版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年漯河醫(yī)學(xué)高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.某班一天上午安排語、數(shù)、外、體四門課,其中體育課不能排在第一、第四節(jié),則不同排法的種數(shù)為()A.24B.22C.20D.12答案:先排體育課,有2種排法,再排語、數(shù)、外三門課,有A33種排法,按乘法原理,不同排法的種數(shù)為2×A33=12.故選D.2.(選做題)
曲線(θ為參數(shù))與直線y=a有兩個公共點,則實數(shù)a的取值范圍是(
).答案:0<a≤13.已知拋物線y2=4x上兩定點A、B分別在對稱軸兩側(cè),F(xiàn)為焦點,且|AF|=2,|BF|=5,在拋物線的AOB一段上求一點P,使S△ABP最大,并求面積最大值.答案:不妨設(shè)點A在第一象限,B點在第四象限.如圖.拋物線的焦點F(1,0),點A在第一象限,設(shè)A(x1,y1),y1>0,由|FA|=2得x1+1=2,x1=1,代入y2=4x中得y1=2,所以A(1,2),…(2分);同理B(4,-4),…(4分)由A(1,2),B(4,-4)得|AB|=(1-4)2+(2+4)2=35…(6分)直線AB的方程為y-2-4-2=x-14-1,化簡得2x+y-4=0.…(8分)再設(shè)在拋物線AOB這段曲線上任一點P(x0,y0),且0≤x0≤4,-4≤y0≤2.則點P到直線AB的距離d=|2x0+y0-4|1+4=|2×y0
24+y0-4|5=|12(y0+1)2-92|5
…(9分)所以當(dāng)y0=-1時,d取最大值9510,…(10分)所以△PAB的面積最大值為S=12×35×9510=274
…(11分)此時P點坐標(biāo)為(14,-1).…(12分).4.設(shè)橢圓=1和x軸正方向的交點為A,和y軸的正方向的交點為B,P為第一象限內(nèi)橢圓上的點,使四邊形OAPB面積最大(O為原點),那么四邊形OAPB面積最大值為()
A.a(chǎn)b
B.ab
C.a(chǎn)b
D.2ab答案:B5.半徑為R的球內(nèi)接一個正方體,則該正方體的體積為()A.22RB.4π3R3C.893R3D.193R3答案:∵半徑為R的球內(nèi)接一個正方體,設(shè)正方體棱長為a,正方體的對角線過球心,可得正方體對角線長為:a2+a2+a2=2R,可得a=2R3,∴正方體的體積為a3=(2R3)3=83R39,故選C;6.平面向量與的夾角為60°,=(1,0),||=1,則|+2|=(
)
A.7
B.
C.4
D.12答案:B7.如圖,I表示南北方向的公路,A地在公路的正東2km處,B地在A地北偏東60°方向2km處,河流沿岸PQ(曲線)上任一點到公路l和到A地距離相等,現(xiàn)要在河岸PQ上選一處M建一座碼頭,向A,B兩地轉(zhuǎn)運(yùn)貨物,經(jīng)測算從M到A,B修建公路的費(fèi)用均為a萬元/km,那么修建這兩條公路的總費(fèi)用最低是(單位萬元)()
A.(2+)a
B.5a
C.2(+1)a
D.6a
答案:B8.把的圖象按向量平移得到的圖象,則可以是(
)A.B.C.D.答案:D解析:∵,∴要得到的圖象,需將的圖象向右平移個單位長度,故選D。9.已知隨機(jī)變量ξ~N(3,22),若ξ=2η+3,則Dη=()
A.0
B.1
C.2
D.4答案:B10.設(shè)函數(shù)g(x)=ex
x≤0lnx,x>0,則g(g(12))=______.答案:g(g(12))
=g(ln12)
=eln12=12故為:12.11.已知的單調(diào)區(qū)間;
(2)若答案:(1)(2)證明略解析:(1)對已知函數(shù)進(jìn)行降次分項變形
,得,(2)首先證明任意事實上,而
.12.下面的結(jié)構(gòu)圖,總經(jīng)理的直接下屬是()
A.總工程師和專家辦公室
B.開發(fā)部
C.總工程師、專家辦公室和開發(fā)部
D.總工程師、專家辦公室和所有七個部答案:C13.已知直線經(jīng)過點,傾斜角,設(shè)與圓相交與兩點,求點到兩點的距離之積。答案:2解析:把直線代入得,則點到兩點的距離之積為14.圓x2+y2-4x=0在點P(1,)處的切線方程為()
A.x+y-2=0
B.x+y-4=0
C.x-y+4=0
D.x-y+2=0答案:D15.已知向量a=(1,2),b=(2,-3).若向量c滿足(c+a)∥b,c⊥(a+b),則c=______.答案:設(shè)c=(x,y),則c+a=(x+1,y+2),又(c+a)∥b,∴2(y+2)+3(x+1)=0.
①又c⊥(a+b),∴(x,y)?(3,-1)=3x-y=0.
②解①②得x=-79,y=-73.故應(yīng)填:(-79,-73).16.某次乒乓球比賽的決賽在甲乙兩名選手之間舉行,比賽采用五局三勝制,按以往比賽經(jīng)驗,甲勝乙的概率為23.
(1)求比賽三局甲獲勝的概率;
(2)求甲獲勝的概率;
(3)設(shè)甲比賽的次數(shù)為X,求X的數(shù)學(xué)期望.答案:記甲n局獲勝的概率為Pn,n=3,4,5,(1)比賽三局甲獲勝的概率是:P3=C33(23)3=827;(2)比賽四局甲獲勝的概率是:P4=C23(23)3
(13)=827;比賽五局甲獲勝的概率是:P5=C24(13)2(23)3=1681;甲獲勝的概率是:P3+P4+P5=6481.(3)記乙n局獲勝的概率為Pn′,n=3,4,5.P3′=C33(13)3=127,P4′=C23(13)3
(23)=227;P5′=C24(13)3(23)2=881;故甲比賽次數(shù)的分布列為:X345P(X)P3+P3′P4+P4′P5+P5′所以甲比賽次數(shù)的數(shù)學(xué)期望是:EX=3(127+827)+4(827+227)+5(1681+881
)=10727.17.
已知橢圓(θ為參數(shù))上的點P到它的兩個焦點F1、F2的距離之比,
且∠PF1F2=α(0<α<),則α的最大值為()
A.
B.
C.
