版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年廣西現(xiàn)代職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.已知隨機(jī)變量ξ服從正態(tài)分布N(2,σ2),且P(ξ<0)=0.2,則P(ξ>4)=()
A.0.6
B.0.4
C.0.3
D.0.2答案:D2.不論k為何實(shí)數(shù),直線y=kx+1與曲線x2+y2-2ax+a2-2a-4=0恒有交點(diǎn),則實(shí)數(shù)a的取值范圍是______.答案:直線y=kx+1恒過(0,1)點(diǎn),與曲線x2+y2-2ax+a2-2a-4=0恒有交點(diǎn),必須定點(diǎn)在圓上或圓內(nèi),即:a2+12
≤4+2a所以,-1≤a≤3故為:-1≤a≤3.3.在平面直角坐標(biāo)系xOy中,點(diǎn)A(-1,-2)、B(2,3)、C(-2,-1).
(1)求以線段AB、AC為鄰邊的平行四邊形兩條對角線的長;
(2)設(shè)實(shí)數(shù)t滿足(AB-tOC)?OC=0,求t的值.答案:(1)(方法一)由題設(shè)知AB=(3,5),AC=(-1,1),則AB+AC=(2,6),AB-AC=(4,4).所以|AB+AC|=210,|AB-AC|=42.故所求的兩條對角線的長分別為42、210.(方法二)設(shè)該平行四邊形的第四個頂點(diǎn)為D,兩條對角線的交點(diǎn)為E,則:E為B、C的中點(diǎn),E(0,1)又E(0,1)為A、D的中點(diǎn),所以D(1,4)故所求的兩條對角線的長分別為BC=42、AD=210;(2)由題設(shè)知:OC=(-2,-1),AB-tOC=(3+2t,5+t).由(AB-tOC)?OC=0,得:(3+2t,5+t)?(-2,-1)=0,從而5t=-11,所以t=-115.或者:AB?OC=tOC2,AB=(3,5),t=AB?OC|OC|2=-1154.系數(shù)矩陣為.2132.,解為xy=12的一個線性方程組是______.答案:可設(shè)線性方程組為2132xy=mn,由于方程組的解是xy=12,∴mn=47,∴所求方程組為2x+y=43x+2y=7,故為:2x+y=43x+2y=7.5.(選做題)已知x+2y=1,則x2+y2的最小值是______.答案:x2+y2表示(0,0)到x+2y=1上點(diǎn)的距離的平方∴x2+y2的最小值是(0,0)到x+2y=1的距離d的平方據(jù)點(diǎn)到直線的距離公式得d=11+4=15∴x2+y2的最小值是15故為156.已知兩直線a1x+b1y+1=0和a2x+b2y+1=0的交點(diǎn)為P(2,3),求過兩點(diǎn)Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直線方程.答案:∵P(2,3)在已知直線上,2a1+3b1+1=0,2a2+3b2+1=0.∴2(a1-a2)+3(b1-b2)=0,即b1-b2a1-a2=-23.∴所求直線方程為y-b1=-23(x-a1).∴2x+3y-(2a1+3b1)=0,即2x+3y+1=0.7.在(1+x)3+(1+x)4…+(1+x)7的展開式中,含x項(xiàng)的系數(shù)是______.(用數(shù)字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展開式中,含x項(xiàng)的系數(shù)是C31+C41+C51+…+C71=25故為:258.函數(shù)f(x)為偶函數(shù),其圖象與x軸有四個交點(diǎn),則該函數(shù)的所有零點(diǎn)之和為()A.4B.2C.1D.0答案:因?yàn)楹瘮?shù)f(x)為偶函數(shù),所以函數(shù)圖象關(guān)于y軸對稱.又其圖象與x軸有四個交點(diǎn),所以四個交點(diǎn)關(guān)于y軸對稱,不妨設(shè)四個交點(diǎn)的橫坐標(biāo)為x1,x2,x3,x4,則根據(jù)對稱性可知x1+x2+x3+x4=0.故選D.9.為確保信息安全,信息需加密傳輸,發(fā)送方由明文→密文(加密),接收方由密文→明文(解密),已知加密規(guī)則為:明文a,b,c,d對應(yīng)密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4對應(yīng)密文5,7,18,16.當(dāng)接收方收到密文14,9,23,28時,則解密得到的明文為()A.4,6,1,7B.7,6,1,4C.6,4,1,7D.1,6,4,7答案:∵明文a,b,c,d對應(yīng)密文a+2b,2b+c,2c+3d,4d,∴當(dāng)接收方收到密文14,9,23,28時,則a+2b=142b+c=92c+3d=234d=28,解得a=6b=4c=1d=7,解密得到的明文為6,4,1,7故選C.10.某籃球運(yùn)動員在一個賽季的40場比賽中的得分的莖葉圖如圖所示,則這組數(shù)據(jù)的中位數(shù)是______;眾數(shù)是______.
答案:將比賽中的得分按照從小到大的順序排,中間兩個數(shù)為23,23,所以這組數(shù)據(jù)的中位數(shù)是23,所有的數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)是23故為23;2311.已知隨機(jī)變量X的分布列是:(
)
X
4
a
9
10
P
0.3
0.1
b
0.2
且EX=7.5,則a的值為()
A.5
B.6
C.7
D.8答案:C12.如圖所示,圓的內(nèi)接△ABC的∠C的平分線CD延長后交圓于點(diǎn)E,連接BE,已知BD=3,CE=7,BC=5,則線段BE=()
A.
B.
C.
D.4
答案:B13.4名同學(xué)分別報(bào)名參加學(xué)校的足球隊(duì),籃球隊(duì),乒乓球隊(duì),每人限報(bào)其中的一個運(yùn)動隊(duì),不同報(bào)法的種數(shù)是()
A.34
B.43
C.24
D.12答案:A14.某學(xué)校高一、高二、高三共有學(xué)生3500人,其中高三學(xué)生數(shù)是高一學(xué)生數(shù)的兩倍,高二學(xué)生數(shù)比高一學(xué)生數(shù)多300人,現(xiàn)在按的抽樣比用分層抽樣的方法抽取樣本,則應(yīng)抽取高一學(xué)生數(shù)為()
A.8
B.11
C.16
D.10答案:A15.如圖,在半徑為7的⊙O中,弦AB,CD相交于點(diǎn)P,PA=PB=2,PD=1,則圓心O到弦CD的距離為______.答案:由相交弦定理得,AP×PB=CP×PD,∴2×2=CP?1,解得:CP=4,又PD=1,∴CD=5,又⊙O的半徑為7,則圓心O到弦CD的距離為d=r2-(CD2)2=7-(52)2=32.故為:32.16.已知一種材料的最佳加入量在100g到200g之間,若用0.618法安排試驗(yàn),則第一次試點(diǎn)的加入量可以是(
)g。答案:161.8或138.217.已知:集合A={x,y},B={2,2y},若A=B,則x+y=______.答案:∵集合A={x,y},B={2,2y},而A=B∴x=2y=0或x=2yy=2即x=4y=2∴x+y=2或6故為:2或618.如圖,P-ABCD是正四棱錐,ABCD-A1B1C1D1是正方體,其中AB=2,PA=6.
