,|a+b|≤2故為:211.已知△ABC中,過(guò)重心G的直線交邊AB于P,交邊AC于Q,設(shè)AP=pPB,AQ=qQC,則pqp+q=()A.1B.3C.13D.2答案:取特殊直線PQ使其過(guò)重心G且平行于邊BC∵點(diǎn)G為重心∴APPB=AQQC=21∵AP=pPB,AQ=qQC∴p=2,q=2∴pqp+q=44=1故選項(xiàng)為A12.已知復(fù)數(shù)(m2-5m+6)+(m2-3m)i是純虛數(shù),則實(shí)數(shù)m=______.答案:當(dāng)m2-5m+6=0m2-3m≠0時(shí),即m=2或m=3m≠0且m≠3?m=2時(shí)復(fù)數(shù)z為純虛數(shù).故為:2.13.已知A(1,0).B(7,8),若點(diǎn)A和點(diǎn)B到直線l的距離都為5,且滿足上述條件的直線l共有n條,則n的值是()A.1B.2C.3D.4答案:與直線AB平行且到直線l的距離都為5的直線共有兩條,分別位于直線AB的兩側(cè),由線段AB的長(zhǎng)度等于10,還有一條直線是線段AB的中垂線,故滿足上述條件的直線l共有3條,故選C.14.i是虛數(shù)單位,若(3+5i)x+(2-i)y=17-2i,則x、y的值分別為()

A.7,1

B.1,7

C.1,-7

D.-1,7答案:B15.在極坐標(biāo)系中,若點(diǎn)A(ρ0,π3)(ρ0≠0)是曲線ρ=2cosθ上的一點(diǎn),則ρ0=______.答案:∵點(diǎn)A(ρ0,π3)(ρ0≠0)是曲線ρ=2cosθ上的一點(diǎn),∴ρ0=2cosπ3.∴ρ0=2×12=1.故為:1.16.若向量的起點(diǎn)與終點(diǎn)M、A、B、C互不重合且無(wú)三點(diǎn)共線,且滿足下列關(guān)系(O為空間任一點(diǎn)),則能使向量成為空間一組基底的關(guān)系是()

A.

B.

C.

D.答案:C17.由直線y=x+1上的一點(diǎn)向圓(x-3)2+y2=1引切線,則切線長(zhǎng)的最小值為()

A.1

B.2

C.

D.3答案:C18.質(zhì)地均勻的正四面體玩具的4個(gè)面上分別刻著數(shù)字1,2,3,4,將4個(gè)這樣的玩具同時(shí)拋擲于桌面上.

(1)求與桌面接觸的4個(gè)面上的4個(gè)數(shù)的乘積不能被4整除的概率;