D.答案:A18.已知正方形ABCD的邊長為a,則|AC+AD|等于______.答案:∵正方形ABCD的邊長為a,∴AC=2a,AC與AD的夾角為45°|AC+AD|2=|AC
|2+2AC?AD+|AD|2=2a2+2×2a×a×22+a2=5a2∴|AC+AD|=5a故為:5a19.參數(shù)方程(0<θ<2π)表示()
A.雙曲線的一支,這支過點(1,)
B.拋物線的一部分,這部分過(1,)
C.雙曲線的一支,這支過點(-1,)
D.拋物線的一部分,這部分過(-1,)答案:B20.若方程x2+y2+kx+2y+k2-11=0表示的曲線是圓,則實數(shù)k的取值范圍是______.如果過點(1,2)總可以作兩條直線和圓x2+y2+kx+2y+k2-11=0相切,則實數(shù)k的取值范圍是______.答案:方程x2+y2+kx+2y+k2-11=0即(x+k2)2+(y+1)2=48-3k24,由于它表示的曲線是圓,∴48-3k24>0,解得-4<k<4.圓x2+y2+kx+2y+k2-11=0即(x+k2)2+(y+1)2=48-3k24.如果過點(1,2)總可以作兩條直線和圓x2+y2+kx+2y+k2-11=0相切,則點(1,2)一定在圓x2+y2+kx+2y+k2-11=0的外部,∴48-3k24>0,且(1+k2)2+(2+1)2>48-3k24.解得-4<k<-2,或1<k<4.故為:(-4,4),(-4,-2)∪(1,4).21.已知直線l經(jīng)過點A(2,4),且被平行直線l1:x-y+1=0與l2:x-y-1=0所截得的線段的中點M在直線x+y-3=0上.求直線l的方程.答案:∵點M在直線x+y-3=0上,∴設(shè)點M坐標(biāo)為(t,3-t),則點M到l1、l2的距離相等,即|2t-2|2=|2t-4|2,解得t=32∴M(32,32)又l過點A(2,4),即5x-y-6=0,故直線l的方程為5x-y-6=0.22.已知拋物線的頂點在原點,焦點在x軸的正半軸上,F(xiàn)為焦點,A,B,C為拋物線上的三點,且滿足FA+FB+FC=0,|FA|+|FB|+|FC|=6,則拋物線的方程為______.答案:設(shè)向量FA,F(xiàn)B,F(xiàn)C的坐標(biāo)分別為(x1,y1)(x2,y2)(x3,y3)由FA+FB+FC=0得x1+x2+x3=0∵XA=x1+p2,同理XB=x2+p2,XC=x3+p2∴|FA|=x1+p2+p2=x1+p,同理有|FB|=x2+p2+p2=x2+p,|FC|=x3+p2+p2=x3+p,又|FA|+|FB|+|FC|=6,∴x1+x2+x3+3p=6,∴p=2,∴拋物線方程為y2=4x.故為:y2=4x.23.如圖,中心均為原點O的雙曲線與橢圓有公共焦點,M,N是雙曲線的兩頂點.若M,O,N將橢圓長軸四等分,則雙曲線與橢圓的離心率的比值是()A.3B.2C.3D.2答案:∵M(jìn),N是雙曲線的兩頂點,M,O,N將橢圓長軸四等分∴橢圓的長軸長是雙曲線實軸長的2倍∵雙曲線與橢圓有公共焦點,∴雙曲線與橢圓的離心率的比值是2故選B.24.某學(xué)校為了了解學(xué)生的日平均睡眠時間(單位:h),隨機(jī)選擇了n名同學(xué)進(jìn)行調(diào)查,下表是這n名同學(xué)的日平均睡眠時間的頻率分布表:
序號(i)分組(睡眠時間)頻數(shù)(人數(shù))頻率1[4,5)40.082[5,6)x0.203[6,7)ay4[7,8)bz5[8,9]m0.O8(1)求n的值;若a=20,試確定x、y、z、m的值;
(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如[4,5)的中點值4.5)作為代表.若據(jù)此計算的這n名學(xué)生的日平均睡眠時間的平均值為6.68.求a、b的值.答案:(1)樣本容量n=40.08=50,∴x=0.20×50=10,y=0.4,z=0.24,m=4(5分)(2)n=50,P(i=3)=a50,P(i=4)=b50平均時間為:4.5×0.08+5.5×0.2+6.5×a50+7.5×b50+8.5×0.08=6.68,即13a+15b=454
①(9分)又4+10+a+b+4=50,即a+b=32
②由①,②解得:a=13,b=1.(12分)25.如圖,已知某探照燈反光鏡的縱切面是拋物線的一部分,光源安裝在焦點F上,且燈的深度EG等于燈口直徑AB,若燈的深度EG為64cm,則光源安裝的位置F到燈的頂端G的距離為______cm.答案:以反射鏡頂點為原點,以頂點和焦點所在直線為x軸,建立直角坐標(biāo)系.設(shè)拋物線方程為y2=2px,依題意可點A(64,32)在拋物線上代入拋物線方程得322=128p解得p=8∴焦點坐標(biāo)為(4,0),而光源到反射鏡頂點的距離正是拋物線的焦距,即4cm.故為:4.26.已知直角三角形兩直角邊長為a,b,求斜邊長c的一個算法分下列三步:
①計算c=a2+b2;
②輸入直角三角形兩直角邊長a,b的值;
③輸出斜邊長c的值;
其中正確的順序是()A.①②③B.②③①C.①③②D.②①③答案:由算法規(guī)則得:第一步:輸入直角三角形兩直角邊長a,b的值,第二步:計算c=a2+b2,第三步:輸出斜邊長c的值;這樣一來,就是斜邊長c的一個算法.故選D.27.用黃金分割法尋找最佳點,試驗區(qū)間為[1000,2000],若第一個二個試點為好點,則第三個試點應(yīng)選在(
)。答案:123628.圓ρ=5cosθ-5sinθ的圓心的極坐標(biāo)是()
A.(-5,-)
B.(-5,)
C.(5,)
D.(-5,)答案:A29.若向量且與的夾角余弦為則λ等于()
A.4
B.-4
C.
D.答案:C30.想要檢驗是否喜歡參加體育活動是不是與性別有關(guān),應(yīng)該檢驗()
A.H0:男性喜歡參加體育活動
B.H0:女性不喜歡參加體育活動
C.H0:喜歡參加體育活動與性別有關(guān)
D.H0:喜歡參加體育活動與性別無關(guān)答案:D31.已知隨機(jī)變量X~B(n,0.8),D(X)=1.6,則n的值是()
A.8
B.10
C.12
D.14答案:B32.如圖,⊙O過點B、C,圓心O在等腰Rt△ABC的內(nèi)部,,,
.則⊙O的半徑為(
).
A.6
B.13
C.
D.答案:C解析:分析:延長AO交BC于D,接OB,根據(jù)AB=AC,O是等腰Rt△ABC的內(nèi)心,推出AD⊥BC,BD=DC=3,AO平分∠BAC,求出∠BAD=∠ABD=45°,AD=BD=3,由勾股定理求出OB即可.解答:解:延長AO交BC于D,連接OB,∵⊙O過B、C,∴O在BC的垂直平分線上,∵AB=AC,圓心O在等腰Rt△ABC的內(nèi)部,∴AD⊥BC,BD=DC=3,AO平分∠BAC,∵∠BAC=90°,∴∠ADB=90°,∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=3,∴OD=3-1=2,由勾股定理得:OB==故選C.33.設(shè)F1,F(xiàn)2是雙曲線的兩個焦點,點P在雙曲線上,且·=0,則|PF1|·|PF2|值等于()
A.2
B.2
C.4
D.8答案:A34.△ABC所在平面內(nèi)點O、P,滿足OP=OA+λ(AB+12BC),λ∈[0,+∞),則點P的軌跡一定經(jīng)過△ABC的()A.重心B.垂心C.內(nèi)心D.外心答案:設(shè)BC的中點為D,則∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中線∴點P的軌跡一定經(jīng)過△ABC的重心故選A.35.如圖,PA、PB、DE分別與⊙O相切,若∠P=40°,則∠DOE等于()度.