(1)求證:PA⊥B1D1;
(2)求平面PAD與平面BDD1B1所成銳二面角的余弦值.答案:以D1為原點(diǎn),D1A1所在直線為x軸,D1C1所在直線為y軸,D1D所在直線為z軸建立空間直角坐標(biāo)系,則D1(0,0,0),A1(2,0,0),B1(2,2,0),C1(0,2,0),D(0,0,2),A(2,0,2),B(2,2,2),C(0,2,2),P(1,1,4).(1)證明:∵AP=(-1,1,2),D1B1=(2,2,0),∴AP?D1B1=-2+2+0=0,∴PA⊥B1D1.(2)平面BDD1B1的法向量為AC=(-2,2,0).DA=(2,0,0),OP=(1,1,2).設(shè)平面PAD的法向量為n=(x,y,z),則n⊥DA,n⊥DP.∴2x=0x+y+2z=0∴x=0y=-2z.取n=(0,-2,1),設(shè)所求銳二面角為θ,則cosθ=|n?AC||n|?|AC|=|0-4+0|22×5=105.19.在復(fù)平面上,設(shè)點(diǎn)A,B,C對應(yīng)的復(fù)數(shù)分別為i,1,4+2i,過A、B、C作平行四邊形ABCD,則平行四邊形對角線BD的長為______.答案:∵點(diǎn)A,B,C對應(yīng)的復(fù)數(shù)分別為i,1,4+2i∴A(0,1),B(1,0),C(4,2)設(shè)D(x,y)∴AD=BC=(3,2)∴D(3,3)∴對角線BD的長度是4+9=13故為:1320.已知AB和CD是曲線(t為參數(shù))的兩條相交于點(diǎn)P(2,2)的弦,若AB⊥CD,且|PA|·|PB|=|PC|·
|PD|,
(Ⅰ)將曲線(t為參數(shù))化為普通方程,并說明它表示什么曲線;
(Ⅱ)試求直線AB的方程。答案:解:(Ⅰ)由y=4t得y2=16t2,而x=4t2,∴y2=4x,它表示拋物線;(Ⅱ)設(shè)直線AB和CD的傾斜角分別為α,β,則直線AB和CD的參數(shù)方程分別為,把①代入y2=4x中,得t2sin2α+(4sinα-4cosα)t-4=0,③依題意知sinα≠0且方程③的判別式Δ=16(sinα-cosα)2+16sin2α>0,∴方程③有兩個不相等的實(shí)數(shù)解t1,t2,則由t的幾何意義知|PA|=|t1|,|PB|=|t2|,∴|PA|·|PB|=|t1t2|=,同理|PC|·|PD|=,由|PA|·|PB|=|PC|·|PD|知,即sin2α=sin2β,∵0≤α,β<π,∴α=π-β,∵AB⊥CD,∴β=α+90°或α=β+90°,∴直線AB的傾斜角∴kAB=1或kAB=-1,故直線AB的方程為y=x或x+y-4=0。21.設(shè)直角三角形的三邊長分別為a,b,c(a<b<c),則“a:b:c=3:4:5”是“a,b,c成等差數(shù)列”的()A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分又非必要條件答案:∵直角三角形的三邊長分別為a,b,c(a<b<c),a:b:c=3:4:5,∴a=3k,b=4k,c=5k(k>0),∴a,b,c成等差數(shù)列.即“a:b:c=3:4:5”?“a,b,c成等差數(shù)列”.∵直角三角形的三邊長分別為a,b,c(a<b<c),a,b,c成等差數(shù)列,∴a2+b2=c22b=a+c,∴a2+a2+
c2+2ac4=c2,∴4a=3b,5a=3c,∴a:b:c=3:4:5,即“a,b,c成等差數(shù)列”?“a:b:c=3:4:5”.故選C.22.若{、、}為空間的一組基底,則下列各項(xiàng)中,能構(gòu)成基底的一組向量是[
]A.,+,﹣
B.,+,﹣
C.,+,﹣
D.+,﹣,+2答案:C23.已知a=(1-t,1-t,t),b=(2,t,t),則|b-a|的最小值是______.答案:∵a=(1-t,1-t,t),b=(2,t,t),∴向量b-a=(1+t,2t-1,0)可得向量b-a的模|b-a|=(1+t)2+
(2t-1)2+02=5t2-2t+2∵5t2-2t+2=5(t-15)2+95∴當(dāng)且僅當(dāng)t=15時,5t2-2t+2的最小值為95所以當(dāng)t=15時,|b-a|的最小值是95=355故為:35524.給出命題:
①線性回歸分析就是由樣本點(diǎn)去尋找一條貼近這些點(diǎn)的直線;
②利用樣本點(diǎn)的散點(diǎn)圖可以直觀判斷兩個變量的關(guān)系是否可以用線性關(guān)系表示;
③通過回歸方程=bx+a及其回歸系數(shù)b可以估計(jì)和預(yù)測變量的取值和變化趨勢;
④線性相關(guān)關(guān)系就是兩個變量間的函數(shù)關(guān)系.其中正確的命題是(
)
A.①②
B.①④
C.①②③
D.①②③④答案:D25.已知橢圓C的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在軸上,離心率e=22,且經(jīng)過點(diǎn)M(0,2),求橢圓c的方程答案:若焦點(diǎn)在x軸很明顯,過點(diǎn)M(0,2)點(diǎn)M即橢圓的上端點(diǎn),所以b=2ca=22c2=12a2∵a2=b2+c2所以b2=c2=2a2=4橢圓:x24+y22=1若焦點(diǎn)在y軸,則a=2,ca=22,c=1∴b=1橢圓方程:x22+y2=1.26.如圖,梯形ABCD內(nèi)接于⊙O,AB∥CD,AB為直徑,DO平分∠ADC,則∠DAO的度數(shù)是
______.答案:∵DO平分∠ADC,∴∠CDO=∠ODA;∵OD=OA,∴∠A=∠ADO=12∠ADC;∵AB∥CD,∴∠A+∠ADC=3∠A=180°,即∠A=∠ADO=60°.故為:60°27.命題“若A∩B=A,則A∪B=B”的逆否命題是()A.若A∪B=B,則A∩B=AB.若A∩B≠A,則A∪B≠BC.若A∪B≠B,則A∩B≠AD.若A∪B≠B,則A∩B=A答案:∵“A∩B=A”的否定是“A∩B≠A”,∴命題“若A∩B=A,則A∪B=B”的逆否命題是“若A∪B≠B,則A∩B≠A”.故選C.28.空間向量a=(2,-1,0),.b=(1,0,-1),n=(1,y,z),若n⊥a,n⊥b,則y+z=______.答案:∵n⊥a,n⊥b,∴n?a=0n?b=0,即2-y=01-z=0,解得y=2z=1,∴y+z=3.故為3.29.直線4x-3y+5=0與直線8x-6y+5=0的距離為______.答案:直線4x-3y+5=0即8x-6y+10=0,由兩平行線間的距離公式得:直線4x-3y+5=0(8x-6y+10=0)與直線8x-6y+5=0的距離是
|10-5|62+82=12,故為:12.30.已知a=(1,-2,1),a+b=(3,-6,3),則b等于()A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)答案:∵a+b=(3,-6,3),∴b=a+b-a=(3,-6,3)-(1,-2,1)=(2,-4,2).故選A.31.兩名女生,4名男生排成一排,則兩名女生不相鄰的排法共有______
種(以數(shù)字作答)答案:由題意,先排男生,再插入女生,可得兩名女生不相鄰的排法共有A44?A25=480種故為:48032.在極坐標(biāo)系中,曲線ρ=4cosθ圍成的圖形面積為()
A.π
B.4
C.4π
D.16答案:C33.若直線的參數(shù)方程為(t為參數(shù)),則該直線的斜率為()
A.
B.2
C.1
D.-1答案:D34.已知在一場比賽中,甲運(yùn)動員贏乙、丙的概率分別為0.8,0.7,比賽沒有平局.若甲分別與乙、丙各進(jìn)行一場比賽,則甲取得一勝一負(fù)的概率是______.答案:根據(jù)題意,甲取得一勝一負(fù)包含兩種情況,甲勝乙負(fù)丙,概率為:0.8×0.3=0.24;甲勝丙負(fù)乙,概率為:0.2×0.7=0.14;∴甲取得一勝一負(fù)的概率為0.24+0.14=0.38故為0.3835.某研究小組在一項(xiàng)實(shí)驗(yàn)中獲得一組數(shù)據(jù),將其整理得到如圖所示的散點(diǎn)圖,下列函數(shù)中,最能近似刻畫y與t之間關(guān)系的是(
)
A.y=2t
B.y=2t2
C.y=t3
D.y=log2t
答案:D36.刻畫數(shù)據(jù)的離散程度的度量,下列說法正確的是(
)
(1)應(yīng)充分利用所得的數(shù)據(jù),以便提供更確切的信息;
(2)可以用多個數(shù)值來刻畫數(shù)據(jù)的離散程度;
(3)對于不同的數(shù)據(jù)集,其離散程度大時,該數(shù)值應(yīng)越小.