(2)設(shè)ξ為與桌面接觸的4個(gè)面上數(shù)字中偶數(shù)的個(gè)數(shù),求ξ的分歧布列及期望Eξ.答案:(1)不能被4整除的有兩種情形;①4個(gè)數(shù)均為奇數(shù),概率為P1=(12)4=116②4個(gè)數(shù)中有3個(gè)奇數(shù),另一個(gè)為2,概率為P2=C34(12)3?14=18這兩種情況是互斥的,故所求的概率為P=116+18=316(2)ξ為與桌面接觸的4個(gè)面上數(shù)字中偶數(shù)的個(gè)數(shù),由題意知ξ的可能取值是0,1,2,3,4,根據(jù)符合二項(xiàng)分布,得到P(ξ=k)=Ck4(12)4(k=0,1,2,3,4),ξ的分布列為∵ξ服從二項(xiàng)分布B(4,12),∴Eξ=4×12=2.19.已知M(-2,7)、N(10,-2),點(diǎn)P是線段MN上的點(diǎn),且PN=-2PM,則P點(diǎn)的坐標(biāo)為_(kāi)_____.答案:設(shè)P(x,y),則PN=(10-x,-2-y),PM=(-2-x,7-y),∵PN=-2PM,∴10-x=-2(-2-x)-2-y=-2(7-y),∴x=2y=4∴P點(diǎn)的坐標(biāo)為(2,4).故為:(2,4)20.在莖葉圖中,樣本的中位數(shù)為_(kāi)_____,眾數(shù)為_(kāi)_____.答案:由莖葉圖可知樣本數(shù)據(jù)共有6,出現(xiàn)在中間兩位位的數(shù)據(jù)是20,24,所以樣本的中位數(shù)是(20+24)÷2=22由莖葉圖可知樣本數(shù)據(jù)中出現(xiàn)最多的是12,樣本的眾數(shù)是12為:22,1221.在△ABC中,∠ABC=60°,AB=2,BC=3,在BC上任取一點(diǎn)D,使△ABD為鈍角三角形的概率為()A.16B.13C.12D.23答案:由題意知本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件對(duì)應(yīng)的是長(zhǎng)度為3的一條線段,滿足條件的事件是組成鈍角三角形,包括兩種情況第一種∠ADB為鈍角,這種情況的分界是∠ADB=90°的時(shí)候,此時(shí)BD=1∴這種情況下,滿足要求的0<BD<1.第二種∠OAD為鈍角,這種情況的分界是∠BAD=90°的時(shí)候,此時(shí)BD=4∴這種情況下,不可能綜合兩種情況,若△ABD為鈍角三角形,則0<BD<1P=13故選B22.設(shè)O是坐標(biāo)原點(diǎn),F(xiàn)是拋物線y2=2px(p>0)的焦點(diǎn),A是拋物線上的一個(gè)動(dòng)點(diǎn),F(xiàn)A與x軸正方向的夾角為60°,求|OA|的值.答案:由題意設(shè)A(x+P2,3x),代入y2=2px得(3x)2=2p(x+p2)解得x=p(負(fù)值舍去).∴A(32p,3p)∴|OA|=(32p)2+3p2=212p23.某海域有A、B兩個(gè)島嶼,B島在A島正東40海里處.經(jīng)多年觀察研究發(fā)現(xiàn),某種魚(yú)群洄游的路線像一個(gè)橢圓,其焦點(diǎn)恰好是A、B兩島.曾有漁船在距A島正西20海里發(fā)現(xiàn)過(guò)魚(yú)群.某日,研究人員在A、B兩島同時(shí)用聲納探測(cè)儀發(fā)出不同頻率的探測(cè)信號(hào)(傳播速度相同),A、B兩島收到魚(yú)群反射信號(hào)的時(shí)間比為5:3.你能否確定魚(yú)群此時(shí)分別與A、B兩島的距離?答案:以AB的中點(diǎn)為原點(diǎn),AB所在直線為x軸建立直角坐標(biāo)系設(shè)橢圓方程為:x2a2+y2b2=1(a>b>0)且c=a2-b2------(3分)因?yàn)榻裹c(diǎn)A的正西方向橢圓上的點(diǎn)為左頂點(diǎn),所以a-c=20------(5分)又|AB|=2c=40,則c=20,a=40,故b=203------(7分)所以魚(yú)群的運(yùn)動(dòng)軌跡方程是x21600+y21200=1------(8分)由于A,B兩島收到魚(yú)群反射信號(hào)的時(shí)間比為5:3,因此設(shè)此時(shí)距A,B兩島的距離分別為5k,3k-------(10分)由橢圓的定義可知5k+3k=2×40=80?k=10--------(13分)即魚(yú)群分別距A,B兩島的距離為50海里和30海里.------(14分)24.已知命題p:“△ABC是等腰三角形”,命題q:“△ABC是直角三角形”,則命題“△ABC是等腰直角三角形”的形式是()A.p或qB.p且qC.非pD.以上都不對(duì)答案:因?yàn)椤啊鰽BC是等腰直角三角形”即為“△ABC是等腰且直角三角形”,所以命題“△ABC是等腰直角三角形”的形式是p且q,故選B.25.已知一個(gè)球與一個(gè)正三棱柱的三個(gè)側(cè)面和兩個(gè)底面相切,若這個(gè)球的體積是32π3,則這個(gè)三棱柱的體積是______.答案:由43πR3=32π3,得R=2.∴正三棱柱的高h(yuǎn)=4.設(shè)其底面邊長(zhǎng)為a,則13?32a=2.∴a=43.∴V=34(43)2?4=483.故為:48326.某車間工人已加工一種軸100件,為了了解這種軸的直徑,要從中抽出10件在同一條件下測(cè)量(軸的直徑要求為(20±0.5)mm),如何采用簡(jiǎn)單隨機(jī)抽樣方法抽取上述樣本?答案:本題是一個(gè)簡(jiǎn)單抽樣,∵100件軸的直徑的全體是總體,將其中的100個(gè)個(gè)體編號(hào)00,01,02,…,99,利用隨機(jī)數(shù)表來(lái)抽取樣本的10個(gè)號(hào)碼,可以從表中的第20行第3列的數(shù)開(kāi)始,往右讀數(shù),得到10個(gè)號(hào)碼如下:16,93,32,43,50,27,89,87,19,20將上述號(hào)碼的軸在同一條件下測(cè)量直徑.27.在同一個(gè)坐標(biāo)系中畫出函數(shù)y=ax,y=sinax的部分圖象,其中a>0且a≠1,則下列所給圖象中可能正確的是()

