版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年承德應(yīng)用技術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.設(shè),是互相垂直的單位向量,向量=(m+1)-3,=-(m-1),(+)⊥(-)則實(shí)數(shù)m為()
A.-2
B.2
C.-
D.不存在答案:A2.一個(gè)袋子里裝有大小相同的3個(gè)紅球和2個(gè)黃球,從中同時(shí)取出2個(gè)球,則其中含紅球個(gè)數(shù)的數(shù)學(xué)期望是
______.答案:設(shè)含紅球個(gè)數(shù)為ξ,ξ的可能取值是0、1、2,當(dāng)ξ=0時(shí),表示從中取出2個(gè)球,其中不含紅球,當(dāng)ξ=1時(shí),表示從中取出2個(gè)球,其中1個(gè)紅球,1個(gè)黃球,當(dāng)ξ=2時(shí),表示從中取出2個(gè)球,其中2個(gè)紅球,∴P(ξ=0)=C22C25=0.1,P(ξ=1)=C12C13C25=0.6P(ξ=2)=C23C25=0.3∴Eξ=0×0.1+1×0.6+2×0.3=1.2.故為:1.2.3.已知命題p:“有的實(shí)數(shù)沒有平方根.”,則非p是______.答案:∵命題p:“有的實(shí)數(shù)沒有平方根.”,是一個(gè)特稱命題,非P是它的否定,應(yīng)為全稱命題“所有實(shí)數(shù)都有平方根”故為:所有實(shí)數(shù)都有平方根.4.若向量?jī)蓛伤傻慕窍嗟?,且,則等于()
A.2
B.5
C.2或5
D.或答案:C5.在甲、乙兩個(gè)盒子里分別裝有標(biāo)號(hào)為1、2、3、4的四個(gè)小球,現(xiàn)從甲、乙兩個(gè)盒子里各取出1個(gè)小球,每個(gè)小球被取出的可能性相等.
(1)求取出的兩個(gè)小球上標(biāo)號(hào)為相鄰整數(shù)的概率;
(2)求取出的兩個(gè)小球上標(biāo)號(hào)之和能被3整除的概率;
(3)求取出的兩個(gè)小球上標(biāo)號(hào)之和大于5整除的概率.答案:甲、乙兩個(gè)盒子里各取出1個(gè)小球計(jì)為(X,Y)則基本事件共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)總數(shù)為16種.(1)其中取出的兩個(gè)小球上標(biāo)號(hào)為相鄰整數(shù)的基本事件有:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6種故取出的兩個(gè)小球上標(biāo)號(hào)為相鄰整數(shù)的概率P=38;(2)其中取出的兩個(gè)小球上標(biāo)號(hào)之和能被3整除的基本事件有:(1,2),(2,1),(2,4),(3,3),(4,2)共5種故取出的兩個(gè)小球上標(biāo)號(hào)之和能被3整除的概率為516;(3)其中取出的兩個(gè)小球上標(biāo)號(hào)之和大于5的基本事件有:(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6種故取出的兩個(gè)小球上標(biāo)號(hào)之和大于5的概率P=386.用反證法證明命題:“若a,b∈N,ab能被3整除,那么a,b中至少有一個(gè)能被3整除”時(shí),假設(shè)應(yīng)為()
A.b都能被3整除
B.b都不能被3整除
C.b不都能被3整除
D.a(chǎn)不能被3整除答案:B7.設(shè)全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},則CU(S∪T)等于()A.φB.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}答案:∵S∪T={1,3,5,6},∴CU(S∪T)={2,4,7,8}.故選B.8.如圖,已知AB是⊙O的直徑,AB⊥CD于E,切線BF交AD的延長(zhǎng)線于F,若AB=10,CD=8,則切線BF的長(zhǎng)是
______.答案:連接OD,AB⊥CD于E,根據(jù)垂徑定理得到DE=4,在直角△ODE中,根據(jù)勾股定理得到OE=3,因而AE=8,易證△ABF∽△AED,得到DEBF=AEAB=810,解得BF=5.9.已知圓的極坐標(biāo)方程是ρ=2cosθ,那么該圓的直角坐標(biāo)方程是()
A.(x-1)2+y2=1
B.x2+(y-1)2=1
C.(x+1)2+y2=1
D.x2+y2=2答案:A10.求證:答案:證明見解析解析:證:∴11.附加題選做題B.(矩陣與變換)
設(shè)矩陣A=m00n,若矩陣A的屬于特征值1的一個(gè)特征向量為10,屬于特征值2的一個(gè)特征向量為01,求實(shí)數(shù)m,n的值.答案:由題意得m00n10=110,m00n01=201,…6分化簡(jiǎn)得m=10?n=00?m=0n=2所以m=1n=2.…10分12.設(shè)D為△ABC的邊AB上一點(diǎn),P為△ABC內(nèi)一點(diǎn),且滿足AD=23AB,AP=AD+14BC,則S△APDS△ABC=()A.29B.16C.754D.427答案:由題意,AP=AD+DP,AP=AD+14BC∴DP=14BC∴三角形ADP的高三角形ABC=ADAB=23∴S△APDS△ABC=23×14=16故選B.13.利用斜二測(cè)畫法能得到的()
①三角形的直觀圖是三角形;
②平行四邊形的直觀圖是平行四邊形;
③正方形的直觀圖是正方形;
④菱形的直觀圖是菱形.
A.①②
B.①
C.③④
D.①②③④答案:A14.過拋物線y=ax2(a>0)的焦點(diǎn)F作一直線交拋物線交于P、Q兩點(diǎn),若線段PF、FQ的長(zhǎng)分別為p、q,則1p+1q=______.答案:設(shè)PQ的斜率k=0,因拋物線焦點(diǎn)坐標(biāo)為(0,14a),把直線方程y=14a
代入拋物線方程得x=±12a,∴PF=FQ=12a,從而
1p+1q=2a+2a=4a,故為:4a.15.如果x2+ky2=2表示焦點(diǎn)在y軸上的橢圓,則實(shí)數(shù)k的取值范圍是
______.答案:根據(jù)題意,x2+ky2=2化為標(biāo)準(zhǔn)形式為x22+y22k=1;根據(jù)題意,其表示焦點(diǎn)在y軸上的橢圓,則有2k>2;解可得0<k<1;故為0<k<1.16.向量a=i+
2j在向量b=3i+4j上的投影是______.答案:根據(jù)投影的定義可得:a在b方向上的投影為:|a|cos<a,b>=a?b|b|=1×3+2×452=115.故為:115.17.在極坐標(biāo)系中,直線l經(jīng)過圓ρ=cosθ的圓心且與直線ρcosθ=3平行,則直線l與極軸的交點(diǎn)的極坐標(biāo)為______.答案:由ρ=cosθ可知此圓的圓心為(12,0),直線ρcosθ=3是與極軸垂直的直線,所以所求直線的極坐標(biāo)方程為ρcosθ=12,所以直線l與極軸的交點(diǎn)的極坐標(biāo)為(12,0).故為:(12,0).18.設(shè)集合A={x|x<1,x∈R},B={x|1x>1,x∈R},則下列圖形能表示A與B關(guān)系的是()A.
B.
C.
D.
答案:B={x|1x>1}={x|0<x<1},所以B?A.所以對(duì)應(yīng)的關(guān)系選A.故選A.19.如圖,某公司制造一種海上用的“浮球”,它是由兩個(gè)半球和一個(gè)圓柱筒組成.其中圓柱的高為2米,球的半徑r為0.5米.