A.(1)和(3)
B.(2)和(3)
C.(1)和(2)
D.都正確答案:C37.若把A、B、C、D、E、F、G七人排成一排,則A、B必須相鄰,且C、D不能相鄰的概率是______(結(jié)果用數(shù)值表示).答案:把AB看成一個整體,CD不能相鄰,就用插空法,則有A22A44A25種方法把A、B、C、D、E、F、G七人排成一排,隨便排的種數(shù)A77所以概率為A22A44A25A77=421故為:421.38.函數(shù)f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和為a,則a的值為
______.答案:∵y=ax與y=loga(x+1)具有相同的單調(diào)性.∴f(x)=ax+loga(x+1)在[0,1]上單調(diào),∴f(0)+f(1)=a,即a0+loga1+a1+loga2=a,化簡得1+loga2=0,解得a=12故為:1239.如圖給出的是計(jì)算1+13+15+…+12013的值的一個程序框圖,圖中空白執(zhí)行框內(nèi)應(yīng)填入i=______.答案:∵該程序的功能是計(jì)算1+13+15+…+12013的值,最后一次進(jìn)入循環(huán)的終值為2013,即小于等于2013的數(shù)滿足循環(huán)條件,大于2013的數(shù)不滿足循環(huán)條件,由循環(huán)變量的初值為1,步長為2,故執(zhí)行框中應(yīng)該填的語句是:i=i+2.故為:i+2.40.設(shè)定義域?yàn)閇x1,x2]的函數(shù)y=f(x)的圖象為C,圖象的兩個端點(diǎn)分別為A、B,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)M是C上任意一點(diǎn),向量OA=(x1,y1),OB=(x2,y2),OM=(x,y),滿足x=λx1+(1-λ)x2(0<λ<1),又有向量ON=λOA+(1-λ)OB,現(xiàn)定義“函數(shù)y=f(x)在[x1,x2]上可在標(biāo)準(zhǔn)k下線性近似”是指|MN|≤k恒成立,其中k>0,k為常數(shù).根據(jù)上面的表述,給出下列結(jié)論:
①A、B、N三點(diǎn)共線;
②直線MN的方向向量可以為a=(0,1);
③“函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)1下線性近似”;
④“函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)54下線性近似”.
其中所有正確結(jié)論的番號為______.答案:由ON=λOA+(1-λ)OB,得ON-OB=λ(OA-OB),即BN=λBA故①成立;∵向量OA=(x1,y1),OB=(x2,y2),向量ON=λOA+(1-λ)OB,∴向量ON的橫坐標(biāo)為λx1+(1-λ)x2(0<λ<1),∵OM=(x,y),滿足x=λx1+(1-λ)x2(0<λ<1),∴MN∥y軸∴直線MN的方向向量可以為a=(0,1),故②成立對于函數(shù)y=5x2在[0,1]上,易得A(0,0),B(1,5),所以M(1-λ,5(1-λ)2),N(1-λ,5(1-λ)),從而|MN|=52(1-λ)2-(1-λ))2=25[(λ-12)2+14]2≤54,故函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)54下線性近似”,故④成立,③不成立,故為:①②④41.下表是關(guān)于某設(shè)備的使用年限(年)和所需要的維修費(fèi)用y(萬元)的幾組統(tǒng)計(jì)數(shù)據(jù):
x23456y2.23.85.56.57.0(1)請?jiān)诮o出的坐標(biāo)系中畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
y=
bx+
a;
(3)估計(jì)使用年限為10年時,維修費(fèi)用為多少?
(參考數(shù)值:2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3).答案:(1)根據(jù)所給的數(shù)據(jù),得到對應(yīng)的點(diǎn)的坐標(biāo),寫出點(diǎn)的坐標(biāo),在坐標(biāo)系描出點(diǎn),得到散點(diǎn)圖,(2)∵5i=1xi2=4+9+16+25+36=90
且.x=4,.y=5,n=5,∴?b=112.3-5×4×590-5×16=12.310=1.23?a=5-1.23×4=0.08∴回歸直線為y=1.23x+0.08.(3)當(dāng)x=10時,y=1.23×10+0.08=12.38,所以估計(jì)當(dāng)使用10年時,維修費(fèi)用約為12.38萬元.42.在直角坐標(biāo)系中,畫出下列向量:
(1)|a|=2,a的方向與x軸正方向的夾角為60°,與y軸正方向的夾角為30°;
(2)|a|=4,a的方向與x軸正方向的夾角為30°,與y軸正方向的夾角為120°;
(3)|a|=42,a的方向與x軸正方向的夾角為135°,與y軸正方向的夾角為135°.答案:由題意作出向量a如右圖所示:(1)(2)(3)43.已知直線3x+2y-3=0和6x+my+1=0互相平行,則它們之間的距離是()
A.
B.
C.
D.答案:B44.如圖,PA、PB、DE分別與⊙O相切,若∠P=40°,則∠DOE等于()度.
A.40
B.50
C.70
D.80
答案:C45.若方程Ax2+By2=1表示焦點(diǎn)在y軸上的雙曲線,則A、B滿足的條件是()
A.A>0,且B>0
B.A>0,且B<0
C.A<0,且B>0
D.A<0,且B<0答案:C46.在平面幾何中,四邊形的分類關(guān)系可用以下框圖描述:
則在①中應(yīng)填入______;在②中應(yīng)填入______.答案:由題意知①對應(yīng)的四邊形是一個有一組鄰邊相等的平行四邊形,∴這里是一個菱形,②處的圖形是一個有一條腰和底邊垂直的梯形,∴②處是一個直角梯形,故為:菱形;直角梯形.47.=(2,1),=(3,4),則向量在向量方向上的投影為()
A.
B.
C.2
D.10答案:C48.求證1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2).答案:證明:①當(dāng)n=1時,左邊=2,右邊=13×1×2×3=2,等式成立;②假設(shè)當(dāng)n=k時,等式成立,即1×2+2×3+3×4+…+k(k+1)=13k(k+1)(k+2)則當(dāng)n=k+1時,左邊=13k(k+1)(k+2)+(k+1)(k+2)=(k+1)(k+2)(13k+1)=13(k+1)(k+2)(k+3)即n=k+1時,等式也成立.所以1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2)對任意正整數(shù)都成立.49.已知點(diǎn)P是拋物線y2=2x上的一個動點(diǎn),則點(diǎn)P到點(diǎn)(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和的最小值為()
A.
B.3
C.
D.答案:A50.設(shè)xi,yi
(i=1,2,…,n)是實(shí)數(shù),且x1≥x2≥…≥xn,y1≥y2≥…≥yn,而z1,z2,…,zn是y1,y2,…,yn的一個排列.求證:n
i-1(xi-yi)2≥n
i-1(xi-zi)2.答案:證明:要證ni-1(xi-yi)2≥ni-1(xi-zi)2,只需證
ni=1
yi2-2ni=1
xi?yi≥ni=1
zi2-2ni=1
xi?zi,由于ni=1
yi2=ni=1
zi2,故只需證ni=1
xi?zi≤ni=1
xi?yi
①.而①的左邊為亂序和,右邊為順序和,根據(jù)排序不等式可得①成立,故要證的不等式成立.第2卷一.綜合題(共50題)1.如圖,在四棱柱的上底面ABCD中,AB=DC,則下列向量相等的是()
A.AD與CB
B.OA與OC
C.AC與DB
D.DO與OB
答案:D2.直線l1到l2的角為α,直線l2到l1的角為β,則cos=()
A.
B.