A.40
B.50
C.70
D.80
答案:C36.在15個村莊中有7個村莊交通不方便,現(xiàn)從中任意選10個村莊,用X表示這10個村莊中交通不方便的村莊數(shù),則P(X=4)=______.(用數(shù)字表示)答案:由題意P(X=4)=C47×C68C1015=7×6×53×2×1×8×72×115×14×13×12×115×4×3×2×1=140429故為:14042937.(不等式選講)
已知a>0,b>0,c>0,abc=1,試證明:.答案:略解析::證明:由,所以同理:
,
相加得:左3……………(10分)38.已知點M的極坐標(biāo)為,下列所給四個坐標(biāo)中能表示點M的坐標(biāo)是()
A.
B.
C.
D.答案:D39.在大小相同的5個球中,2個是紅球,3個是白球,若從中任取2個,則所取的2個球中至少有一個紅球的概率是______.答案:由題意知本題是一個古典概型,試驗發(fā)生包含的基本事件有C52=10種結(jié)果,其中至少有一個紅球的事件包括C22+C21C31=7個基本事件,根據(jù)古典概型公式得到P=710,故為:710.40.圓ρ=2sinθ的圓心到直線2ρcosθ+ρsinθ+1=0的距離是______.答案:由ρ=2sinθ,化為直角坐標(biāo)方程為x2+y2-2y=0,其圓心是A(0,1),由2ρcosθ+ρsinθ+1=0得:化為直角坐標(biāo)方程為2x+y+1=0,由點到直線的距離公式,得+d=|1+1|5=255.故為255.41.參數(shù)方程x=sinθ+cosθy=sinθ?cosθ化為普通方程是______.答案:把x=sinθ+cosθy=sinθ?cosθ利用同角三角函數(shù)的基本關(guān)系消去參數(shù)θ,化為普通方程可得x2=1+2y,故為x2=1+2y.42.復(fù)數(shù)32i+11-i的虛部是______.答案:復(fù)數(shù)32i+11-i=32i+1+i(1-i)(1+i)=32i+1+i2=12+2i∴復(fù)數(shù)的虛部是2,故為:243.設(shè)隨機(jī)變量ζ~N(2,p),隨機(jī)變量η~N(3,p),若,則P(η≥1)=()
A.
B.
C.
D.答案:D44.用隨機(jī)數(shù)表法從100名學(xué)生(男生35人)中選20人作樣本,男生甲被抽到的可能性為()A.15B.2035C.35100D.713答案:由題意知,本題是一個等可能事件的概率,試驗發(fā)生包含的事件是用隨機(jī)數(shù)表法從100名學(xué)生選一個,共有100種結(jié)果,滿足條件的事件是抽取20個,∴根據(jù)等可能事件的概率公式得到P=20100=15,故選A.45.參數(shù)方程中當(dāng)t為參數(shù)時,化為普通方程為(
)。答案:x2-y2=146.某化肥廠甲、乙兩個車間包裝肥料,在自動包裝傳送帶上每隔30min抽取一包產(chǎn)品,稱其重量,分別記錄抽查數(shù)據(jù)如下:
甲:86、72、92、78、77;
乙:82、91、78、95、88
(1)這種抽樣方法是哪一種?
(2)將這兩組數(shù)據(jù)用莖葉圖表示;
(3)將兩組數(shù)據(jù)比較,說明哪個車間產(chǎn)品較穩(wěn)定.答案:(1)因為間隔時間相同,故是系統(tǒng)抽樣.(2)莖葉圖如下:.(3)因為.x甲=15(86+72+92+78+77)=81,.x乙=15(82+92+78+95+88)=87,所以s甲2=15(52+92+92+72+42)=50.4,s乙2=15(52+52+92+82+12)=39.2,而s甲2>s乙2,所以乙車間產(chǎn)品較穩(wěn)定.47.定義直線關(guān)于圓的圓心距單位λ為圓心到直線的距離與圓的半徑之比.若圓C滿足:①與x軸相切于點A(3,0);②直線y=x關(guān)于圓C的圓心距單位λ=2,試寫出一個滿足條件的圓C的方程______.答案:由題意可得圓心的橫坐標(biāo)為3,設(shè)圓心的縱坐標(biāo)為r,則半徑為|r|>0,則圓心的坐標(biāo)為(3,r).設(shè)圓心到直線y=x的距離為d,d=|3-r|2,則由題意可得λ=d|r|=2,求得r=1,或r=-3,故一個滿足條件的圓C的方程是(x-3)2+(y-1)2=1,故為(x-3)2+(y-1)2=148.一個口袋內(nèi)有4個不同的紅球,6個不同的白球,
(1)從中任取4個球,紅球的個數(shù)不比白球少的取法有多少種?
(2)若取一個紅球記2分,取一個白球記1分,從中任取5個球,使總分不少于7分的取法有多少種?答案:解(1)由題意知本題是一個分類計數(shù)問題,將取出4個球分成三類情況取4個紅球,沒有白球,有C44種取3個紅球1個白球,有C43C61種;取2個紅球2個白球,有C42C62,∴C44+C43C61+C42C62=115種(2)設(shè)取x個紅球,y個白球,則x+y=5(0≤x≤4)2x+y≥7(0≤y≤6)∴x=2y=3或x=3y=2或x=4y=1∴符合題意的取法種數(shù)有C42C63+C43C62+C44C61=186種49.集合{1,2,3}的真子集的個數(shù)為()A.5B.6C.7D.8答案:集合的真子集為{1},{2},{3},{1,2},{1,3},{2,3},?.共有7個.故選C.50.把點按向量平移到點,則的圖象按向量平移后的圖象的函數(shù)表達(dá)式為(
).A.B.C.D.答案:D解析:,由可得,所以平移后的函數(shù)解析式為第2卷一.綜合題(共50題)1.已知A=(2,-4,-1),B=(-1,5,1),C=(3,-4,1),若=,=,則對應(yīng)的點為()
A.(5,-9,2)
B.(-5,9,-2)
C.(5,9,-2)
D.(5,-9,-2)答案:B2.如圖所示,設(shè)P為△ABC所在平面內(nèi)的一點,并且AP=15AB+25AC,則△ABP與△ABC的面積之比等于()A.15B.12C.25D.23答案:連接CP并延長交AB于D,∵P、C、D三點共線,∴AP=λAD+μAC且λ+μ=1設(shè)AB=kAD,結(jié)合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C3.(幾何證明選講選做題)如圖,△ABC的外角平分線AD交外接圓于D,BD=4,則CD=______.答案:∵A、B、C、D共圓,∴∠DAE=∠BCD.又∵CD=CD,∴∠DAC=∠DBC.而∠DAE=∠DAC,∴∠DBC=∠DCB.∴CD=BD=4.故為4.4.意大利數(shù)學(xué)家菲波拉契,在1202年出版的一書里提出了這樣的一個問題:一對兔子飼養(yǎng)到第二個月進(jìn)入成年,第三個月生一對小兔,以后每個月生一對小兔,所生小兔能全部存活并且也是第二個月成年,第三個月生一對小兔,以后每月生一對小兔.問這樣下去到年底應(yīng)有多少對兔子?試畫出解決此問題的程序框圖,并編寫相應(yīng)的程序.答案:見解析解析:解:根據(jù)題意可知,第一個月有對小兔,第二個月有對成年兔子,第三個月有兩對兔子,從第三個月開始,每個月的兔子對數(shù)是前面兩個月兔子對數(shù)的和,設(shè)第個月有對兔子,第個月有對兔子,第個月有對兔子,則有,一個月后,即第個月時,式中變量的新值應(yīng)變第個月兔子的對數(shù)(的舊值),變量的新值應(yīng)變?yōu)榈趥€月兔子的對數(shù)(的舊值),這樣,用求出變量的新值就是個月兔子的數(shù),依此類推,可以得到一個數(shù)序列,數(shù)序列的第項就是年底應(yīng)有兔子對數(shù),我們可以先確定前兩個月的兔子對數(shù)均為,以此為基準(zhǔn),構(gòu)造一個循環(huán)程序,讓表示“第×個月的從逐次增加,一直變化到,最后一次循環(huán)得到的就是所求結(jié)果.流程圖和程序如下:S=1Q=1I=3WHILE