(1)這種“浮球”的體積是多少立方米(結(jié)果精確到0.1m3)?
(2)假設(shè)該“浮球”的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為20元,半球形部分每平方米建造費(fèi)用為30元.求該“浮球”的建造費(fèi)用(結(jié)果精確到1元).答案:(1)∵球的半徑r為0.5米,∴兩個(gè)半球的體積之和為V球=43πr3=43π?18=16πm3,∵圓柱的高為2米,∴V圓柱=πr2?h=π×14×2=12πm3,∴該“浮球”的體積是:V=V球+V圓柱=23π≈2.1m3;(2)圓柱筒的表面積為2πrh=2πm2;兩個(gè)半球的表面積為4πr2=πm2,∵圓柱形部分每平方米建造費(fèi)用為20元,半球形部分每平方米建造費(fèi)用為30元,∴該“浮球”的建造費(fèi)用為2π×20+π×30=70π≈220元.20.設(shè)隨機(jī)變量ζ~N(2,p),隨機(jī)變量η~N(3,p),若,則P(η≥1)=()
A.
B.
C.
D.答案:D21.正方體的全面積為18cm2,則它的體積是()A.4cm3B.8cm3C.11272cm3D.33cm3答案:設(shè)正方體邊長(zhǎng)是acm,根據(jù)題意得6a2=18,解得a=3,∴正方體的體積是33cm3.故選D.22.命題“對(duì)于正數(shù)a,若a>1,則lg
a>0”及其逆命題、否命題、逆否命題四種命題中真命題的個(gè)數(shù)為()A.0B.1C.2D.4答案:原命題“對(duì)于正數(shù)a,若a>1,則lga>0”是真命題;逆命題“對(duì)于正數(shù)a,若lga>0,則a>1”是真命題;否命題“對(duì)于正數(shù)a,若a≤1,則lga≤0”是真命題;逆否命題“對(duì)于正數(shù)a,若lga≤0,則a≤1”是真命題.故選D.23.已知點(diǎn)A分BC所成的比為-13,則點(diǎn)B分AC所成的比為______.答案:由已知得B是AC的內(nèi)分點(diǎn),且2|AB|=|BC|,故B分AC
的比為ABBC=|AB||BC|=12,故為12.24.一條直線上順次有A、B、C三點(diǎn),且|AB|=2,|BC|=3,則C分有向線段AB的比為()
A.-
B.-
C.-
D.-答案:A25.若命題p:2是偶數(shù);命題q:2是5的約數(shù),則下列命題中為真命題的是()A.p∧qB.(¬p)∧(¬q)C.¬pD.p∨q答案:∵2是偶數(shù),∴命題p為真命題∵2不是5的約數(shù),∴命題q為假命題∴p或q為真命題故選D26.直線l1:x+ay=2a+2與直線l2:ax+y=a+1平行,則a=______.答案:直線l1:x+ay=2a+2即x+ay-2a-2=0;直線l2:ax+y=a+1即ax+y-a-1=0,∵直線l1與直線l2互相平行∴當(dāng)a≠0且a≠-1時(shí),1a=a1≠-2a-2-a-1,解之得a=1當(dāng)a=0時(shí),兩條直線垂直;當(dāng)a=-1時(shí),兩條直線重合故為:127.△ABC中,若有一個(gè)內(nèi)角不小于120°,求證:最長(zhǎng)邊與最短邊之比不小于3.答案:設(shè)最大角為∠A,最小角為∠C,則最大邊為a,最小邊為c因?yàn)锳≥120°,所以B+C≤60°,且C≤B,所以2C≤B+C≤60°,C≤30°.所以ac=sinAsinC=sin(B+C)sinC≥sin2CsinC=2cosC≥3.28.拋物線y=4x2的焦點(diǎn)坐標(biāo)是______.答案:由題意可知x2=14y∴p=18∴焦點(diǎn)坐標(biāo)為(0,116)故為(0,116)29.條件語(yǔ)句的一般形式如圖所示,其中B表示的是()
A.條件
B.條件語(yǔ)句
C.滿足條件時(shí)執(zhí)行的內(nèi)容
D.不滿足條件時(shí)執(zhí)行的內(nèi)容
答案:C30.若點(diǎn)M,A,B,C對(duì)空間任意一點(diǎn)O都滿足則這四個(gè)點(diǎn)()
A.不共線
B.不共面
C.共線
D.共面答案:D31.已知雙曲線的漸近線方程為2x±3y=0,F(xiàn)(0,-5)為雙曲線的一個(gè)焦點(diǎn),則雙曲線的方程為()
A.
B.
C.
D.答案:B32.確定方程3x2-9+4x2-16+5x2-25=120x的解集______.答案:由題意,x2-9≥0x2-16≥0x2-25≥0x>0,∴x≥5∴x2-9≥4,x2-16≥3,x2-25≥0,∴3x2-9+4x2-16+5x2-25≥24∵3x2-9+4x2-16+5x2-25=120x∴120x≥24∵x≥5,∴120x≤24∴120x=24∴x=5故為:{5}33.若直線x=1的傾斜角為α,則α()A.等于0B.等于π4C.等于π2D.不存在答案:由題意知直線的斜率不存在,故傾斜角α=π2,故選C.34.算法:第一步
x=a;第二步
若b>x則x=b;第三步
若c>x,則x=c;
第四步
若d>x,則x=d;
第五步
輸出x.則輸出的x表示()A.a(chǎn),b,c,d中的最大值B.a(chǎn),b,c,d中的最小值C.將a,b,c,d由小到大排序D.將a,b,c,d由大到小排序答案:x=a,若b>x,則b>a,x=b,否則x=a,即x為a,b中較大的值;若c>x,則x=c,否則x仍為a,b中較大的值,即x為a,b,c中較大的值;若d>x,則x=d,否則x仍為a,b,c中較大的值,即x為a,b,c中較大的值.故x為a,b,c,d中最大的數(shù),故選A.35.已知a>0,b>0且a+b>2,求證:1+ba,1+ab中至少有一個(gè)小于2.答案:證明:假設(shè)1+ba,1+ab都不小于2,則1+ba≥2,1+ab≥2(6分)因?yàn)閍>0,b>0,所以1+b≥2a,1+a≥2b,1+1+a+b≥2(a+b)即2≥a+b,這與已知a+b>2相矛盾,故假設(shè)不成立(12分)綜上1+ba,1+ab中至少有一個(gè)小于2.(14分)36.O、B、C為空間四個(gè)點(diǎn),又、、為空間的一個(gè)基底,則()
A.O、A、B、C四點(diǎn)不共線
B.O、A、B、C四點(diǎn)共面,但不共線
C.O、A、B、C四點(diǎn)中任意三點(diǎn)不共線
D.O、A、B、C四點(diǎn)不共面答案:D37.如圖,已知某探照燈反光鏡的縱切面是拋物線的一部分,光源安裝在焦點(diǎn)F上,且燈的深度EG等于燈口直徑AB,若燈的深度EG為64cm,則光源安裝的位置F到燈的頂端G的距離為______cm.答案:以反射鏡頂點(diǎn)為原點(diǎn),以頂點(diǎn)和焦點(diǎn)所在直線為x軸,建立直角坐標(biāo)系.設(shè)拋物線方程為y2=2px,依題意可點(diǎn)A(64,32)在拋物線上代入拋物線方程得322=128p解得p=8∴焦點(diǎn)坐標(biāo)為(4,0),而光源到反射鏡頂點(diǎn)的距離正是拋物線的焦距,即4cm.故為:4.38.設(shè)某種動(dòng)物由出生算起活到10歲的概率為0.9,活到15歲的概率為0.6.現(xiàn)有一個(gè)10歲的這種動(dòng)物,它能活到15歲的概率是______.答案:設(shè)活過10歲后能活到15歲的概率是P,由題意知0.9×P=0.6,解得P=23即一個(gè)10歲的這種動(dòng)物,它能活到15歲的概率是23故為:23.39.不等式的解集是
.答案:[0,2]解析:本小題主要考查根式不等式的解法,去掉根號(hào)是解根式不等式的基本思路,也考查了轉(zhuǎn)化與化歸的思想.原不等式等價(jià)于解得0≤x≤2.40.一個(gè)總體中有100個(gè)個(gè)體,隨機(jī)編號(hào)為0,1,2,3,…,99,依編號(hào)順序平均分成10個(gè)小組,組號(hào)依次為1,2,3,…10.現(xiàn)用系統(tǒng)抽樣方法抽取一個(gè)容量為10的樣本,規(guī)定如果在第1組隨機(jī)抽取的號(hào)碼為m,那么在第k組中抽取的號(hào)碼個(gè)位數(shù)字與m+k號(hào)碼的個(gè)位數(shù)字相同,若m=6,則在第7組中抽取的號(hào)碼是()
A.66
B.76
C.63
D.73答案:C41.下面為一個(gè)求20個(gè)數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語(yǔ)句為()
A.i>20
B.i<20
C.i>=20
D.i<=20
答案:A42.用秦九韶算法求多項(xiàng)式
在的值.答案:.解析:可根據(jù)秦九韶算法原理,將所給多項(xiàng)式改寫,然后由內(nèi)到外逐次計(jì)算即可.