C.0
D.1答案:A3.設(shè)a、b、c均為正數(shù).求證:≥.答案:證明略解析:證明
方法一
∵+3=="(a+b+c)"=[(a+b)+(a+c)+(b+c)]≥
(·+·+·)2=.∴+≥.方法二
令,則∴左邊=≥=.∴原不等式成立.4.已知矩陣A=12-14,向量a=74.
(1)求矩陣A的特征值λ1、λ2和特征向量α1、α2;
(2)求A5α的值.答案:(1)矩陣A的特征多項(xiàng)式為f(λ)=.λ-1-21λ-4.=λ2-5λ+6,令f(λ)=0,得λ1=2,λ2=3,當(dāng)λ1=2時,得α1=21,當(dāng)λ2=3時,得α2=11.(7分)(2)由α=mα1+nα2得2m+n=7m+n=4,得m=3,n=1.∴A5α=A5(3α1+α2)=3(A5α1)+A5α2=3(λ51α1)+λ52α2=3×2521+3511=435339.(15分)5.棱長為1的正方體ABCD-A1B1C1D1的8個頂點(diǎn)都在球O的表面上,E,F(xiàn)分別是棱AA1,DD1的中點(diǎn),則直線EF被球O截得的線段長為()
A.
B.1
C.1+
D.答案:D6.已知曲線C的方程是x2+y2+6ax-8ay=0,那么下列各點(diǎn)中不在曲線C上的是()
A.(0,0)
B.(2a,4a)
C.(3a,3a)
D.(-3a,-a)答案:B7.過拋物線y2=2px(p>0)的焦點(diǎn)F的直線與拋物線相交于M,N兩點(diǎn),自M,N向準(zhǔn)線l作垂線,垂足分別為M1,N1,則∠M1FN1等于()
A.45°
B.60°
C.90°
D.120°答案:C8.已知e1,e2是夾角為60°的單位向量,且a=2e1+e2,b=-3e1+2e2
(1)求a?b;
(2)求a與b的夾角<a,b>.答案:(1)求a?b=(2e1+e2)?
(-3e1+2e2)=
-6e12+e1
?e2+2e22=-6+1×1×cos60°+2=-72.(2)|a|=|2e1+e2|=(2e1+e2)2=4e12+2e1?e2+e22=7同樣地求得|b|=7.所以cos<a,b>=a?b|a||b|=-727
×7=-12,又0<<a,b><π,所以<a,b>=2π3.9.有5組(x,y)的統(tǒng)計(jì)數(shù)據(jù):(1,2),(2,4),(4,5),(3,10),(10,12),要使剩下的數(shù)據(jù)具有較強(qiáng)的相關(guān)關(guān)系,應(yīng)去掉的一組數(shù)據(jù)是()
A.(1,2)
B.(4,5)
C.(3,10)
D.(10,12)答案:C10.若O(0,0),A(1,2)且OA′=2OA.則A′點(diǎn)坐標(biāo)為()A.(1,4)B.(2,2)C.(2,4)D.(4,2)答案:設(shè)A′(x,y),OA′=(x,y),OA=(1,2),∴(x,y)=2(1,2),故選C.11.如圖,PA,PB切⊙O于
A,B兩點(diǎn),AC⊥PB,且與⊙O相交于
D,若∠DBC=22°,則∠APB═______.答案:連接AB根據(jù)弦切角有∠DBC=∠DAB=22°
∠PAC=∠DBA因?yàn)榇怪薄螪CB=90°根據(jù)外角∠ADB=∠DBC+∠DCB=112°
∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故為:44°12.已知x,y的取值如下表所示:
x0134y2.24.34.86.7從散點(diǎn)圖分析,y與x線性相關(guān),且y^=0.95x+a,以此預(yù)測當(dāng)x=2時,y=______.答案:∵從所給的數(shù)據(jù)可以得到.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5∴這組數(shù)據(jù)的樣本中心點(diǎn)是(2,4.5)∴4.5=0.95×2+a,∴a=2.6∴線性回歸方程是y=0.95x+2.6,∴預(yù)測當(dāng)x=2時,y=0.95×2+2.6=4.5故為:4.513.(2的c的?湛江一模)已知⊙O的方程為x2+y2=c,則⊙O上的點(diǎn)到直線x=2+45ty=c-35t(t為參數(shù))的距離的最大值為______.答案:∵直線x=2+45t一=1-35t(t為參數(shù))∴3x+4一=10,∵⊙e的方程為x2+一2=1,圓心為(0,0),設(shè)直線3x+4一=k與圓相切,∴|k|5=1,∴k=±5,∴直線3x+4一=k與3x+4一=10,之間的距離就是⊙e上的點(diǎn)到直線的距離的最大值,∴d=|10±5|5,∴d的最大值是155=3,故為:3.14.設(shè)x1、x2、y1、y2是實(shí)數(shù),且滿足x12+x22≤1,
證明不等式(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).答案:證明略解析:分析:要證原不等式成立,也就是證(x1y1+x2y2-1)2-(x12+x22-1)(y12+y22-1)≥0.(1)當(dāng)x12+x22=1時,原不等式成立.……………3分(2)當(dāng)x12+x22<1時,聯(lián)想根的判別式,可構(gòu)造函數(shù)f(x)=(x12+x22-1)x-2(x1y1+x2y2-1)x+(y12+y22-1)…7分其根的判別式Δ=4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1).………9分由題意x12+x22<1,函數(shù)f(x)的圖象開口向下.又∵f(1)=x12+x22-2x1y1-2x2y2+y12+y22=(x1-y1)2+(x2-y2)2≥0,………11分因此拋物線與x軸必有公共點(diǎn).∴Δ≥0.∴4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1)≥0,…………13分即(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).……………14分15.把10個相同的小正方體,按如圖所示的位置堆放,它的外表含有若干小正方形。如果將圖中標(biāo)有A的一個小正方體搬去,這時外表含有的小正方形個數(shù)與搬去前相比(
)答案:A16.在y=2x,y=log2x,y=x2,y=cosx這四個函數(shù)中,當(dāng)0<x1<x2<1時,使f(x1+x22)>f(x1)+f(x2)2恒成立的函數(shù)的個數(shù)是()A.0B.1C.2D.3答案:當(dāng)0<x1<x2<1時,使f(x1+x22)>f(x1)+f(x2)2恒成立,說明函數(shù)一個遞增的越來越慢的函數(shù)或者是一個遞減的越來越快的函數(shù)或是一個先遞增得越來越慢,再遞減得越來越快的函數(shù)考查四個函數(shù)y=2x,y=log2x,y=x2,y=cosx中,y=log2x在(0,1)是遞增得越來越慢型,函數(shù)y=cosx在(0,1)是遞減得越來越快型,y=2x,y=x2,這兩個函數(shù)都是遞增得越來越快型綜上分析知,滿足條件的函數(shù)有兩個故選C17.若事件與相互獨(dú)立,且,則的值等于A.B.C.D.答案:B解析:事件“”表示的意義是事件與同時發(fā)生,因?yàn)槎呦嗷オ?dú)立,根據(jù)相互獨(dú)立事件同時發(fā)生的概率公式得:.18.已知:如圖,四邊形ABCD內(nèi)接于⊙O,,過A點(diǎn)的切線交CB的延長線于E點(diǎn),求證:AB2=BE·CD。
答案:證明:連結(jié)AC,因?yàn)镋A切⊙O于A,所以∠EAB=∠ACB,因?yàn)?,所以∠ACD=∠ACB,AB=AD,于是∠EAB=∠ACD,又四邊形ABCD內(nèi)接于⊙O,所以∠ABE=∠D,所以△ABE∽△CDA,于是,即AB·DA=BE·CD,所以。19.(考生注意:請?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是______.
B.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=-2sinθ的圓心的極坐標(biāo)是______.