I<=12F=S+QQ=SS=FI=I+1WENDPRINT
FEND5.根據(jù)一組數(shù)據(jù)判斷是否線性相關(guān)時,應(yīng)選用(
)
A.散點圖
B.莖葉圖
C.頻率分布直方圖
D.頻率分布折線圖答案:A6.設(shè)向量不共面,則下列集合可作為空間的一個基底的是(
)
A.{}
B.{}
C.{}
D.{}
答案:C7.參數(shù)方程x=sin2θy=cosθ+sinθ(θ為參數(shù))的普通方程為______.答案:把參數(shù)方程x=sin2θy=cosθ+sinθ(θ為參數(shù))利用同角三角函數(shù)的基本關(guān)系消去參數(shù)化為普通方程為y2=1+x,故為y2=1+x.8.在極坐標(biāo)系中,點A(2,π2)關(guān)于直線l:ρcosθ=1的對稱點的一個極坐標(biāo)為______.答案:在直角坐標(biāo)系中,A(0,2),直線l:x=1,A關(guān)于直線l的對稱點B(2,2).由于|OB|=22,OB直線的傾斜角等于π4,且點B在第一象限,故B的極坐標(biāo)為(22,π4),故為
(22,π4).9.將函數(shù)y=sin(x+)的圖象按向量=(-m,0)平移所得的圖象關(guān)于y軸對稱,則m最小正值是
(
)
A.
B.
C.
D.答案:A10.橢圓x=5cosαy=3sinα(α是參數(shù))的一個焦點到相應(yīng)準(zhǔn)線的距離為______.答案:橢圓x=5cosαy=3sinα(α是參數(shù))的標(biāo)準(zhǔn)方程為:x225+y29=1,它的右焦點(4,0),右準(zhǔn)線方程為:x=254.一個焦點到相應(yīng)準(zhǔn)線的距離為:254-4=94.故為:94.11.(理)某單位有8名員工,其中有5名員工曾經(jīng)參加過一種或幾種技能培訓(xùn),另外3名員工沒有參加過任何技能培訓(xùn),現(xiàn)要從8名員工中任選3人參加一種新的技能培訓(xùn);
(I)求恰好選到1名曾經(jīng)參加過技能培訓(xùn)的員工的概率;
(Ⅱ)這次培訓(xùn)結(jié)束后,仍然沒有參加過任何技能培訓(xùn)的員工人數(shù)X是一個隨機(jī)變量,求X的分布列和數(shù)學(xué)期望.答案:(I)由題意知本題是一個等可能事件的概率,∵試驗發(fā)生包含的事件是從8人中選3個,共有C83=56種結(jié)果,滿足條件的事件是恰好選到1名曾經(jīng)參加過技能培訓(xùn)的員工,共有C51C32=15∴恰好選到1名已參加過其他技能培訓(xùn)的員工的概率P=1556(II)隨機(jī)變量X可能取的值是:0,1,2,3.P(X=0)=156P(X=1)=1556P(X=2)=1528P(X=3)=C35C38=528∴隨機(jī)變量X的分布列是X0123P15615561528528∴X的數(shù)學(xué)期望是1×1556+2×
1528+3×528=15812.隨機(jī)地向某個區(qū)域拋撒了100粒種子,在面積為10m2的地方有2粒種子發(fā)芽,假設(shè)種子的發(fā)芽率為100%,則整個撒種區(qū)域的面積大約有______m2.答案:設(shè)整個撒種區(qū)域的面積大約xm2,由于假設(shè)種子的發(fā)芽率為100%,所以在面積為10m2的地方有2粒種子發(fā)芽,意味著在面積為10m2的地方有2粒種子,從而有:100x=210,∴x=500,故為:500.13.若圓x2+y2=9上每個點的橫坐標(biāo)不變,縱坐標(biāo)縮短為原來的,則所得到的曲線的方程是()
A.
B.
C.
D.答案:C14.某射擊運(yùn)動員在四次射擊中分別打出了9,x,10,8環(huán)的成績,已知這組數(shù)據(jù)的平均數(shù)為9,則這組數(shù)據(jù)的方差是______.答案:∵四次射擊中分別打出了10,x,10,8環(huán),這組數(shù)據(jù)的平均數(shù)為9,∴9+x+10+84,∴x=9,∴這組數(shù)據(jù)的方差是14(00+1+1)=12,故為:1215.求由曲線圍成的圖形的面積.答案:面積為解析:當(dāng),時,方程化成,即.上式表示圓心在,半徑為的圓.所以,當(dāng),時,方程表示在第一象限的部分以及軸,軸負(fù)半軸上的點,.同理,當(dāng),時,方程表示在第四象限的部分以及軸負(fù)半軸上的點;當(dāng),時,方程表示圓在第二象限的部分以及軸負(fù)半軸上的點;當(dāng),時,方程表示圓在第三象限部分.以上合起來構(gòu)成如圖所示的圖形,面積為.16.已知橢圓C:+y2=1的右焦點為F,右準(zhǔn)線l,點A∈l,線段AF交C于點B.若=3,則=(
)
A.
B.2
C.
D.3答案:A17.設(shè)a1,a2,…,a2n+1均為整數(shù),性質(zhì)P為:對a1,a2,…,a2n+1中任意2n個數(shù),存在一種分法可將其分為兩組,每組n個數(shù),使得兩組所有元素的和相等求證:a1,a2,…,a2n+1全部相等當(dāng)且僅當(dāng)a1,a2,…,a2n+1具有性質(zhì)P.答案:證明:①當(dāng)a1,a2,…,a2n+1全部相等時,從中任意2n個數(shù),將其分為兩組,每組n個數(shù),兩組所有元素的和相等,故性質(zhì)P成立.②下面證明:當(dāng)a1,a2,…,a2n+1具有性質(zhì)P時,a1,a2,…,a2n+1全部相等.反證法:假設(shè)a1,a2,…,a2n+1不全部相等,則其中至少有一個整數(shù)和其它的整數(shù)不同,不妨設(shè)此數(shù)為a1,若a1在取出的2n個數(shù)中,將其分為兩組,每組n個數(shù),則a1在的那個組所有元素的和與另一個組所有元素的和不相等,這與性質(zhì)P矛盾,故假設(shè)不成立,所以,當(dāng)a1,a2,…,a2n+1具有性質(zhì)P時,a1,a2,…,a2n+1全部相等.綜上,a1,a2,…,a2n+1全部相等當(dāng)且僅當(dāng)a1,a2,…,a2n+1具有性質(zhì)P.18.為了了解1200名學(xué)生對學(xué)校某項教改試驗的意見,打算從中抽取一個容量為40的樣考慮用系統(tǒng)抽樣,則分段的間隔k為______答案:由題意知本題是一個系統(tǒng)抽樣,總體中個體數(shù)是1200,樣本容量是40,根據(jù)系統(tǒng)抽樣的步驟,得到分段的間隔K=120040=30,故為:30.19.下面是一個算法的偽代碼.如果輸出的y的值是10,則輸入的x的值是______.答案:由題意的程序,若x≤5,y=10x,否則y=2.5x+5,由于輸出的y的值是10,當(dāng)x≤5時,y=10x=10,得x=1;當(dāng)x>5時,y=2.5x+5=10,得x=2,不合,舍去.則輸入的x的值是1.故為:1.20.如圖程序輸出的結(jié)果是()
A.3,4
B.4,4
C.3,3
D.4,3
答案:B21.某一批花生種子,如果每1粒發(fā)芽的概率為,那么播下4粒種子恰有2粒發(fā)芽的概率是(
)
A.