而,所以有,,,,,.即.【名師指引】利用秦九韶算法計(jì)算多項(xiàng)式值關(guān)鍵是能正確地將所給多項(xiàng)式改寫,然后由內(nèi)到外逐次計(jì)算,由于后項(xiàng)計(jì)算需用到前項(xiàng)的結(jié)果,故應(yīng)認(rèn)真、細(xì)心,確保中間結(jié)果的準(zhǔn)確性.43.對(duì)任意實(shí)數(shù)x,y,定義運(yùn)算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算。已知1*2=3,2*3=4,并且有一個(gè)非零常數(shù)m,使得對(duì)任意實(shí)數(shù)x,都有x*m=x,則m的值是(
)
A.4
B.-4
C.-5
D.6答案:A44.如圖,直線l1,l2,l3的斜率分別為k1,k2,k3,則()
A.k1>k2>k3
B.k3>k2>k1
C.k2>k1>k3
D.k3>k1>k2
答案:C45.利用獨(dú)立性檢驗(yàn)對(duì)兩個(gè)分類變量是否有關(guān)系進(jìn)行研究時(shí),若有99.5%的把握說事件A和B有關(guān)系,則具體計(jì)算出的數(shù)據(jù)應(yīng)該是()
A.K2≥6.635
B.K2<6.635
C.K2≥7.879
D.K2<7.879答案:C46.用三段論的形式寫出下列演繹推理.
(1)若兩角是對(duì)頂角,則該兩角相等,所以若兩角不相等,則該兩角不是對(duì)頂角;
(2)矩形的對(duì)角線相等,正方形是矩形,所以,正方形的對(duì)角線相等.答案:(1)兩個(gè)角是對(duì)頂角則兩角相等,大前提∠1和∠2不相等,小前提∠1和∠2不是對(duì)頂角.結(jié)論(2)每一個(gè)矩形的對(duì)角線相等,大前提正方形是矩形,小前提正方形的對(duì)角線相等.結(jié)論47.已知參數(shù)方程x=1+cosθy=sinθ,(參數(shù)θ∈[0,2π]),則該曲線上的點(diǎn)與定點(diǎn)A(-1,-1)的距離的最小值是
______.答案:∵參數(shù)方程x=1+cosθy=sinθ∴圓的方程為(x-1)2+y2=1∴定點(diǎn)A(-1,-1)到圓心的距離為5∴與定點(diǎn)A(-1,-1)的距離的最小值是d-r=5-1故為5-148.已知球的表面積等于16π,圓臺(tái)上、下底面圓周都在球面上,且下底面過球心,圓臺(tái)的軸截面的底角為π3,則圓臺(tái)的軸截面的面積是()A.9πB.332C.33D.6答案:設(shè)球的半徑為R,由題意4πR2=16,R=2,圓臺(tái)的軸截面的底角為π3,可得圓臺(tái)母線長(zhǎng)為2,上底面半徑為1,圓臺(tái)的高為3,所以圓臺(tái)的軸截面的面積S=12(2+4)×3=33故選C49.已知(2x+1)3的展開式中,二項(xiàng)式系數(shù)和為a,各項(xiàng)系數(shù)和為b,則a+b=______.(用數(shù)字表示)答案:由題意可得(2x+1)3的展開式中,二項(xiàng)式系數(shù)和為a=23=8令x=1可得各項(xiàng)系數(shù)和為b=(2+1)3=27∴a+b=35故為:3550.M∪{1}={1,2,3}的集合M的個(gè)數(shù)是______.答案:∵M(jìn)∪{1}={1,2,3},∴M={1,2,3}或{2,3},則符合題意M的個(gè)數(shù)是2.故為:2第2卷一.綜合題(共50題)1.正方體的全面積為18cm2,則它的體積是()A.4cm3B.8cm3C.11272cm3D.33cm3答案:設(shè)正方體邊長(zhǎng)是acm,根據(jù)題意得6a2=18,解得a=3,∴正方體的體積是33cm3.故選D.2.
如圖,已知平行六面體OABC-O1A1B1C1,點(diǎn)G是上底面O1A1B1C1的中心,且,則用
表示向量為(
)
A.
B.
C.
D.
答案:A3.兩平行直線x+3y-4=0與2x+6y-9=0的距離是
______.答案:由直線x+3y-4=0取一點(diǎn)A,令y=0得到x=4,即A(4,0),則兩平行直線的距離等于A到直線2x+6y-9=0的距離d=|8-9|22+62=1210=1020.故為:10204.若向量a=(3,0),b=(2,2),則a與b夾角的大小是()
A.0
B.
C.