C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長線上一點(diǎn),且DF=CF=22,BE=1,BF=2,若CE與圓相切,則線段CE的長為______.答案:A.∵|x-5|+|x+3|≥10,∴當(dāng)x≥5時,x-5+x+3≥10,∴x≥6;當(dāng)x≤-3時,有5-x+(-x-3)≥10,∴x≤-4;當(dāng)-4<x<5時,有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴該圓的圓心的直角坐標(biāo)為(-1,0),∴其極坐標(biāo)是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依題意,由相交線定理得:AF?FB=DF?FC,∴AF×2=22×22,∴AF=4;又∵CE與圓相切,∴|CE|2=|EB|?|EA|=1×(1+2+4)=7,∴|CE|=7.故為:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.20.對任意實(shí)數(shù)x,y,定義運(yùn)算x*y為:x*y=ax+by+cxy,其中a,b,c為常數(shù),等式右端運(yùn)算為通常的實(shí)數(shù)加法和乘法,現(xiàn)已知1*2=3,2*3=4,并且有一個非零實(shí)數(shù)m,使得對于任意的實(shí)數(shù)都有x*m=x,則d的值為(
)
A.4
B.1
C.0
D.不確定答案:A21.已知均為單位向量,且=,則,的夾角為()
A.
B.
C.
D.答案:C22.如圖,在四邊形ABCD中,++=4,==0,+=4,則(+)的值為()
A.2
B.
C.4
D.
答案:C23.到兩定點(diǎn)A(0,0),B(3,4)距離之和為5的點(diǎn)的軌跡是()
A.橢圓
B.AB所在直線
C.線段AB
D.無軌跡答案:C24.已知按向量平移得到,則
.答案:3解析:由平移公式可得解得.25.設(shè)直線l過點(diǎn)P(-3,3),且傾斜角為56π
(1)寫出直線l的參數(shù)方程;
(2)設(shè)此直線與曲線C:x=2cosθy=4sinθ(θ為參數(shù))交A、B兩點(diǎn),求|PA|?|PB|答案:(1)由于過點(diǎn)(a,b)傾斜角為α的直線的參數(shù)方程為
x=a+t?cosαy=b+t?sinα(t是參數(shù)),∵直線l經(jīng)過點(diǎn)P(-3,3),傾斜角α=5π6,故直線的參數(shù)方程是x=-3-32ty=3+12t(t是參數(shù)).…(5分)(2)因?yàn)辄c(diǎn)A,B都在直線l上,所以可設(shè)它們對應(yīng)的參數(shù)為t1和t1,則點(diǎn)A,B的坐標(biāo)分別為A(-3-32t1,3+12t1),B(2-32t1,3+12t1).把直線L的參數(shù)方程代入橢圓的方程4x2+y2=16整理得到t2+(123+3)t+11613=0①,…(8分)因?yàn)閠1和t2是方程①的解,從而t1t2=11613,由t的幾何意義可知|PA||PB|=|t1||t2|=11613.…(10分)即|PA|?|PB|=11613.26.對某種電子元件進(jìn)行壽命跟蹤調(diào)查,所得樣本頻率分布直方圖如圖,由圖可知:一批電子元件中,壽命在100~300小時的電子元件的數(shù)量與壽命在300~600小時的電子元件的數(shù)量的比大約是()A.12B.13C.14D.16答案:由于已知的頻率分布直方圖中組距為100,壽命在100~300小時的電子元件對應(yīng)的矩形的高分別為:12000,32000則壽命在100~300小時的電子元件的頻率為:100?(12000+32000)=0.2壽命在300~600小時的電子元件對應(yīng)的矩形的高分別為:1400,1250,32000則壽命在300~600小時子元件的頻率為:100?(1400+1250+32000)=0.8則壽命在100~300小時的電子元件的數(shù)量與壽命在300~600小時的電子元件的數(shù)量的比大約是0.2:0.8=14故選C27.用“輾轉(zhuǎn)相除法”求得和的最大公約數(shù)是(
)A.B.C.D.答案:D解析:是和的最大公約數(shù),也就是和的最大公約數(shù)28.甲袋中裝有3個白球和5個黑球,乙袋中裝有4個白球和6個黑球,現(xiàn)從甲袋中隨機(jī)取出一個球放入乙袋中,充分混合后,再從乙袋中隨機(jī)取出一個球放回甲袋中,則甲袋中白球沒有減少的概率為()A.944B.2544C.3544D.3744答案:白球沒有減少的情況有:①抓出黑球,抓入任意球,概率是:58.抓出白球,抓入白球,概率是38×511=1588,故所求事件的概率為58+1588=3544,故選C.29.用反證法證明某命題時,對結(jié)論:“自然數(shù)a,b,c中恰有一個偶數(shù)”正確的假設(shè)為()
A.a(chǎn),b,c都是奇數(shù)
B.a(chǎn),b,c都是偶數(shù)
C.a(chǎn),b,c中至少有兩個偶數(shù)
D.a(chǎn),b,c中至少有兩個偶數(shù)或都是奇數(shù)答案:D30.若直線y=x+b與圓x2+y2=2相切,則b的值為(
)
A.±4
B.±2
C.±
D.±2
答案:B31.直線3x+4y-12=0和3x+4y+3=0間的距離是
______.答案:由兩平行線間的距離公式得直線3x+4y-12=0和3x+4y+3=0間的距離是|-12-3|5=3,故為3.32.若m∈{-2,-1,1,2},n∈{-2,-1,1,2,3},則方程x2m+y2n=1表示的是雙曲線的概率為______.答案:由題意,方程x2m+y2n=1表示雙曲線時,mn<0,m>0,n<0時,有2×2=4種,m<0,n>0時,有2×3=6種∵m,n的取值共有4×5=20種∴方程x2m+y2n=1表示的是雙曲線的概率為4+620=12故為:1233.已知拋物線和雙曲線都經(jīng)過點(diǎn)M(1,2),它們在x軸上有共同焦點(diǎn),拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),則雙曲線的標(biāo)準(zhǔn)方程是______.答案:設(shè)拋物線方程為y2=2px(p>0),將M(1,2)代入y2=2px,得P=2.∴拋物線方程為y2=4x,焦點(diǎn)為F(1,0)由題意知雙曲線的焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0)∴c=1對于雙曲線,2a=||MF1|-|MF2||=22-2∴a=2-1,a2=3-22,b2=22-2∴雙曲線方程為x23-22-y222-2=1.故為:x23-22-y222-2=1.34.若方程x2-3x+mx+m=0的兩根均在(0,+∞)內(nèi),則m的取值范圍是(
)
A.m≤1
B.0<m≤1
C.m>1
D.0<m<1答案:B35.如圖是一個實(shí)物圖形,則它的左視圖大致為()A.
B.
C.
D.
答案:∵左視圖是指由物體左邊向右做正投影得到的視圖,并且在左視圖中看到的線用實(shí)線,看不到的線用虛線,∴該幾何體的左視圖應(yīng)當(dāng)是包含一條從左上到右下的對角線的矩形,并且對角線在左視圖中為實(shí)線,故選D.36.某工廠生產(chǎn)產(chǎn)品,用傳送帶將產(chǎn)品送到下一道工序,質(zhì)檢人員每隔十分鐘在傳送帶的某一個位置取一件檢驗(yàn),則這種抽樣方法是()A.簡單隨機(jī)抽樣B.系統(tǒng)抽樣C.分層抽樣D.非上述答案答案:本題符合系統(tǒng)抽樣的特征:總體中各單位按一定順序排列,根據(jù)樣本容量要求確定抽選間隔,然后隨機(jī)確定起點(diǎn),每隔一定的間隔抽取一個單位的一種抽樣方式.故選B.37.如圖,直線AB經(jīng)過⊙O上的點(diǎn)C,并且OA=OB,CA=CB,⊙O交直線OB于E、D,連接EC、CD.