B.
C.
D.答案:B22.已知拋物線和雙曲線都經(jīng)過點M(1,2),它們在x軸上有共同焦點,拋物線的頂點為坐標(biāo)原點,則雙曲線的標(biāo)準(zhǔn)方程是______.答案:設(shè)拋物線方程為y2=2px(p>0),將M(1,2)代入y2=2px,得P=2.∴拋物線方程為y2=4x,焦點為F(1,0)由題意知雙曲線的焦點為F1(-1,0),F(xiàn)2(1,0)∴c=1對于雙曲線,2a=||MF1|-|MF2||=22-2∴a=2-1,a2=3-22,b2=22-2∴雙曲線方程為x23-22-y222-2=1.故為:x23-22-y222-2=1.23.有一矩形紙片ABCD,按圖所示方法進(jìn)行任意折疊,使每次折疊后點B都落在邊AD上,將B的落點記為B′,其中EF為折痕,點F也可落在邊CD上,過B′作B′H∥CD交EF于點H,則點H的軌跡為()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由題意知:點H到定點B的距離以及到定直線AD的距離相等,根據(jù)拋物線的定義可知:點H的軌跡為:拋物線,(拋物線的一部分)故選D.24.如圖,在等邊△ABC中,以AB為直徑的⊙O與BC相交于點D,連接AD,則∠DAC的度數(shù)為
______度.答案:∵AB是⊙O的直徑,∴∠ADB=90°,即AD⊥BC;又∵△ABC是等邊三角形,∴DA平分∠BAC,即∠DAC=12∠BAC=30°.故為:30.25.以下四組向量中,互相平行的是.()
(1)=(1,2,1),=(1,-2,3);
(2)=(8,4,-6),=(4,2,-3);
(3)=(0,1,-1),=(0,-3,3);
(4)=(-3,2,0),=(4,-3,3).
A.(1)(2)
B.(2)(3)
C.(2)(4)
D.(1)(3)答案:B26.若e1、e2、e3是三個不共面向量,則向量a=3e1+2e2+e3,b=-e1+e2+3e3,c=2e1-e2-4e3是否共面?請說明理由.答案:解:設(shè)c=1a+2b,則即∵a、b不共線,向量a、b、c共面.27.有一批數(shù)量很大的產(chǎn)品,其中次品率是20%,對這批產(chǎn)品進(jìn)行抽查,每次抽出一件,如果抽出次品則抽查終止,否則繼續(xù)抽查,直到抽出次品,但抽查次數(shù)最多不超過9次,那么抽查次數(shù)為9次的概率為(
)
A.0.89
B.0.88×0.2
C.0.88
D.0.28×0.8答案:C28.在莖葉圖中,樣本的中位數(shù)為______,眾數(shù)為______.答案:由莖葉圖可知樣本數(shù)據(jù)共有6,出現(xiàn)在中間兩位位的數(shù)據(jù)是20,24,所以樣本的中位數(shù)是(20+24)÷2=22由莖葉圖可知樣本數(shù)據(jù)中出現(xiàn)最多的是12,樣本的眾數(shù)是12為:22,1229.設(shè)空間兩個不同的單位向量
a=(x1,y1,0),
b=(x2,y2,0)與向量
c=(1,1,1)的夾角都等于45°.
(1)求x1+y1和x1y1的值;
(2)求<
a,
b>的大小.答案:(1)∵單位向量a=(x1,y1,0)與向量c=(1,1,1)的夾角等于45°∴|a|=x21+y21=1,cos45°=a?
c|a|?
|c|=13(x1+y1)=22∴x1+y1=62,x1?y1=-14(2)同理可知x2+y2=22,x2?y2=-14∴x1?x2=-14,y1?y2=-14cos<a,b>=a?b|a|?|b|=x1?x2+y1?y2=-12∴<a,b>=120°30.在平面直角坐標(biāo)系中,已知向量a=(-1,2),又點A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤π2).
(1)若AB⊥a,且|AB|=5|OA|(O為坐標(biāo)原點),求向量OB;
(2)若向量AC與向量a共線,當(dāng)k>4,且tsinθ取最大值4時,求OA?OC.答案:(1)∵點A(8,0),B(n,t),∴AB=(n-8,t),∵AB⊥a,∴AB?a=(n-8,t)?(-1,2)=0,得n=2t+8.則AB=(2t,t),又|AB|=5|OA|,|OA|=8.∴(2t)2+t2=5×64,解得t=±8,當(dāng)t=8時,n=24;當(dāng)t=-8時,n=-8.∴OB=(24,8)或OB=(-8,-8).(2)∵向量AC與向量a共線,∴t=-2ksinθ+16,tsinθ=(-2ksinθ+16)sinθ=-2k(sinθ-4k)2+32k.∵k>4,∴0<4k<1,故當(dāng)sinθ=4k時,tsinθ取最大值32k,有32k=4,得k=8.這時,sinθ=12,k=8,tsinθ=4,得t=8,則OC=(4,8).∴OA?OC=(8,0)?(4,8)=32.31.平面向量的夾角為,則等于(
)
A.