D.答案:B5.已知a、b是不共線的向量,AB=λa+b,AC=a+μb(λ,μ∈R),則A、B、C三點(diǎn)共線的充要條件是______.答案:由于AB,AC有公共點(diǎn)A,∴若A、B、C三點(diǎn)共線則AB與AC共線即存在一個(gè)實(shí)數(shù)t,使AB=tAC即λ=at1=μt消去參數(shù)t得:λμ=1反之,當(dāng)λμ=1時(shí)AB=1μa+b此時(shí)存在實(shí)數(shù)1μ使AB=1μAC故AB與AC共線又由AB,AC有公共點(diǎn)A,∴A、B、C三點(diǎn)共線故A、B、C三點(diǎn)共線的充要條件是λμ=16.實(shí)數(shù)變量m,n滿足m2+n2=1,則坐標(biāo)(m+n,mn)表示的點(diǎn)的軌跡是()
A.拋物線
B.橢圓
C.雙曲線的一支
D.拋物線的一部分答案:A7.參數(shù)方程(t是參數(shù))表示的圖象是()
A.射線
B.直線
C.圓
D.雙曲線答案:A8.安排6名演員的演出順序時(shí),要求演員甲不第一個(gè)出場(chǎng),也不最后一個(gè)出場(chǎng),則不同的安排方法種數(shù)是()
A.120
B.240
C.480
D.720答案:C9.已知向量a=(3,5,1),b=(2,2,3),c=(4,-1,-3),則向量2a-3b+4c的坐標(biāo)為______.答案:∵a=(3,5,1),b=(2,2,3),c=(4,-1,-3),∴向量2a-3b+4c=2(3,5,1)-3(2,2,3)+4(4,-1,-3)=(16,0,-19)故為:(16,0,-19).10.在空間直角坐標(biāo)系中,已知兩點(diǎn)P1(-1,3,5),P2(2,4,-3),則|P1P2|=()
A.
B.3
C.
D.答案:A11.經(jīng)過原點(diǎn),圓心在x軸的負(fù)半軸上,半徑等于2的圓的方程是______.答案:∵圓過原點(diǎn),圓心在x軸的負(fù)半軸上,∴圓心的橫坐標(biāo)的相反數(shù)等于圓的半徑,又∵半徑r=2,∴圓心坐標(biāo)為(-2,0),由此可得所求圓的方程為(x+2)2+y2=2.故為:(x+2)2+y2=212.如圖是《集合》的知識(shí)結(jié)構(gòu)圖,如果要加入“子集”,那么應(yīng)該放在()
A.“集合”的下位
B.“含義與表示”的下位
C.“基本關(guān)系”的下位
D.“基本運(yùn)算”的下位
答案:C13.設(shè)a1,a2,…,an為正數(shù),求證:a21a2+a22a3+…+a2n-1an+a2na1≥a1+a2+…+an.答案:證明:不妨設(shè)a1>a2>…>an>0,則a12>a22>…>an2,1a1<1a2<…1an由排序原理:亂序和≥反序和,可得:a21a2+a22a3+…+a2n-1an+a2na1≥a12a1+a22a2+…+an2an=a1+a2+…+an.14.中心在坐標(biāo)原點(diǎn),離心率為的雙曲線的焦點(diǎn)在y軸上,則它的漸近線方程為()
A.
B.
C.
D.答案:D15.有一段“三段論”推理是這樣的:對(duì)于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,那么x=x0是函數(shù)f(x)的極值點(diǎn),因?yàn)楹瘮?shù)f(x)=x3在x=0處的導(dǎo)數(shù)值f'(0)=0,所以,x=0是函數(shù)f(x)=x3的極值點(diǎn).以上推理中()
A.大前提錯(cuò)誤
B.小前提錯(cuò)誤
C.推理形式錯(cuò)誤
D.結(jié)論正確答案:A16.設(shè)P、Q為兩個(gè)非空實(shí)數(shù)集,定義集合P+Q={a+b|a∈P,b∈Q}.若P={0,2,5},Q={1,2,6},則P+Q中元素的個(gè)數(shù)是()A.6B.7C.8D.9答案:∵P={0,2,5},Q={1,2,6},P+Q={a+b|a∈P,b∈Q}∴當(dāng)a=0時(shí),b∈Q,P+Q={1,2,6}當(dāng)a=2時(shí),b∈Q,P+Q={3,4,8}當(dāng)a=5時(shí),b∈Q,P+Q={6,7,11}∴P+Q={1,2,3,4,6,7,8,11}故選C17.兩平行直線5x+12y+3=0與10x+24y+5=0間的距離是
______.答案:∵兩平行直線
ax+by+m=0
與
ax+by+n=0間的距離是|m-n|a2+b2,5x+12y+3=0即10x+24y+6=0,∴兩平行直線5x+12y+3=0與10x+24y+5=0間的距離是|5-6|102+242=1576=126.故為126.18.在極坐標(biāo)系中,曲線p=4cos(θ-π3)上任意兩點(diǎn)間的距離的最大值為______.答案:將原極坐標(biāo)方程p=4cos(θ-π3),化為:ρ=2cosθ+23sinθ,∴ρ2=2ρcosθ+23ρsinθ,化成直角坐標(biāo)方程為:x2+y2-2x-23y=0,是一個(gè)半徑為2圓.圓上兩點(diǎn)間的距離的最大值即為圓的直徑,故填:4.19.若過點(diǎn)A(4,0)的直線l與曲線(x-2)2+y2=1有公共點(diǎn),則直線l的斜率的取值范圍為______.答案:設(shè)直線l的方程為y=k(x-4),即kx-y-4k=0∵直線l與曲線(x-2)2+y2=1有公共點(diǎn),∴圓心到直線l的距離小于等于半徑即|2k-4k|k2+1≤1,解得-33≤
k≤33∴直線l的斜率的取值范圍為[-33,33]故為[-33,33]20.如圖,⊙O與⊙O′交于
A,B,⊙O的弦AC與⊙O′相切于點(diǎn)A,⊙O′的弦AD與⊙O相切于A點(diǎn),則下列結(jié)論中正確的是()
A.∠1>∠2
B.∠1=∠2
C.∠1<∠2
D.無法確定
答案:B21.已知點(diǎn)P1的球坐標(biāo)是P1(4,,),P2的柱坐標(biāo)是P2(2,,1),則|P1P2|=()
A.
B.
C.
D.4答案:A22.兩圓相交于點(diǎn)A(1,3)、B(m,-1),兩圓的圓心均在直線x-y+c=0上,則m+c的值為(
)
A.3
B.2
C.-1
D.0答案:A23.△ABC所在平面內(nèi)點(diǎn)O、P,滿足OP=OA+λ(AB+12BC),λ∈[0,+∞),則點(diǎn)P的軌跡一定經(jīng)過△ABC的()A.重心B.垂心C.內(nèi)心D.外心答案:設(shè)BC的中點(diǎn)為D,則∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中線∴點(diǎn)P的軌跡一定經(jīng)過△ABC的重心故選A.24.用反證法證明命題:“三角形的內(nèi)角至多有一個(gè)鈍角”,正確的假設(shè)是()
A.三角形的內(nèi)角至少有一個(gè)鈍角
B.三角形的內(nèi)角至少有兩個(gè)鈍角
C.三角形的內(nèi)角沒有一個(gè)鈍角
D.三角形的內(nèi)角沒有一個(gè)鈍角或至少有兩個(gè)鈍角答案:B25.若把A、B、C、D、E、F、G七人排成一排,則A、B必須相鄰,且C、D不能相鄰的概率是______(結(jié)果用數(shù)值表示).答案:把AB看成一個(gè)整體,CD不能相鄰,就用插空法,則有A22A44A25種方法把A、B、C、D、E、F、G七人排成一排,隨便排的種數(shù)A77所以概率為A22A44A25A77=421故為:421.26.某學(xué)校為了解高一男生的百米成績(jī),隨機(jī)抽取了50人進(jìn)行調(diào)查,如圖是這50名學(xué)生百米成績(jī)的頻率分布直方圖.根據(jù)該圖可以估計(jì)出全校高一男生中百米成績(jī)?cè)赱13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生______人.