(1)求證:直線AB是⊙O的切線;
(2)若tan∠CED=12,⊙O的半徑為3,求OA的長.答案:(1)如圖,連接OC,∵OA=OB,CA=CB,∴OC⊥AB.∴AB是⊙O的切線;(2)∵BC是圓O切線,且BE是圓O割線,∴BC2=BD?BE,∵tan∠CED=12,∴CDEC=12.∵△BCD∽△BEC,∴BDBC=CDEC=12,設(shè)BD=x,BC=2x.又BC2=BD?BE,∴(2x)2=x?(x+6),解得x1=0,x2=2,∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=3+2=5.(10分).38.一個十二面體共有8個頂點(diǎn),其中2個頂點(diǎn)處各有6條棱,其它頂點(diǎn)處都有相同的棱,則其它頂點(diǎn)處的棱數(shù)為______.答案:此十二面體如右圖,數(shù)形結(jié)合可得則其它頂點(diǎn)處的棱數(shù)為4故為439.將程序補(bǔ)充完整
INPUT
x
m=xMOD2
IF______THEN
PRINT“x是偶數(shù)”
ELSE
PRINT“x是奇數(shù)”
END
IF
END.答案:本程序的作用是判斷出輸入的數(shù)是奇數(shù)還是偶數(shù),由其邏輯關(guān)系知,若邏輯是“是”則輸出“x是偶數(shù)”,若邏輯是“否”,則輸出“x是奇數(shù)”故判斷條件應(yīng)為m=0故為m=040.已知某人在某種條件下射擊命中的概率是,他連續(xù)射擊兩次,其中恰有一次射中的概率是()
A.
B.
C.
D.答案:C41.已知圓C與直線x-y=0及x-y-4=0都相切,圓心在直線x+y=0上,則圓C的方程為()A.(x+1)2+(y-1)2=2B.(x-1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x+1)2+(y+1)2=2答案:圓心在x+y=0上,圓心的縱橫坐標(biāo)值相反,顯然能排除C、D;驗(yàn)證:A中圓心(-1,1)到兩直線x-y=0的距離是|2|2=2;圓心(-1,1)到直線x-y-4=0的距離是62=32≠2.故A錯誤.故選B.42.直線3x+5y-1=0與4x+3y-5=0的交點(diǎn)是()
A.(-2,1)
B.(-3,2)
C.(2,-1)
D.(3,-2)答案:C43.兩條直線l1:x-3y+2=0與l2:x-y+2=0的夾角的大小是______.答案:由于兩條直線l1:x-3y+2=0與l2:x-y+2=0的斜率分別為33、1,設(shè)兩條直線的夾角為θ,則tanθ=|k2-k11+k2?k1|=|1-331+1×33|=3-33+3=2-3,∴tan2θ=2tanθ1-tan2θ=33,∴2θ=π6,θ=π12,故為π12.44.已知事件A與B互斥,且P(A)=0.3,P(B)=0.6,則P(A|.B)=______.答案:∵P(B)=0.6,∴P(.B)=0.4.又事件A與B互斥,且P(A)=0.3,∴P(A|.B)=P(A)P(.B)=0.30.4=34.故為:34.45.編程序,求和s=1!+2!+3!+…+20!答案:s=0n=1t=1WHILE
n<=20s=s+tn=n+1t=t*nWENDPRINT
sEND46.直線上與點(diǎn)的距離等于的點(diǎn)的坐標(biāo)是_______。答案:,或47.已知雙曲線的頂點(diǎn)到漸近線的距離為2,焦點(diǎn)到漸近線的距離為6,則該雙曲線的離心率為
______.答案:如圖,過雙曲線的頂點(diǎn)A、焦點(diǎn)F分別向其漸近線作垂線,垂足分別為B、C,則:|OF||OA|=|FC||AB|?ca=62=3.故為348.若不共線的平面向量,,兩兩所成角相等,且||=1,||=1,||=3,則|++|等于(
)
A.2
B.5
C.2或5
D.或答案:A49.如圖程序運(yùn)行后輸出的結(jié)果為______.答案:由題意,列出如下表格s
0
5
9
12
n
5
4
3
2當(dāng)n=12時,不滿足“s<10”,則輸出n的值2故為:250.用A、B、C三類不同的元件連接成兩個系統(tǒng)N1、N2當(dāng)元件A、B、C都正常工作時,系統(tǒng)N1正常工作,當(dāng)元件A正常工作且元件B、C至少有一個正常工作時,系統(tǒng)N2正常工作。已知元件A、B、C正常工作的概率依次為0.80,0.90,0.90,分別求系統(tǒng)N1、N2正常工作的概率.
答案:0.792解析:解:分別記三個元件A、B、C能正常工作為事件A、B、C,由題意,這三個事件相互獨(dú)立,系統(tǒng)N1正常工作的概率為P(A·B·C)=P(A)·P(B)·P(C)=0.8′0.9′0.9=0.648系統(tǒng)N2中,記事件D為B、C至少有一個正常工作,則P(D)=1–P()="1–"P()·P()=1–(1–0.9)′(1–0.9)=0.99系統(tǒng)N2正常工作的概率為P(A·D)=P(A)·P(D)=0.8′0.99=0.792。第3卷一.綜合題(共50題)1.從某校隨機(jī)抽取了100名學(xué)生,將他們的體重(單位:kg)數(shù)據(jù)繪制成頻率分布直方圖(如圖),由圖中數(shù)據(jù)可知m=______,所抽取的學(xué)生中體重在45~50kg的人數(shù)是______.答案:由頻率分步直方圖知,(0.02+m+0.06+0.02)×5=1,∴m=0.1,∴所抽取的體重在45~50kg的人數(shù)是0.1×5×100=50人,故為:0.1;502.根據(jù)《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80mg/100mL(不含80)之間,屬于酒后駕車;血液酒精濃度在80mg/100mL(含80)以上時,屬醉酒駕車.據(jù)有關(guān)報(bào)道,2009年8月15日至8
月28日,某地區(qū)查處酒后駕車和醉酒駕車共500人,如圖是對這500人血液中酒精含量進(jìn)行檢測所得結(jié)果的頻率分布直方圖,則屬于醉酒駕車的人數(shù)約為()A.25B.50C.75D.100答案:∵血液酒精濃度在80mg/100ml(含80)以上時,屬醉酒駕車,通過頻率分步直方圖知道屬于醉駕的頻率是(0.005+0.01)×10=0.15,∵樣本容量是500,∴醉駕的人數(shù)有500×0.15=75故選C.3.用冒泡法對43,34,22,23,54從小到大排序,需要(
)趟排序。
A.2
B.3
C.4
D.5答案:A4.(文)對于任意的平面向量a=(x1,y1),b=(x2,y2),定義新運(yùn)算⊕:a⊕b=(x1+x2,y1y2).若a,b,c為平面向量,k∈R,則下列運(yùn)算性質(zhì)一定成立的所有序號是______.
①a⊕b=b⊕a;
②(ka)⊕b=a⊕(kb);
③a⊕(b⊕c)=(a⊕b)⊕c;
④a⊕(b+c)=a⊕b+a⊕c.答案:①a⊕b=(x1+x2,y1y2)=(x2+x1,y2y1)=b⊕a,故正確;②∵(ka)⊕b=(kx1+x2,ky1y2),a⊕(kb)=(x1+kx2,y1ky2),∴(ka)⊕b≠a⊕(kb),故不正確;③設(shè)c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),(a⊕b)⊕c=(x1+x2,y1y2)⊕c=(x1+x2+x3,y1y2y3),∴a⊕(b⊕c)=(a⊕b)⊕c,故正確;④設(shè)c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),a⊕b+a⊕c=(x1+x2,y1y2)+(x1+x3,y1y3)=(2x1+x2+x3,y1(y2+y3)),∴a⊕(b⊕c)≠a⊕b+a⊕c,故不正確.綜上可知:只有①③正確.故為①③.5.已知a=(1-t,1-t,t),b=(2,t,t),則|b-a|的最小值是______.答案:∵a=(1-t,1-t,t),b=(2,t,t),∴向量b-a=(1+t,2t-1,0)可得向量b-a的模|b-a|=(1+t)2+
(2t-1)2+02=5t2-2t+2∵5t2-2t+2=5(t-15)2+95∴當(dāng)且僅當(dāng)t=15時,5t2-2t+2的最小值為95所以當(dāng)t=15時,|b-a|的最小值是95=355故為:3556.一元二次不等式ax2+bx+c≤0的解集是全體實(shí)數(shù)所滿足的條件是(
)
A.