B.3
C.7
D.79答案:A32.已知f(x+1)=x2+2x+3,則f(2)的值為______.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故為:6.33.如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點D,則BD=______cm.答案:∵易知AB=32+42=5,又由切割線定理得BC2=BD?AB,∴42=BD?5∴BD=165.故為:16534.已知f(x)=,求不等式x+(x+2)·f(x+2)≤5的解集。答案:解:原不等式等價于或解得或即故不等式的解集為。35.已知當(dāng)拋物線型拱橋的頂點距水面2米時,量得水面寬8米.當(dāng)水面升高1米后,水面寬度是______米.答案:由題意,建立如圖所示的坐標(biāo)系,拋物線的開口向下,設(shè)拋物線的標(biāo)準(zhǔn)方程為x2=-2py(p>0)∵頂點距水面2米時,量得水面寬8米∴點(4,-2)在拋物線上,代入方程得,p=4∴x2=-8y當(dāng)水面升高1米后,y=-1代入方程得:x=±22∴水面寬度是42米故為:4236.如圖,設(shè)P、Q為△ABC內(nèi)的兩點,且AP=25AB+15AC,AQ=23AB+14AC,則△ABP的面積與△ABQ的面積之比為()A.15B.45C.14D.13答案:設(shè)AM=25AB,AN=15AC則AP=AM+AN由平行四邊形法則知NP∥AB
所以△ABP的面積△ABC的面積=|AN||AC|=15同理△ABQ的面積△ABC的面積=14故△ABP的面積△ABQ的面積=45為:45故選B.37.一圓形紙片的圓心為O,點Q是圓內(nèi)異于O點的一個定點,點A是圓周上一動點,把紙片折疊使得點A與點Q重合,然后抹平紙片,折痕CD與OA交于點P,當(dāng)點A運(yùn)動時,點P的軌跡為()
A.橢圓
B.雙曲線
C.拋物線
D.圓答案:A38.在平面直角坐標(biāo)系xOy中,已知拋物線關(guān)于x軸對稱,頂點在原點O,且過點P(2,4),則該拋物線的方程是______.答案:設(shè)所求拋物線方程為y2=ax,依題意42=2a∴a=8,故所求為y2=8x.故為:y2=8x39.已知
p:所有國產(chǎn)手機(jī)都有陷阱消費(fèi),則¬p是()
A.所有國產(chǎn)手機(jī)都沒有陷阱消費(fèi)
B.有一部國產(chǎn)手機(jī)有陷阱消費(fèi)
C.有一部國產(chǎn)手機(jī)沒有陷阱消費(fèi)
D.國外產(chǎn)手機(jī)沒有陷阱消費(fèi)答案:C40.如圖給出了一個算法程序框圖,該算法程序框圖的功能是()A.求a,b,c三數(shù)的最大數(shù)B.求a,b,c三數(shù)的最小數(shù)C.將a,b,c按從小到大排列D.將a,b,c按從大到小排列答案:逐步分析框圖中的各框語句的功能,第一個條件結(jié)構(gòu)是比較a,b的大小,并將a,b中的較小值保存在變量a中,第二個條件結(jié)構(gòu)是比較a,c的大小,并將a,c中的較小值保存在變量a中,故變量a的值最終為a,b,c中的最小值.由此程序的功能為求a,b,c三個數(shù)的最小數(shù).故選B41.參數(shù)方程,(θ為參數(shù))表示的曲線是()
A.直線
B.圓
C.橢圓
D.拋物線答案:C42.設(shè)復(fù)數(shù)z的實部是
12,且|z|=1,則z=______.答案:設(shè)復(fù)數(shù)z的虛部等于b,b∈z,由復(fù)數(shù)z的實部是12,且|z|=1,可得14+b2=1,∴b=±32,故z=12±32i.故為:12±32i.43.(不等式選講)
已知a>0,b>0,c>0,abc=1,試證明:.答案:略解析::證明:由,所以同理:
,
相加得:左3……………(10分)44.用反證法證明命題“若a2+b2=0,則a、b全為0(a、b∈R)”,其反設(shè)正確的是()
A.a(chǎn)、b至少有一個不為0
B.a(chǎn)、b至少有一個為0
C.a(chǎn)、b全不為0
D.a(chǎn)、b中只有一個為0答案:A45.如圖,△ABC中,∠C=90°,∠A=30°,BC=1.在三角形內(nèi)挖去半圓(圓心O在邊AC上,半圓與BC、AB相切于點C、M,與AC交于N,見圖中非陰影部分),則該半圓的半徑長為______.答案:連接OM,則OM⊥AB.設(shè)⊙O的半徑OM=OC=r.在Rt△OAM中,OA=OMsin30°=2r.在Rt△ABC中,AC=BCtan30°=3,∴3=AC=OA+OC=3r,∴r=33.故為33.46.已知直線l1:y=kx+(k<0=被圓x2+y2=4截得的弦長為,則l1與直線l2:y=(2+)x的夾角的大小是()
A.30°
B.45°
C.60°
D.75°答案:B47.已知一直線的斜率為3,則這條直線的傾斜角是()A.30°B.45°C.60°D.90°答案:設(shè)直線的傾斜角為α,由直線的斜率為3,得到:tanα=3,又α∈(0,180°),所以α=60°.故選C48.若向量、、滿足++=,=3,=1,=4,則等于(
)
A.-11
B.-12
C.-13
D.-14答案:C49.在輸入語句中,若同時輸入多個變量,則變量之間的分隔符號是()
A.逗號
B.空格
C.分號
D.頓號答案:A50.已知正三角形的外接圓半徑為63cm,求它的邊長.答案:設(shè)正三角形的邊長為a,則12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的邊長為18cm.第3卷一.綜合題(共50題)1.若方程x2-3x+mx+m=0的兩根均在(0,+∞)內(nèi),則m的取值范圍是(
)
A.m≤1
B.0<m≤1
C.m>1
D.0<m<1答案:B2.若直線按向量平移得到直線,那么(
)A.只能是(-3,0)B.只能是(0,6)C.只能是(-3,0)或(0,6)D.有無數(shù)個答案:D解析:設(shè)平移向量,直線平移之后的解析式為,即,所以,滿足的有無數(shù)多個.3.若向量=(1,λ,2),=(-2,1,1),,夾角的余弦值為,則λ等于()
A.1
B.-1
C.±1
D.2答案:A4.先后拋擲兩枚均勻的正方體骰子(它們的六個面分別標(biāo)有點數(shù)1、2、3、4、5、6),骰子朝上的面的點數(shù)分別為X、Y,則log2XY=1的概率為()A.16B.536C.112D.12答案:∵log2XY=1∴Y=2X,滿足條件的X、Y有3對而骰子朝上的點數(shù)X、Y共有36對∴概率為336=112故選C.5.已知方程x2+y2+4x-2y-4=0,則x2+y2的最大值是()A.95B.45C.14-65D.14+65答案:由方程x2+y2+4x-2y-4=0得到圓心為(-2,1),半徑為3,設(shè)圓上一點為(x,y)圓心到原點的距離是(-2)2+1
2=5圓上的點到原點的最大距離是5+3故x2+y2的最大值是為(5+3)2=14+65故選D6.直三棱柱ABC-A1B1C1中,若CA=a
CB=b
CC1=c
則A1B=()A.a(chǎn)+b-cB.a(chǎn)-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-a+b-c故選D.7.隨機(jī)變量ξ的分布列為k=1、2、3、4,c為常數(shù),則P(<ξ<)的值為()
A.
B.
C.
D.答案:B8.若函數(shù)y=f(x)的定義域是[2,4],則y=f(log12x)的定義域是()A.[12,1]B.[4,16]C.[116,14]D.[2,4]答案:∵y=f(log12x),令log12x=t,∴y=f(log12x)=f(t),∵函數(shù)y=f(x)的定義域是[2,4],∴y=f(t)的定義域也為[2,4],即2≤t≤4,∴有2≤log12x≤4,解得:116≤x≤14,∵函數(shù)的定義域即解析式中自變量的取值范圍,∴y=f(log12x)的定義域為116≤x≤14,即:[116,14].故選C.9.正方形ABCD中,AB=1,分別以A、C為圓心作兩個半徑為R、r(R>r)的圓,當(dāng)R、r滿足條件______時,⊙A與⊙C有2個交點(
)
A.R+r>
B.R-r<<R+r
C.R-r>
D.0<R-r<答案:B10.如圖,⊙O過點B、C,圓心O在等腰Rt△ABC的內(nèi)部,,,
.則⊙O的半徑為(
).