答案:第三和第四個(gè)小矩形面積之和為(0.72+0.68)×0.5=0.7,即百米成績(jī)?cè)赱13,14]內(nèi)的頻率為:0.7,因?yàn)楦鶕?jù)該圖可以估計(jì)出全校高一男生中百米成績(jī)?cè)赱13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生1400.7=200人.故為:200.27.三棱柱ABC-A1B1C1中,M、N分別是BB1、AC的中點(diǎn),設(shè),,=,則等于()
A.
B.
C.
D.答案:A28.命題“若A∩B=A,則A∪B=B”的逆否命題是()A.若A∪B=B,則A∩B=AB.若A∩B≠A,則A∪B≠BC.若A∪B≠B,則A∩B≠AD.若A∪B≠B,則A∩B=A答案:∵“A∩B=A”的否定是“A∩B≠A”,∴命題“若A∩B=A,則A∪B=B”的逆否命題是“若A∪B≠B,則A∩B≠A”.故選C.29.某程序框圖如圖所示,該程序運(yùn)行后輸出的k的值是()A.4B.5C.6D.7答案:根據(jù)流程圖所示的順序,程序的運(yùn)行過程中各變量值變化如下表:是否繼續(xù)循環(huán)
S
K循環(huán)前/0
0第一圈
是
1
1第二圈
是
3
2第三圈
是
11
3第四圈
是
20594第五圈
否∴最終輸出結(jié)果k=4故為A30.在某項(xiàng)體育比賽中,七位裁判為一選手打出的分?jǐn)?shù)如下:
90
89
90
95
93
94
93
去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)的平均值和方差分別為()
A.92,2
B.92,2.8
C.93,2
D.93,2.8答案:B31.若直線3x+4y+m=0與曲線x=1+cosθy=-2+sinθ(θ為參數(shù))沒有公共點(diǎn),則實(shí)數(shù)m的取值范圍是
______.答案:∵曲線x=1+cosθy=-2+sinθ(θ為參數(shù))的普通方程是(x-1)2+(y+2)2=1則圓心(1,-2)到直線3x+4y+m=0的距離d=|3?1+4(-2)+m|32+42=|m-5|5,令|m-5|5>1,得m>10或m<0.故為:m>10或m<0.32.已知橢圓中心在原點(diǎn),一個(gè)焦點(diǎn)為(3,0),且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,則該橢圓的標(biāo)準(zhǔn)方程是______.答案:根據(jù)題意知a=2b,c=3又∵a2=b2+c2∴a2=4
b2=1∴x24+
y2=1故為:∴x24+
y2=1.33.已知f(x)=,a≠b,
求證:|f(a)-f(b)|<|a-b|.答案:證明略解析:方法一
∵f(a)=,f(b)=,∴原不等式化為|-|<|a-b|.∵|-|≥0,|a-b|≥0,∴要證|-|<|a-b|成立,只需證(-)2<(a-b)2.即證1+a2+1+b2-2<a2-2ab+b2,即證2+a2+b2-2<a2-2ab+b2.只需證2+2ab<2,即證1+ab<.當(dāng)1+ab<0時(shí),∵>0,∴不等式1+ab<成立.從而原不等式成立.當(dāng)1+ab≥0時(shí),要證1+ab<,只需證(1+ab)2<()2,即證1+2ab+a2b2<1+a2+b2+a2b2,即證2ab<a2+b2.∵a≠b,∴不等式2ab<a2+b2成立.∴原不等式成立.方法二
∵|f(a)-f(b)|=|-|==,又∵|a+b|≤|a|+|b|=+<+,∴<1.∵a≠b,∴|a-b|>0.∴|f(a)-f(b)|<|a-b|.34.若向量a,b,c滿足a∥b且a⊥c,則c(a+2b)=______.答案:∵a∥b∴存在λ使b=λa∵a⊥c∴a?c=0∴c?(a+2b)=c?a+2c?b=2c?λa=0故為:0.35.甲盒子中裝有3個(gè)編號(hào)分別為1,2,3的小球,乙盒子中裝有5個(gè)編號(hào)分別為1,2,3,4,5的小球,從甲、乙兩個(gè)盒子中各隨機(jī)取一個(gè)小球,則取出兩小球編號(hào)之積為奇數(shù)的概率為______.答案:由題意知本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件是從兩個(gè)盒子中分別取一個(gè)小球,共有3×5=15種結(jié)果,滿足條件的事件是取出的兩個(gè)小球編號(hào)之積是奇數(shù),可以列舉出有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5)共有6種結(jié)果,∴要求的概率是615=25.故為25.36.復(fù)數(shù)i2000=______.答案:復(fù)數(shù)i2009=i4×500=i0=1故為:137.已知|a|=8,e是單位向量,當(dāng)它們之間的夾角為π3時(shí),a在e方向上的投影為
______.答案:a在e方向上的投影為a?e=|a||e|cosπ3=4故為:438.已知f(x)=x2+4x+8,則f(3)=______.答案:f(3)=32+4×3+8=29,故為:29.39.已知大于1的正數(shù)x,y,z滿足x+y+z=33.
(1)求證:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32.
(2)求1log3x+log3y+1log3y+log3z+1log3z+log3x的最小值.答案:(1)由柯西不等式得,(x2x+2y+3z+y2y+2z+3z+z2z+2x+3y)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27得:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32;(2)∵1log3x+log3y+1log3y+log3z+1log3z+log3x=1log3(xy)+1log3(yz)+1log3(zx),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx)),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx))≥9所以,(1log3(xy)+1log3(yz)+1log3(zx))≥9(log3(xy)+log3(yz)+log3(zx))=92log3(xyz),又∵33=x+y+z≥33xyz.∴xyz≤33.∴l(xiāng)og3xyz≤32.得92log3xyz≥92×23=3所以,1log3x+log3y+1log3y+log3z+1log3z+log3x≥3當(dāng)且僅當(dāng)x=y=z=3時(shí),等號(hào)成立.故所求的最小值是3.40.圓x2+y2=1在矩陣10012對(duì)應(yīng)的變換作用下的結(jié)果為______.答案:設(shè)P(x,y)是圓C:x2+y2=1上的任一點(diǎn),P1(x′,y′)是P(x,y)在矩陣A=10012對(duì)應(yīng)變換作用下新曲線上的對(duì)應(yīng)點(diǎn),則x′y′=10012xy=1x12y即x′=xy′=12y,所以x=x′y=2y′,將x=x′y=2y′代入x2+y2=1,得x2+4y2=1,(8分)故為:x2+4y2=1.41.