B.
C.
D.答案:D7.設(shè)F1,F(xiàn)2分別是橢圓x24+y2=1的左、右焦點(diǎn),P是第一象限內(nèi)該橢圓上的一點(diǎn),且P、F1、F2三點(diǎn)構(gòu)成一直角三角形,則點(diǎn)P的縱坐標(biāo)為______.答案:由題意,P是第一象限內(nèi)該橢圓上的一點(diǎn),且P、F1、F2三點(diǎn)構(gòu)成一直角三角形,故可分為兩類:①當(dāng)∠P為直角時,設(shè)P的縱坐標(biāo)為y,則F1,F(xiàn)2分別是橢圓x24+y2=1的左、右焦點(diǎn)∴|PF1|+|PF2|=4,|F1F2|=23∵∠P為直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②當(dāng)∠PF2F1為直角時,P的橫坐標(biāo)為3設(shè)P的縱坐標(biāo)為y(y>0),則(3)24+y2=1,∴y=12故為:33
或128.直線y=1與直線y=3x+3的夾角為______答案:l1與l2表示的圖象為(如下圖所示)y=1與x軸平行,y=3x+3與x軸傾斜角為60°,所以y=1與y=3x+3的夾角為60°.故為60°9.將參數(shù)方程化為普通方程為(
)
A.y=x-2
B.y=x+2
C.y=x-2(2≤x≤3)
D.y=x+2(0≤y≤1)答案:C10.在直角坐標(biāo)系中,畫出下列向量:
(1)|a|=2,a的方向與x軸正方向的夾角為60°,與y軸正方向的夾角為30°;
(2)|a|=4,a的方向與x軸正方向的夾角為30°,與y軸正方向的夾角為120°;
(3)|a|=42,a的方向與x軸正方向的夾角為135°,與y軸正方向的夾角為135°.答案:由題意作出向量a如右圖所示:(1)(2)(3)11.為了評價某個電視欄目的改革效果,在改革前后分別從居民點(diǎn)抽取了100位居民進(jìn)行調(diào)查,經(jīng)過計(jì)算K2≈0.99,根據(jù)這一數(shù)據(jù)分析,下列說法正確的是()
A.有99%的人認(rèn)為該欄目優(yōu)秀
B.有99%的人認(rèn)為該欄目是否優(yōu)秀與改革有關(guān)系
C.有99%的把握認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系
D.沒有理由認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系答案:D12.H:x-y+z=2為坐標(biāo)空間中一平面,L為平面H上的一直線.已知點(diǎn)P(2,1,1)為L上距離原點(diǎn)O最近的點(diǎn),則______為L的方向向量.答案:∵x-y+z=2為坐標(biāo)空間中一平面∴平面的一個法向量是n=(1,-1,1)設(shè)直線L的方向向量為d=(2,b,c)∵L在H上,∴d與平面H的法向量n=(1,-1,1)垂直故d?n=0?2-b+c=0∵P(2,1,1)為直線L上距離原點(diǎn)O最近的點(diǎn),∴.OP⊥L故OP?d=0?(2,1,1)?(2,b,c)=0?4+b+c=0解得b=-1,c=-3故為:(2,-1,-3)13.已知圓臺的上下底面半徑分別是2cm、5cm,高為3cm,求圓臺的體積.答案:∵圓臺的上下底面半徑分別是2cm、5cm,高為3cm,∴圓臺的體積V=13×3×(4π+4π?25π+25π)=39πcm3.14.設(shè)a=(-1,1),b=(x,3),c=(5,y),d=(8,6),且b∥d,(4a+d)⊥c.
(1)求b和c;
(2)求c在a方向上的射影;
(3)求λ1和λ2,使c=λ1a+λ2b.答案:(1)∵b∥d,∴6x-24=0.∴x=4.∴b=(4,3).∵4a+d=(4,10),(4a+d
)⊥c,∴5×4+10y=0.∴y=-2.∴c=(5,-2).(2)cos<a,c>=a?c|a|
|c|=-5-22?29=-75858,∴c在a方向上的投影為|c|cos<a,c>=-722.(3)∵c=λ1a+λ2b,∴5=-λ1+4λ2-2=λ1+3λ2,解得λ1=-237,λ2=37.15.已知定直線l及定點(diǎn)A(A不在l上),n為過點(diǎn)A且垂直于l的直線,設(shè)N為l上任意一點(diǎn),線段AN的垂直平分線交n于B,點(diǎn)B關(guān)于AN的對稱點(diǎn)為P,求證:點(diǎn)P的軌跡為拋物線.答案:證明:如圖所示,建立平面直角坐標(biāo)系,并且連結(jié)PA,PN,NB.由題意知PB垂直平分AN,且點(diǎn)B關(guān)于AN的對稱點(diǎn)為P,∴AN也垂直平分PB.∴四邊形PABN為菱形,∴PA=PN.∵AB⊥l,∴PN⊥l.故點(diǎn)P符合拋物線上點(diǎn)的條件:到定點(diǎn)A的距離和到定直線l的距離相等,∴點(diǎn)P的軌跡為拋物線.16.已知AB和CD是曲線(t為參數(shù))的兩條相交于點(diǎn)P(2,2)的弦,若AB⊥CD,且|PA|·|PB|=|PC|·
|PD|,
(Ⅰ)將曲線(t為參數(shù))化為普通方程,并說明它表示什么曲線;
(Ⅱ)試求直線AB的方程。答案:解:(Ⅰ)由y=4t得y2=16t2,而x=4t2,∴y2=4x,它表示拋物線;(Ⅱ)設(shè)直線AB和CD的傾斜角分別為α,β,則直線AB和CD的參數(shù)方程分別為,把①代入y2=4x中,得t2sin2α+(4sinα-4cosα)t-4=0,③依題意知sinα≠0且方程③的判別式Δ=16(sinα-cosα)2+16sin2α>0,∴方程③有兩個不相等的實(shí)數(shù)解t1,t2,則由t的幾何意義知|PA|=|t1|,|PB|=|t2|,∴|PA|·|PB|=|t1t2|=,同理|PC|·|PD|=,由|PA|·|PB|=|PC|·|PD|知,即sin2α=sin2β,∵0≤α,β<π,∴α=π-β,∵AB⊥CD,∴β=α+90°或α=β+90°,∴直線AB的傾斜角∴kAB=1或kAB=-1,故直線AB的方程為y=x或x+y-4=0。17.探測某片森林知道,可采伐的木材有10萬立方米.設(shè)森林可采伐木材的年平均增長率為8%,則經(jīng)過______年,可采伐的木材增加到40萬立方米.答案:設(shè)經(jīng)過n年可采伐本材達(dá)到40萬立方米則有10×(1+8%)n=40即(1+8%)n=4故有n=log1.084,解得n≈19即經(jīng)過19年,可采伐的木材增加到40萬立方米故為1918.拋物線y=-12x2上一點(diǎn)N到其焦點(diǎn)F的距離是3,則點(diǎn)N到直線y=1的距離等于______.答案:∵拋物線y=-12x2化成標(biāo)準(zhǔn)方程為x2=-2y∴拋物線的焦點(diǎn)為F(0,-12),準(zhǔn)線方程為y=12∵點(diǎn)N在拋物線上,到焦點(diǎn)F的距離是3,∴點(diǎn)N到準(zhǔn)線y=12的距離也是3因此,點(diǎn)N到直線y=1的距離等于3+(1-12)=72故為:7219.已知拋物線C:y2=4x的焦點(diǎn)為F,點(diǎn)A在拋物線C上運(yùn)動.