A.

B.

C.

D.

答案:D28.(選做題)已知矩陣.122x.的一個(gè)特征值為3,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.答案:矩陣M的特征多項(xiàng)式為.λ-1-2-2λ-x.=(λ-1)(λ-x)-4…(1分)因?yàn)棣?=3方程f(λ)=0的一根,所以x=1…(3分)由(λ-1)(λ-1)-4=0得λ2=-1,…(5分)設(shè)λ2=-1對(duì)應(yīng)的一個(gè)特征向量為α=xy,則-2x-2y=0-2x-2y=0得x=-y…(8分)令x=1則y=-1,所以矩陣M的另一個(gè)特征值為-1,對(duì)應(yīng)的一個(gè)特征向量為α=1-1…(10分)29.若a>0,使不等式|x-4|+|x-3|<a在R上的解集不是空集的a的取值是()

A.0<a<1

B.a(chǎn)=1

C.a(chǎn)>1

D.以上均不對(duì)答案:C30.在同一平面直角坐標(biāo)系中,直線變成直線的伸縮變換是()A.B.C.D.答案:A解析:解:設(shè)直線上任意一點(diǎn)(x′,y′),變換前的坐標(biāo)為(x,y),則根據(jù)直線變成直線則伸縮變換是,選A31.投擲一個(gè)質(zhì)地均勻的、每個(gè)面上標(biāo)有一個(gè)數(shù)字的正方體玩具,它的六個(gè)面中,有兩個(gè)面標(biāo)的數(shù)字是0,兩個(gè)面標(biāo)的數(shù)字是2,兩個(gè)面標(biāo)的數(shù)字是4,將此玩具連續(xù)拋擲兩次,以兩次朝上一面出現(xiàn)的數(shù)字分別作為點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)

(1)求點(diǎn)P落在區(qū)域C:x2+y2≤10內(nèi)的概率;

(2)若以落在區(qū)域C上的所有點(diǎn)為頂點(diǎn)作面積最大的多邊形區(qū)域M,在區(qū)域C上隨機(jī)撒一粒豆子,求豆子落在區(qū)域M上的概率.答案:(1)點(diǎn)P的坐標(biāo)有:(0,0),(0,2),(0,4),(2,0),(2,2),(2,4),(4,0),(4,2),(4,4),共9種,其中落在區(qū)域C:x2+y2≤10上的點(diǎn)P的坐標(biāo)有:(0,0),(0,2),(2,0),(2,2),共4種D、故點(diǎn)P落在區(qū)域C:x2+y2≤10內(nèi)的概率為49.(2)區(qū)域M為一邊長(zhǎng)為2的正方形,其面積為4,區(qū)域C的面積為10π,則豆子落在區(qū)域M上的概率為25π.32.已知曲線C的方程是x2+y2+6ax-8ay=0,那么下列各點(diǎn)中不在曲線C上的是()

A.(0,0)

B.(2a,4a)

C.(3a,3a)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論