已知兩個(gè)非空集合A、B滿足A∪B={1,2,3},則符合條件的有序集合對(duì)(A,B)個(gè)數(shù)是()A.6B.8C.25D.27答案:按集合A分類討論若A={1,2,3},則B是A的子集即可滿足題意,故B有7種情況,即有序集合對(duì)(A,B)個(gè)數(shù)為7若A={1,2,}或{1,3}或{2,3}時(shí),集合B中至少有一個(gè)元素,故每種情況下,B都有4種情況,故有序集合對(duì)(A,B)個(gè)數(shù)為4×3=12若A={1}或{3}或{2}時(shí)集合中至少有二個(gè)元素,故每種情況下,B都有2種情況,故有序集合對(duì)(A,B)個(gè)數(shù)為2×3=6綜上,符合條件的有序集合對(duì)(A,B)個(gè)數(shù)是7+12+6=25故選C42.甲、乙、丙、丁四名射擊選手在選撥賽中所得的平均環(huán)數(shù),其方差S2如下表所示,則選送參加決賽的最佳人選是()
甲
乙
丙
丁
8
9
9
8
S2
5.7
6.2
5.7
6.4
A.甲
B.乙
C.丙
D.丁答案:C43.命題“若a>3,則a>5”的逆命題是______.答案:∵原命題“若a>3,則a>5”的條件是a>3,結(jié)論是a>5∴逆命題是“若a>5,則a>3”故為:若a>5,則a>344.已知四邊形ABCD,
點(diǎn)E、
F、
G、
H分別是AB、BC、CD、DA的中點(diǎn),
求證:
EF=HG.答案:證明:∵E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),∴HG=12AC,EF=12AC,∴EF=HG.45.如果關(guān)于x的不等式組有解,那么實(shí)數(shù)a的取值范圍(
)
A.(-∞,-3)∪(1,+∞)
B.(-∞,-1)∪(3,+∞)
C.(-1,3)
D.(-3,1)答案:C46.點(diǎn)(2,-2)的極坐標(biāo)為______.答案:∵點(diǎn)(2,-2)中x=2,y=-2,∴ρ=x2+y2=4+4=22,tanθ=yx=-1,∴取θ=-π4.∴點(diǎn)(2,-2)的極坐標(biāo)為(22,-π4)故為(22,-π4).47.已知矩陣A=abcd,若矩陣A屬于特征值3的一個(gè)特征向量為α1=11,屬于特征值-1的一個(gè)特征向量為α2=1-1,則矩陣A=______.答案:由矩陣A屬于特征值3的一個(gè)特征向量為α1=11可得abcd11=311,即a+b=3c+d=3;(4分)由矩陣A屬于特征值2的一個(gè)特征向量為α2=1-1,可得abcd1-1=(-1)1-1,即a-b=-1c-d=1,(6分)解得a=1b=2c=2d=1,即矩陣A=1221.(10分)故為:1221.48.如圖①y=ax,②y=bx,③y=cx,④y=dx,根據(jù)圖象可得a、b、c、d與1的大小關(guān)系為()
A.a(chǎn)<b<1<c<d
B.b<a<1<d<c
C.1<a<b<c<d
D.a(chǎn)<b<1<d<c
答案:B49.已知|a|=1,|b|=2,向量a與b的夾角為60°,則|a+b|=______.答案:∵已知|a|=1,|b|=2,向量a與b的夾角為60°,∴a2=1,b2=4,a?b=1×2×cos60°=1,.∴|.a+b|2=a2+b2+2a?b=1+4+2=7,∴|.a+b|
=7,故為7.50.若直線l:ax+by=1與圓C:x2+y2=1有兩個(gè)不同交點(diǎn),則點(diǎn)P(a,b)與圓C的位置關(guān)系是(
)
A.點(diǎn)在圓上
B.點(diǎn)在圓內(nèi)
C.點(diǎn)在圓外
D.不能確定答案:C第3卷一.綜合題(共50題)1.因?yàn)闃颖臼强傮w的一部分,是由某些個(gè)體所組成的,盡管對(duì)總體具有一定的代表性,但并不等于總體,為什么不把所有個(gè)體考查一遍,使樣本就是總體?答案:如果樣本就是總體,抽樣調(diào)查就變成普查了,盡管這樣確實(shí)反映了實(shí)際情況,但不是統(tǒng)計(jì)的基本思想,其操作性、可行性、人力、物力等方面,都會(huì)有制約因素存在,何況有些調(diào)查是破壞性的,如考查一批玻璃的抗碎能力,燈泡的使用壽命等,普查就全破壞了.2.如圖,從圓O外一點(diǎn)P作圓O的割線PAB、PCD,AB是圓O的直徑,若PA=4,PC=5,CD=3,則∠CBD=______.答案:由割線長(zhǎng)定理得:PA?PB=PC?PD即4×PB=5×(5+3)∴PB=10∴AB=6∴R=3,所以△OCD為正三角形,∠CBD=12∠COD=30°.3.直線y=3的一個(gè)單位法向量是______.答案:直線y=3的方向向量是(a,0)(a≠0),不妨?。?,0)設(shè)直線y=3的法向量為n=(x,y)∴(x,y)?(1,0)=0∴x=0∴直線y=3的一個(gè)單位法向量是(0,1)故為:(0,1)4.已知不等式(a2+a+2)2x>(a2+a+2)x+8,其中x∈N+,使此不等式成立的x的最小整數(shù)值是______.答案:∵a2+a+2=(a+12)2+74>1,且x∈N+,∴由正整數(shù)指數(shù)函數(shù)在底數(shù)大于1時(shí)單調(diào)遞增的性質(zhì),得2x>x+8,即x>8,∴使此不等式成立的x的最小整數(shù)值為9.故為:9.5.若圓O1方程為(x+1)2+(y+1)2=4,圓O2方程為(x-3)2+(y-2)2=1,則方程(x+1)2+(y+1)2-4=(x-3)2+(y-2)2-1表示的軌跡是()
A.經(jīng)過兩點(diǎn)O1,O2的直線
B.線段O1O2的中垂線
C.兩圓公共弦所在的直線
D.一條直線且該直線上的點(diǎn)到兩圓的切線長(zhǎng)相等答案:D6.已知曲線x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)上一點(diǎn)P,原點(diǎn)為0,直線P0的傾斜角為π4,則P點(diǎn)的坐標(biāo)是______.答案:根據(jù)題意,曲線x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)消去參數(shù)化成普通方程,得x29+y216=1(y≥0)∵直線P0的傾斜角為π4,∴P點(diǎn)在直線y=x上,將其代入橢圓方程得x29+x216=1,解之得x=y=125(舍負(fù)),因此點(diǎn)P的坐標(biāo)為(125,125)故為:(125,125)7.已知平面α內(nèi)有一個(gè)點(diǎn)A(2,-1,2),α的一個(gè)法向量為=(3,1,2),則下列點(diǎn)P中,在平面α內(nèi)的是()
A.(1,-1,1)
B.(1,3,)
C.,(1,-3,)
D.(-1,3,-)答案:B8.對(duì)任意的實(shí)數(shù)k,直線y=kx+1與圓x2+y2=2
的位置關(guān)系一定是()
A.相離
B.相切
C.相交但直線不過圓心
D.相交且直線過圓心答案:C9.某一批花生種子,如果每1粒發(fā)芽的概率為,那么播下4粒種子恰有2粒發(fā)芽的概率是(
)
A.
B.
C.