(1)當(dāng)點(diǎn)A,P滿足AP=-2FA,求動點(diǎn)P的軌跡方程;
(2)設(shè)M(m,0),其中m為常數(shù),m∈R+,點(diǎn)A到M的距離記為d,求d的最小值.答案:(1)設(shè)動點(diǎn)P的坐標(biāo)為(x,y),點(diǎn)A的坐標(biāo)為(xA,yA),則AP=(x-xA,y-yA),因?yàn)镕的坐標(biāo)為(1,0),所以FA=(xA-1,yA),因?yàn)锳P=-2FA,所以(x-,y-yA)=-2(xA-1,yA).所以x-xA=-2(xA-1),y-yA=-2yA,所以xA=2-x,yA=-y代入y2=4x,得到動點(diǎn)P的軌跡方程為y2=8-4x;(2)由題意,d=(m-xA)2+yA2=(m-xA)2+4xA=(xA+2-m)2-4-4m∴m-2≤0,即0<m≤2,xA=0時,dmin=m;m-2>0,即m>2,xA=m-2時,dmin=-4-4m.20.已知復(fù)數(shù)z的模為1,且復(fù)數(shù)z的實(shí)部為13,則復(fù)數(shù)z的虛部為______.答案:設(shè)復(fù)數(shù)的虛部是b,∵復(fù)數(shù)z的模為1,且復(fù)數(shù)z的實(shí)部為13,∴(13)2+b2=1,∴b2=89,∴b=±223故為:±22321.若向量=(2,-3,1),=(2,0,3),=(0,2,2),則(+)=()
A.4
B.15
C.7
D.3答案:D22.已知F1(-8,3),F(xiàn)2(2,3),動點(diǎn)P滿足PF1-PF2=10,則點(diǎn)P的軌跡是______.答案:由于兩點(diǎn)間的距離|F1F2|=10,所以滿足條件|PF1|-|PF2|=10的點(diǎn)P的軌跡應(yīng)是一條射線.故為一條射線.23.己知集合A={sinα,cosα},則α的取值范圍是______.答案:由元素的互異性可得sinα≠cosα,∴α≠kπ+π4,k∈z.故α的取值范圍是{α|α≠kπ+π4,k∈z},故為{α|α≠kπ+π4,k∈z}.24.若下列算法的程序運(yùn)行的結(jié)果為S=132,那么判斷框中應(yīng)填入的關(guān)于k的判斷條件是
______.答案:本題考查根據(jù)程序框圖的運(yùn)算,寫出控制條件按照程序框圖執(zhí)行如下:s=1
k=12s=12
k=11s=12×11=132
k=10因?yàn)檩敵?32故此時判斷條件應(yīng)為:K≤10或K<11故為:K≤10或K<1125.集合{1,2,3}的真子集的個數(shù)為()A.5B.6C.7D.8答案:集合的真子集為{1},{2},{3},{1,2},{1,3},{2,3},?.共有7個.故選C.26.如果:在10進(jìn)制中2004=4×100+0×101+0×102+2×103,那么類比:在5進(jìn)制中數(shù)碼2004折合成十進(jìn)制為()A.29B.254C.602D.2004答案:(2004)5=2×54+4=254.故選B.27.用反證法證明命題“在函數(shù)f(x)=x2+px+q中,|f(1)|,|f(2)|,|f(3)|至少有一個不小于”時,假設(shè)正確的是()
A.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有一個小于
B.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有兩個小于
C.假設(shè)|f(1)|,|f(2)|,|f(3)|都不小于
D.假設(shè)|f(1)|,|f(2)|,|f(3)|都小于答案:D28.設(shè)A(1,-1,1),B(3,1,5),則線段AB的中點(diǎn)在空間直角坐標(biāo)系中的位置是()
A.在y軸上
B.在xOy面內(nèi)
C.在xOz面內(nèi)
D.在yOz面內(nèi)答案:C29.如果x2+ky2=2表示焦點(diǎn)在y軸上的橢圓,則實(shí)數(shù)k的取值范圍是
______.答案:根據(jù)題意,x2+ky2=2化為標(biāo)準(zhǔn)形式為x22+y22k=1;根據(jù)題意,其表示焦點(diǎn)在y軸上的橢圓,則有2k>2;解可得0<k<1;故為0<k<1.30.如圖示程序運(yùn)行后的輸出結(jié)果為______.答案:該程序的作用是求數(shù)列ai=2i+3中滿足條件的ai的值∵最終滿足循環(huán)條件時i=9∴ai的值為21故為:2131.已知當(dāng)拋物線型拱橋的頂點(diǎn)距水面2米時,量得水面寬8米.當(dāng)水面升高1米后,水面寬度是______米.答案:由題意,建立如圖所示的坐標(biāo)系,拋物線的開口向下,設(shè)拋物線的標(biāo)準(zhǔn)方程為x2=-2py(p>0)∵頂點(diǎn)距水面2米時,量得水面寬8米∴點(diǎn)(4,-2)在拋物線上,代入方程得,p=4∴x2=-8y當(dāng)水面升高1米后,y=-1代入方程得:x=±22∴水面寬度是42米故為:4232.某學(xué)校要從5名男生和2名女生中選出2人作為上海世博會志愿者,若用隨機(jī)變量ξ表示選出的志愿者中女生的人數(shù),則數(shù)學(xué)期望Eξ______(結(jié)果用最簡分?jǐn)?shù)表示).答案:用隨機(jī)變量ξ表示選出的志愿者中女生的人數(shù),ξ可取0,1,2,當(dāng)ξ=0時,表示沒有選到女生;當(dāng)ξ=1時,表示選到一個女生;當(dāng)ξ=2時,表示選到2個女生,∴P(ξ=0)=C25C27=1021,P(ξ=1)=C15C12C27=1021,P(ξ=2)=C22C27=121,∴Eξ=0×1021+1×1021+2×121=47.故為:4733.設(shè)全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},則CU(S∪T)等于()A.φB.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}答案:∵S∪T={1,3,5,6},∴CU(S∪T)={2,4,7,8}.故選B.34.(幾何證明選講選做題)
如圖,已知PA是圓O的切線,切點(diǎn)為A,直線PO交圓O于B,C兩點(diǎn),AC=2,∠PAB=120°,則切線PA的長度等于______.答案:∵∠PAB=120°,∴優(yōu)弧ACB=240°,∴劣弧AB=120°,∴∠A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DDM:2024年第二季度游戲投資報(bào)告 Games Investment Review -Q2 2024 EXECUTIVE SUMMARY REPORT
- 2023-2024羅戈物流行業(yè)年報(bào)-年報(bào)解讀3:供應(yīng)鏈物流綠色化
- 2024年學(xué)生會個人總結(jié)參考模板(四篇)
- 2024年學(xué)校禁煙管理制度范例(二篇)
- 2024年商場店鋪轉(zhuǎn)讓合同標(biāo)準(zhǔn)范本(二篇)
- 2024年大學(xué)班長工作計(jì)劃范本(二篇)
- 2024年商業(yè)房屋租賃合同范本(二篇)
- 2024年實(shí)習(xí)總結(jié)(三篇)
- 2024年委托買賣合同標(biāo)準(zhǔn)范本(二篇)
- 2024年小區(qū)車位租賃合同范本(二篇)
- 醫(yī)用耗材專項(xiàng)整治實(shí)施方案
- 中藥材及中藥飲片知識培訓(xùn)培訓(xùn)課件
- 出租汽車、網(wǎng)約車駕駛員從業(yè)資格證申請表
- 首次入院護(hù)理評估單相關(guān)的量表及存在問題講解學(xué)習(xí)
- 醫(yī)藥代表初級培訓(xùn)課程課件
- 2023年上海市松江區(qū)城管協(xié)管員招聘筆試題庫及答案解析
- SAT長篇閱讀練習(xí)題精選14篇(附答案)
- 中心靜脈導(dǎo)管(CVC)課件
- 法院重大事項(xiàng)請示報(bào)告制度
- 神奇的“魯班鎖”課件(共17張ppt) 綜合實(shí)踐活動七年級上冊 沈陽社版
- 高一年級學(xué)生-學(xué)習(xí)養(yǎng)成習(xí)慣課件
評論
0/150
提交評論