A.6
B.13
C.
D.答案:C解析:分析:延長AO交BC于D,接OB,根據(jù)AB=AC,O是等腰Rt△ABC的內(nèi)心,推出AD⊥BC,BD=DC=3,AO平分∠BAC,求出∠BAD=∠ABD=45°,AD=BD=3,由勾股定理求出OB即可.解答:解:延長AO交BC于D,連接OB,∵⊙O過B、C,∴O在BC的垂直平分線上,∵AB=AC,圓心O在等腰Rt△ABC的內(nèi)部,∴AD⊥BC,BD=DC=3,AO平分∠BAC,∵∠BAC=90°,∴∠ADB=90°,∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=3,∴OD=3-1=2,由勾股定理得:OB==故選C.11.斜二測畫法的規(guī)則是:
(1)在已知圖形中建立直角坐標(biāo)系xoy,畫直觀圖
時,它們分別對應(yīng)x′和y′軸,兩軸交于點o′,使∠x′o′y′=______,它們確定的平面表示水平平面;
(2)
已知圖形中平行于x軸或y軸的線段,在直觀圖中分別畫成
______;
(3)已知圖形中平行于x軸的線段的長度,在直觀圖中
______;平行于y軸的線段,在直觀圖中
______.答案:按照斜二測畫法的規(guī)則填空故為:(1)45°或135°;(2)平行于x′軸和y′軸;(3)長度不變;長度減半12.已知曲線x2a+y2b=1和直線ax+by+1=0(a,b為非零實數(shù)),在同一坐標(biāo)系中,它們的圖形可能是()A.
B.
C.
D.
答案:A選項中,直線的斜率大于0,故系數(shù)a,b的符號相反,此時曲線應(yīng)是雙曲線,故不對;B選項中直線的斜率小于0,故系數(shù)a,b的符號相同且都為負(fù),此時曲線不存在,故不對;C選項中,直線斜率為正,故系數(shù)a,b的符號相反,且a正,b負(fù),此時曲線應(yīng)是焦點在x軸上的雙曲線,圖形符合結(jié)論,可選;D選項中不正確,由C選項的判斷可知D不正確.故選D13.拋擲兩枚骰子各一次,記第一枚骰子擲出的點數(shù)與第二枚骰子擲出的點數(shù)的差為X,則“X>4”表示試驗的結(jié)果為()
A.第一枚為5點,第二枚為1點
B.第一枚大于4點,第二枚也大于4點
C.第一枚為6點,第二枚為1點
D.第一枚為4點,第二枚為1點答案:C14.已知雙曲線的兩個焦點為F1(-,0),F2(,0),P是此雙曲線上的一點,且PF1⊥PF2,|PF1|?|PF2|=2,則該雙曲線的方程是()
A.
B.
C.
D.答案:C15.P為△ABC內(nèi)一點,且PA+3PB+7PC=0,則△PAC與△ABC面積的比為______.答案:(如圖)分別延長
PB、PC
至
B1、C1,使
PB1=3PB,PC1=7PC,則由已知可得:PA+PB1+PC1=0,故點P是三角形
AB1C1
的重心,設(shè)三角形
AB1C1
的面積為
3S,則S△APC1=S△APB1=S△PB1C1=S,而S△APC=17S△APC1=S7,S△ABP=13S△APB1=S3,S△PBC=13×17S△PB1C1=S21,所以△PAC與△ABC面積的比為:S7S7+S3+S21=311,故為:31116.圓x=1+cosθy=1+sinθ(θ為參數(shù))的標(biāo)準(zhǔn)方程是
______,過這個圓外一點P(2,3)的該圓的切線方程是
______;答案:∵圓x=1+cosθy=1+sinθ(θ為參數(shù))消去參數(shù)θ,得:(x-1)2+(y-1)2=1,即圓x=1+cosθy=1+sinθ(θ為參數(shù))的標(biāo)準(zhǔn)方程是(x-1)2+(y-1)2=1;∵這個圓外一點P(2,3)的該圓的切線,當(dāng)切線斜率不存在時,顯然x=2符合題意;當(dāng)切線斜率存在時,設(shè)切線方程為:y-3=k(x-2),由圓心到切線的距離等于半徑,得|k-1+3-2k|k2+1=
1,解得:k=34,故切線方程為:3x-4y+6=0.故為:(x-1)2+(y-1)2=1;x=2或3x-4y+6=0.17.在某路段檢測點對200輛汽車的車速進(jìn)行檢測,檢測結(jié)果表示為如圖所示的頻率分布直方圖,則車速不小于90km/h的汽車有輛.()A.60B.90C.120D.150答案:頻率=頻率組距×組距=(0.02+0.01)×10=0.3,頻數(shù)=頻率×樣本總數(shù)=200×0.3=60(輛).故選A.18.若矩陣滿足下列條件:①每行中的四個數(shù)所構(gòu)成的集合均為{1,2,3,4};②四列中有且只有兩列的上下兩數(shù)是相同的.則這樣的不同矩陣的個數(shù)為()
A.24
B.48
C.144
D.288答案:C19.根據(jù)如圖的框圖,寫出打印的第五個數(shù)是______.答案:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是:輸出N<35時,打印A值.程序在運(yùn)行過程中各變量的情況如下表示:
是否繼續(xù)循環(huán)
A
N循環(huán)前
1
1
第一圈
2×1+1=3
2
是第二圈
2×3+1=7
3
是第三圈
2×7+1=15
4
是第四圈
2×15+1=31
5
是…所以這個打印的第五個數(shù)是31.故為:3120.以下命題:
①二直線平行的充要條件是它們的斜率相等;
②過圓上的點(x0,y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2;
③平面內(nèi)到兩定點的距離之和等于常數(shù)的點的軌跡是橢圓;
④拋物線上任意一點M到焦點的距離都等于點M到其準(zhǔn)線的距離.
其中正確命題的標(biāo)號是______.答案:①兩條直線平行的充要條件是它們的斜率相等,且截距不等,故①不正確,②過點(x0,y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2.②正確,③不正確,若平面內(nèi)到兩定點距離之和等于常數(shù),如這個常數(shù)正好為兩個點的距離,則動點的軌跡是兩點的連線段,而不是橢圓;④根據(jù)拋物線的定義知:拋物線上任意一點M到焦點的距離都等于點M到其準(zhǔn)線的距離.故④正確.故為:②④.21.下列說法:
①在殘差圖中,殘差點比較均勻地落在水平的帶狀區(qū)域內(nèi),說明選擇的模型比較合適;
②用相關(guān)指數(shù)可以刻畫回歸的效果,值越大說明模型的擬和效果越好;
③比較兩個模型的擬和效果,可以比較殘差平方和的大小,殘差平方和越小的模型擬和效果越好.