D.答案:B10.已知點(diǎn)A(1,3),B(4,-1),則與向量同方向的單位向量為()
A.(,-)
B.(,-)
C.(-,)
D.(-,)答案:A11.不等式的解集
.答案:;解析:略12.將3封信投入5個(gè)郵筒,不同的投法共有()
A.15
種
B.35
種
C.6
種
D.53種答案:D13.已知空間兩點(diǎn)A(4,a,-b),B(a,a,2),則向量AB=()A.(a-4,0,2+b)B.(4-a,0,-b-2)C.(0,a-4,2+b)D.(a-4,0,-b-2)答案:∵A(4,a,-b),B(a,a,2)∴AB=(a-4,a-a,2-(-b))=(a-4,0,2+b)故選A14.某學(xué)校要從5名男生和2名女生中選出2人作為上海世博會(huì)志愿者,若用隨機(jī)變量ξ表示選出的志愿者中女生的人數(shù),則數(shù)學(xué)期望Eξ______(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示).答案:用隨機(jī)變量ξ表示選出的志愿者中女生的人數(shù),ξ可取0,1,2,當(dāng)ξ=0時(shí),表示沒有選到女生;當(dāng)ξ=1時(shí),表示選到一個(gè)女生;當(dāng)ξ=2時(shí),表示選到2個(gè)女生,∴P(ξ=0)=C25C27=1021,P(ξ=1)=C15C12C27=1021,P(ξ=2)=C22C27=121,∴Eξ=0×1021+1×1021+2×121=47.故為:4715.在平面直角坐標(biāo)系中,點(diǎn)A(4,-2)按向量a=(-1,3)平移,得點(diǎn)A′的坐標(biāo)是()A.(5,-5)B.(3,1)C.(5,1)D.(3,-5)答案:設(shè)A′的坐標(biāo)為(x′,y′),則x′=4-1=3y′=-2+3=1,∴A′(3,1).故選B.16.如圖,AC是⊙O的直徑,∠ACB=60°,連接AB,過A、B兩點(diǎn)分別作⊙O的切線,兩切線交于點(diǎn)P.若已知⊙O的半徑為1,則△PAB的周長(zhǎng)為______.答案:∵AC是⊙O的直徑,∴∠ABC=90°,∠BAC=30°,CB=1,AB=3,∵AP為切線,∴∠CAP=90°,∠PAB=60°,又∵AP=BP,∴△PAB為正三角形,∴周長(zhǎng)=33.故填:33.17.設(shè)點(diǎn)P(+,1)(t>0),則||(O為坐標(biāo)原點(diǎn))的最小值是()
A.
B.
C.5
D.3答案:A18.如圖,已知某探照燈反光鏡的縱切面是拋物線的一部分,光源安裝在焦點(diǎn)F上,且燈的深度EG等于燈口直徑AB,若燈的深度EG為64cm,則光源安裝的位置F到燈的頂端G的距離為______cm.答案:以反射鏡頂點(diǎn)為原點(diǎn),以頂點(diǎn)和焦點(diǎn)所在直線為x軸,建立直角坐標(biāo)系.設(shè)拋物線方程為y2=2px,依題意可點(diǎn)A(64,32)在拋物線上代入拋物線方程得322=128p解得p=8∴焦點(diǎn)坐標(biāo)為(4,0),而光源到反射鏡頂點(diǎn)的距離正是拋物線的焦距,即4cm.故為:4.19.俊、杰兄弟倆分別在P、Q兩籃球隊(duì)效力,P隊(duì)、Q隊(duì)分別有14和15名球員,且每個(gè)隊(duì)員在各自隊(duì)中被安排首發(fā)上場(chǎng)的機(jī)會(huì)是均等的,則P、Q兩隊(duì)交戰(zhàn)時(shí),俊、杰兄弟倆同為首發(fā)上場(chǎng)交戰(zhàn)的概率是(首發(fā)上場(chǎng)各隊(duì)五名隊(duì)員)(
)A.B.C.D.答案:B解析:解:P(俊首發(fā))=
P(杰首發(fā))==P(俊、杰同首發(fā))=
選B評(píng)析:考察考生等可能事件的概率與相互獨(dú)立事件的概率問題。20.如圖,圓O的直徑AB=6,C為圓周上一點(diǎn),BC=3,過C作圓的切線l,過A作l的垂線AD,AD分別與直線l、圓交于點(diǎn)D、E.求∠DAC的度數(shù)與線段AE的長(zhǎng).答案:如圖,連接OC,因BC=OB=OC=3,因此∠CBO=60°,由于∠DCA=∠CBO,所以∠DCA=60°,又AD⊥DC得∠DAC=30°;(5分)又因?yàn)椤螦CB=90°,得∠CAB=30°,那么∠EAB=60°,從而∠ABE=30°,于是AE=12AB=3.(10分)21.設(shè)函數(shù)g(x)=ex
x≤0lnx,x>0,則g(g(12))=______.答案:g(g(12))
=g(ln12)
=eln12=12故為:12.22.已知拋物線方程為y2=2px(p>0),過該拋物線焦點(diǎn)F且不與x軸垂直的直線AB交拋物線于A,B兩點(diǎn),過點(diǎn)A,點(diǎn)B分別作AM,BN垂直于拋物線的準(zhǔn)線,分別交準(zhǔn)線于M,N兩點(diǎn),那么∠MFN必是()
A.銳角
B.直角
C.鈍角
D.以上皆有可能答案:B23.設(shè)集合A={x|x<1,x∈R},B={x|1x>1,x∈R},則下列圖形能表示A與B關(guān)系的是()A.
B.
C.
D.
答案:B={x|1x>1}={x|0<x<1},所以B?A.所以對(duì)應(yīng)的關(guān)系選A.故選A.24.某車間工人已加工一種軸100件,為了了解這種軸的直徑,要從中抽出10件在同一條件下測(cè)量(軸的直徑要求為(20±0.5)mm),如何采用簡(jiǎn)單隨機(jī)抽樣方法抽取上述樣本?答案:本題是一個(gè)簡(jiǎn)單抽樣,∵100件軸的直徑的全體是總體,將其中的100個(gè)個(gè)體編號(hào)00,01,02,…,99,利用隨機(jī)數(shù)表來抽取樣本的10個(gè)號(hào)碼,可以從表中的第20行第3列的數(shù)開始,往右讀數(shù),得到10個(gè)號(hào)碼如下:16,93,32,43,50,27,89,87,19,20將上述號(hào)碼的軸在同一條件下測(cè)量直徑.25.已知點(diǎn)P(x,y)在曲線x=2+cosθy=2sinθ(θ為參數(shù)),則ω=3x+2y的最大值為______.答案:由題意,ω=3x+2y=3cosθ+4sinθ+6=5sin(θ+?)+6∴當(dāng)sin(θ+?)=1時(shí),ω=3x+2y的最大值為
11故為11.26.若隨機(jī)向一個(gè)半徑為1的圓內(nèi)丟一粒豆子(假設(shè)該豆子一定落在圓內(nèi)),則豆子落在此圓內(nèi)接正三角形內(nèi)的概率是______.答案:∵圓O是半徑為R=1,圓O的面積為πR2=π則圓內(nèi)接正三角形的邊長(zhǎng)為3,而正三角形ABC的面積為343,∴豆子落在正三角形ABC內(nèi)的概率P=334π=334π故為:334π27.(1)把參數(shù)方程(t為參數(shù))x=secty=2tgt化為直角坐標(biāo)方程;
(2)當(dāng)0≤t<π2及π≤t<3π2時(shí),各得到曲線的哪一部分?答案:(1)利用公式sec2t=1+tg2t,得x2=1+y24.∴曲線的直角坐標(biāo)普通方程為x2-y24=1.(2)當(dāng)0≤t≤π2時(shí),x≥1,y≥0,得到的是曲線在第一象限的部分(包括(1,0)點(diǎn));當(dāng)0≤t≤3π2時(shí),x≤-1,y≥0,得到的是曲線在第二象限的部分,(包括(-1,0)點(diǎn)).28.(1+2x)10的展開式的第4項(xiàng)是______.答案:(1+2x)10的展開式的第4項(xiàng)為T4=C310
(2X)3=960x3,故為960x3.29.由9個(gè)正數(shù)組成的矩陣
中,每行中的三個(gè)數(shù)成等差數(shù)列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比數(shù)列,給出下列判斷:①第2列a12,a22,a32必成等比數(shù)列;②第1列a11,a21,a31不一定成等比數(shù)列;③a12+a32≥a21+a23;④若9個(gè)數(shù)之和等于9,則a22≥1.其中正確的個(gè)數(shù)有()
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)答案:B30.用一枚質(zhì)地均勻的硬幣,甲、乙兩人做拋擲硬幣游戲,甲拋擲4次,記正面向上的次數(shù)為ξ;乙拋擲3次,記正面向上的次數(shù)為η.
(Ⅰ)分別求ξ和η的期望;
(Ⅱ)規(guī)定:若ξ>η,則甲獲勝;否則,乙獲勝.求甲獲勝的概率.答案:(Ⅰ)由題意,ξ~B(4,0.5),η~B(3,0.5),所以Eξ=4×0.5=2,Eη=3×0.5=1.5…(4分)(Ⅱ)P(ξ=1)=C14(12)4=14,P(ξ=2)=C24(12)4=38,P(ξ=3)=C34(12)4=14,P(ξ=4)=C44(12)4=116P(η=0)=C03(12)3=18,P(η=1)=C13(12)3=38,P(η=2)=C23(12)3=38,P(η=3)=C33(12)3=18…(8分)甲獲勝有以下情形:ξ=1,η=0;ξ=2,η=0,1;ξ=3,η=0,1,2;ξ=4,η=0,1,2,3則甲獲勝的概率為P=14×18+38(18+38)+14(18+38+38)+116×1=12.…(13分)31.一圓形紙片的圓心為點(diǎn)O,點(diǎn)Q是圓內(nèi)異于O點(diǎn)的一定點(diǎn),點(diǎn)A是圓周上一點(diǎn).把紙片折疊使點(diǎn)A與Q重合,然后展平紙片,折痕與OA交于P點(diǎn).當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí)點(diǎn)P的軌跡是()A.圓B.橢圓C.雙曲線D.拋物線答案:如圖所示,由題意可知:折痕l為線段AQ的垂直平分線,∴|AP|=|PQ|,而|OP|+|PA|=|OA|=R,∴|PO|+|PQ|=R定值>|OQ|.∴當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí)點(diǎn)P的軌跡是以點(diǎn)O,D為焦點(diǎn),長(zhǎng)軸長(zhǎng)為R的橢圓.故選B.32.要使直線y=kx+1(k∈R)與焦點(diǎn)在x軸上的橢圓x27+y2a=1總有公共點(diǎn),實(shí)數(shù)a的取值范圍是______.答案:要使方程x27+y2a=1表示焦點(diǎn)在x軸上的橢圓,需a<7,由直線y=kx+1(k∈R)恒過定點(diǎn)(0,1),所以要使直線y=kx+1(k∈R)與橢圓x27+y2a=1總有公共點(diǎn),則(0,1)應(yīng)在橢圓上或其內(nèi)部,即a>1,所以實(shí)數(shù)a的取值范圍是[1,7).故為[1,7).33.四面體ABCD中,設(shè)M是CD的中點(diǎn),則化簡(jiǎn)的結(jié)果是()
A.
B.
C.
D.答案:A34.已知原命題“兩個(gè)無理數(shù)的積仍是無理數(shù)”,則:
(1)逆命題是“乘積為無理數(shù)的兩數(shù)都是無理數(shù)”;
(2)否命題是“兩個(gè)不都是無理數(shù)的積也不是無理數(shù)”;
(3)逆否命題是“乘積不是無理數(shù)的兩個(gè)數(shù)都不是無理數(shù)”;
其中所有正確敘述的序號(hào)是______.答案:(1)交換原命題的條件和結(jié)論得到逆命題:“乘積為無理數(shù)的兩數(shù)都是無理數(shù)”,正確.(2)同時(shí)否定原命題的條件和結(jié)論得到否命題:“兩個(gè)不都是無理數(shù)的積也不是無理數(shù)”,正確.(3)同時(shí)否定原命題的條件和結(jié)論,然后在交換條件和結(jié)論得到逆否命題:“乘積不是無理數(shù)的兩個(gè)數(shù)不都是無理數(shù)”.所以逆否命題錯(cuò)誤.故為:(1)(2).35.在命題“若a>b,則ac2>bc2”及它的逆命題、否命題、逆否命題之中,其中真命題有()A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)答案:命題“若a>b,則ac2>bc2”為假命題;其逆命題為“若ac2>bc2,則a>b”為真命題;其否命題為“若a≤b,則ac2≤bc2”為真命題;其逆否命題為“若ac2≤bc2,則a≤b”為假命題;故選C36.為了了解學(xué)校學(xué)生的身體發(fā)育情況,抽查了該校100名高中男生的體重情況,根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖如圖所示,根據(jù)此圖,估計(jì)該校2000名高中男生中體重大于70.5公斤的人數(shù)為()
A.300B.350C.420D.450答案:∵由圖得,∴70.5公斤以上的人
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024至2030年中國(guó)雙電源自動(dòng)切換系統(tǒng)行業(yè)投資前景及策略咨詢研究報(bào)告
- 2024年中國(guó)驗(yàn)室工作臺(tái)市場(chǎng)調(diào)查研究報(bào)告
- 2024年中國(guó)活血止痛片市場(chǎng)調(diào)查研究報(bào)告
- 2024年中國(guó)受阻胺光穩(wěn)定劑622市場(chǎng)調(diào)查研究報(bào)告
- 2024八年級(jí)數(shù)學(xué)上冊(cè)第二章分式與分式方程2分式的乘除法第1課時(shí)分式的乘除法課件魯教版五四制
- 2024八年級(jí)數(shù)學(xué)上冊(cè)階段專訓(xùn)第4招分式化簡(jiǎn)求值的常見題型習(xí)題課件魯教版五四制
- 2024年山西客運(yùn)資格證考試題庫(kù)答案及解析
- 2024年百色道路旅客運(yùn)輸駕駛員繼續(xù)教育試題
- 2024年內(nèi)蒙古客運(yùn)從業(yè)資格證考試題庫(kù)答案解析
- 2024年桂林貨運(yùn)從業(yè)資格證考試題
- 幕墻預(yù)埋件偏差處理措施
- 機(jī)械工程控制基礎(chǔ)課后習(xí)題答案
- jgj113-2015建筑玻璃技術(shù)規(guī)范
- 意識(shí)形態(tài)工作責(zé)任制落實(shí)情況專題匯報(bào)
- 衛(wèi)生院衛(wèi)生室績(jī)效考核細(xì)則
- 四川阿壩汶川縣機(jī)關(guān)事業(yè)單位選(考)調(diào)工作人員45人55筆試參考題庫(kù)答案解析版
- 社區(qū)矯正人員心得體會(huì)
- 關(guān)于新時(shí)代中國(guó)特色社會(huì)主義的論文
- 2020財(cái)務(wù)管理學(xué)真題及答案
- 醫(yī)院與120調(diào)度中心協(xié)議書(參考模板)【精品范文】
- 引導(dǎo)式銷售課件
評(píng)論
0/150
提交評(píng)論