其中說法正確的個數(shù)為()
A.0個
B.1個
C.2個
D.3個答案:C22.想要檢驗是否喜歡參加體育活動是不是與性別有關(guān),應(yīng)該檢驗()
A.H0:男性喜歡參加體育活動
B.H0:女性不喜歡參加體育活動
C.H0:喜歡參加體育活動與性別有關(guān)
D.H0:喜歡參加體育活動與性別無關(guān)答案:D23.使方程
mx+ny+r=0與方程
2mx+2ny+r+1=0表示兩條直線平行(不重合)的等價條件是()A.m=n=r=2B.m2+n2≠0,且r≠1C.mn>0,且r≠1D.mn<0,且r≠1答案:mx+ny+r=0與方程
2mx+2ny+r+1=0表示兩條直線平行(不重合)的等價條件是m2+n2≠0,且m2m=n2n≠rr+1,即m2+n2≠0,且r≠1,故選B.24.已知x=-3-2i(i為虛數(shù)單位)是一元二次方程x2+ax+b=0(a,b均為實數(shù))的一個根,則a+b=______.答案:∵x=-3-2i(i為虛數(shù)單位)是一元二次方程x2+ax+b=0(a,b均為實數(shù))的一個根,∴(-3-2i)2+a(-3-2i)+b=0,化為5-3a+b+(12-2a)i=0.根據(jù)復(fù)數(shù)相等即可得到5-3a+b=012-2a=0,解得a=6b=13.∴a+b=19.故為19.25.A、B、C是我軍三個炮兵陣地,A在B的正東方向相距6千米,C在B的北30°西方向,相距4千米,P為敵炮陣地.某時刻,A發(fā)現(xiàn)敵炮陣地的某信號,由于B、C比A距P更遠(yuǎn),因此,4秒后,B、C才同時發(fā)現(xiàn)這一信號(該信號的傳播速度為每秒1千米).若從A炮擊敵陣地P,求炮擊的方位角.答案:以線段AB的中點為原點,正東方向為x軸的正方向建立直角坐標(biāo)系,則A(3,0)
B(-3,0)
C(-5,23)依題意|PB|-|PA|=4∴P在以A、B為焦點的雙曲線的右支上.這里a=2,c=3,b2=5.其方程為
x24-y25=1
(x>0)…(3分)又|PB|=|PC|,∴P又在線段BC的垂直平分線上x-3y+7=0…(5分)由方程組x-3y+7=05x2-4y2=20解得
x=8(負(fù)值舍去)y=53即
P(8,53)…(8分)由于kAP=3,可知P在A北30°東方向.…(10分)26.(每題6分共12分)解不等式
(1)(2)答案:(1)(2)解析:本試題主要是考查了分式不等式和一元二次不等式的求解,以及含有根式的二次不等式的求解運(yùn)用。(1)移向,通分,合并,將分式化為整式,然后得到解集。(2)首先分析函數(shù)式有意義的x的取值,然后保證兩邊都有意義的時候,且都為正,兩邊平方求解得到。解:(2)當(dāng)8-x<0顯然成立。當(dāng)8-x》0時,則兩邊平方可得。所以27.某總體容量為M,其中帶有標(biāo)記的有N個,現(xiàn)用簡單隨機(jī)抽樣方法從中抽出一個容量為m的樣本,則抽取的m個個體中帶有標(biāo)記的個數(shù)估計為()A.mNMB.mMNC.MNmD.N答案:由題意知,總體中帶有標(biāo)記的魚所占比例是NM,故樣本中帶有標(biāo)記的個數(shù)估計為mNM,故選A.28.“x2>2012”是“x2>2011”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由于“x2>2
012”時,一定有“x2>2
011”,反之不成立.所以“x2>2
012”是“x2>2
011”的充分不必要條件.故選A.29.已知直線經(jīng)過點A(0,4)和點B(1,2),則直線AB的斜率為______.答案:因為A(0,4)和點B(1,2),所以直線AB的斜率k=2-41-0=-2故為:-230.某航空公司經(jīng)營A,B,C,D這四個城市之間的客運(yùn)業(yè)務(wù),它們之間的直線距離的部分機(jī)票價格如下:AB為2000元;AC為1600元;AD為2500元;CD為900元;BC為1200元,若這家公司規(guī)定的機(jī)票價格與往返城市間的直線距離成正比,則BD間直線距離的票價為(設(shè)這四個城在同一水平面上)()
A.1500元
B.1400元
C.1200元
D.1000元答案:A31.已知當(dāng)m∈R時,函數(shù)f(x)=m(x2-1)+x-a的圖象和x軸恒有公共點,求實數(shù)a的取值范圍.答案:(1)m=0時,f(x)=x-a是一次函數(shù),它的圖象恒與x軸相交,此時a∈R.(2)m≠0時,由題意知,方程mx2+x-(m+a)=0恒有實數(shù)解,其充要條件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0時,a∈R;m≠0時,a∈[-1,1].32.若點M是△ABC的重心,則下列向量中與AB共線的是______.(填寫序號)
(1)AB+BC+AC
(2)AM+MB+BC
(3)AM+BM+CM
(4)3AM+AC.答案:對于(1)AB+BC+AC=2AC不與AB共線對于(2)AM+MB+BC=AB+BC=AC不與AB對于(3)AM+BM+CM=13(AB+AC)+13(BA+BC)+13(CA+CB)=0與AB對于(4)3AM+AC=AB+AC+AC不與AB故為:(3)33.己知△ABC的外心、重心、垂心分別為O,G,H,若,則λ=()
A.3
B.2
C.
D.答案:A34.設(shè)全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},則CU(S∪T)等于()A.φB.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}答案:∵S∪T={1,3,5,6},∴CU(S∪T)={2,4,7,8}.故選B.35.若a,b∈R,求證:≤+.答案:證明略解析:證明
當(dāng)|a+b|=0時,不等式顯然成立.當(dāng)|a+b|≠0時,由0<|a+b|≤|a|+|b|≥,所以=≤=≤+.36.(幾
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年智慧城市廠房委托出租與城市管理服務(wù)合同3篇
- 2025年度紡織行業(yè)供應(yīng)鏈金融服務(wù)合同范本3篇
- 二零二四年養(yǎng)老院活動指導(dǎo)員聘用合同(老年文化活動策劃與執(zhí)行)3篇
- 二零二五版安保服務(wù)合同糾紛處理條款3篇
- 二零二四年度“石油化工”項目投資合同
- 二零二五年度疫情期間電子商務(wù)平臺運(yùn)營與推廣合同3篇
- 2024注冊不良資產(chǎn)處置公司協(xié)議轉(zhuǎn)讓
- 2024版用房產(chǎn)抵押借款合同
- 2025年度玫瑰花采摘與加工服務(wù)外包合同4篇
- 年度高壓液壓閥產(chǎn)業(yè)分析報告
- T-SDLPA 0001-2024 研究型病房建設(shè)和配置標(biāo)準(zhǔn)
- (人教PEP2024版)英語一年級上冊Unit 1 教學(xué)課件(新教材)
- 全國職業(yè)院校技能大賽高職組(市政管線(道)數(shù)字化施工賽項)考試題庫(含答案)
- 2024胃腸間質(zhì)瘤(GIST)診療指南更新解讀 2
- 光儲電站儲能系統(tǒng)調(diào)試方案
- 2024年二級建造師繼續(xù)教育題庫及答案(500題)
- 小學(xué)數(shù)學(xué)二年級100以內(nèi)連加連減口算題
- 建設(shè)單位如何做好項目管理
- 三年級上遞等式計算400題
- 一次性餐具配送投標(biāo)方案
- 《中華民族多元一體格局》
評論
0/150
提交評論