2023年安順職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析_第1頁
2023年安順職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析_第2頁
2023年安順職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析_第3頁
2023年安順職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析_第4頁
2023年安順職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析_第5頁
已閱讀5頁,還剩41頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年安順職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.一個類似于細胞分裂的物體,一次分裂為二,兩次分裂為四,如此繼續(xù)分裂有限多次,而隨機終止.設分裂n次終止的概率是(n=1,2,3,…).記X為原物體在分裂終止后所生成的子塊數(shù)目,則P(X≤10)=()

A.

B.

C.

D.以上均不對答案:A2.直線x3+y4=t被兩坐標軸截得的線段長度為1,則t的值是

______.答案:令y=0,得:x=3t;令x=0,得:y=4t,所以被兩坐標軸截得的線段長度為(3t)2+(4t)2=|5t|=1所以t=±15故為±153.已知函數(shù)f(x)對其定義域內(nèi)任意兩個實數(shù)a,b,當a<b時,都有f(a)<f(b).試用反證法證明:函數(shù)f(x)的圖象與x軸至多有一個交點.答案:證明:假設函數(shù)f(x)的圖象與x軸至少有兩個交點,…(2分)(1)若f(x)的圖象與x軸有兩個交點,不妨設兩個交點的橫坐標分別為x1,x2,且x1<x2,…(5分)由已知,函數(shù)f(x)對其定義域內(nèi)任意實數(shù)x1,x2,當x1<x2時,有f(x1)<f(x2).…(7分)又根據(jù)假設,x1,x2是函數(shù)f(x)的兩個零點,所以,f(x1)=f(x2)=0,…(9分)這與f(x1)<f(x2)矛盾,…(10分)所以,函數(shù)f(x)的圖象不可能與x軸有兩個交點.…(11分)(2)若f(x)的圖象與x軸交點多于兩個,可同理推出矛盾,…(12分)所以,函數(shù)f(x)的圖象不可能與x軸有兩個以上交點.綜上,函數(shù)f(x)的圖象與x軸至多有一個交點…(14分)4.已知a,b,c是空間的一個基底,且實數(shù)x,y,z使xa+yb+zc=0,則x2+y2+z2=______.答案:∵a,b,c是空間的一個基底∴a,b,c兩兩不共線∵xa+yb+zc=0∴x=y=z=0∴x2+y2+z2=0故為:05.一個單位有職工800人,其中具有高級職稱的160人,具有中級職稱的320人,具有初級職稱的200人,其余人員120人,為了解職工收入情況,決定采用分層抽樣的方法從中抽取樣本.若樣本中具有初級職稱的職工為10人,則樣本容量為()

A.10

B.20

C.40

D.50答案:C6.已知點M在z軸上,A(1,0,2),B(1,-3,1),且|MA|=|MB|,則點M的坐標是

______.答案:∵點M在z軸上,∴設點M的坐標為(0,0,z)又|MA|=|MB|,由空間兩點間的距離公式得:12+02+(z-2)2=12+32+(z-1)2解得:z=-3.故點M的坐標是(0,0,-3).故為:(0,0,-3).7.隨機變量ξ的分布列為k=1、2、3、4,c為常數(shù),則P(<ξ<)的值為()

A.

B.

C.

D.答案:B8.已知0<k<4,直線l1:kx-2y-2k+8=0和直線l:2x+k2y-4k2-4=0與兩坐標軸圍成一個四邊形,則使得這個四邊形面積最小的k值為______.答案:如圖所示:直線l1:kx-2y-2k+8=0即k(x-2)-2y+8=0,過定點B(2,4),與y軸的交點C(0,4-k),直線l:2x+k2y-4k2-4=0,即2x-4+k2(y-4)=0,過定點(2,4),與x軸的交點A(2k2+2,0),由題意知,四邊形的面積等于三角形ABD的面積和梯形OCBD的面積之和,故所求四邊形的面積為12×4×(2k2+2-2)+2×(4-k+4)2=4k2-k+8,∴k=18時,所求四邊形的面積最小,故為18.9.求圓Cx=3+4cosθy=-2+4sinθ(θ為參數(shù))的圓心坐標,和圓C關于直線x-y=0對稱的圓C′的普通方程.答案:圓Cx=3+4cosθy=-2+4sinθ(θ為參數(shù))

(x-3)2+(y+2)2=16,表示圓心坐標(3,-2),半徑等于4的圓.C(3,-2)關于直線x-y=0對稱的點C′(-2,3),半徑還是4,故圓C′的普通方程(x+2)2+(y-3)2=16.10.已知圓錐的母線長與底面半徑長之比為3:1,一個正方體有四個頂點在圓錐的底面內(nèi),另外的四個頂點在圓錐的側(cè)面上(如圖),則圓錐與正方體的表面積之比為(

A.π:1

B.3π:1

C.3π:2

D.3π:4

答案:D11.已知點A(-3,0),B(3,0),動點C到A、B兩點的距離之差的絕對值為2,點C的軌跡與直線

y=x-2交于D、E兩點,求線段DE的中點坐標及其弦長DE.答案:∵|CB|-|CA|=2<23=|AB|,∴點C的軌跡是以A、B為焦點的雙曲線,2a=2,2c=23,∴a=1,c=3,∴b=2,∴點C的軌跡方程為x2-y22=1.把直線

y=x-2代入x2-y22=1化簡可得x2+4x-6=0,△=16-4(-6)=40>0,設D、E兩點的坐標分別為(x1,y1

)、(x2,y2),∴x1+x2=-4,x1?x2=-6.∴線段DE的中點坐標為M(-2,4),DE=1+1?|x1-x2|=2?(x1

+x2)2-4x1

?x2

=216-4(-6)=45.12.若函數(shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且y=f(x)的圖象過點(2,1),則f(x)=______.答案:因為函數(shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且y=f(x)的圖象過點(2,1),所以函數(shù)y=ax經(jīng)過(1,2),所以a=2,所以函數(shù)y=f(x)=log2x.故為:log2x.13.點P(1,3,5)關于平面xoz對稱的點是Q,則向量=()

A.(2,0,10)

B.(0,-6,0)

C.(0,6,0)

D.(-2,0,-10)答案:B14.若點A分有向線段所成的比是2,則點C分有向線段所成的比是()

A.

B.3

C.-2

D.-3答案:D15.若集合A={x|x2-4x-5<0,x∈Z},B={x|y=log0.5x>-3,x∈Z},記x0為拋擲一枚骰子出現(xiàn)的點數(shù),則x0∈A∩B的概率等于______.答案:由x2-4x-5<0,x∈Z,解得:-1<x<5,x∈Z,∴x=0,1,2,3,4.即A={0,1,2,3,4},B={x|y=log0.5x>-3,x∈Z}={1,2,3,4,5,6,7},∴A∩B={1,2,3,4},而x0為拋擲一枚骰子出現(xiàn)的點數(shù)可能有6種,∴P=46=23,故為:23.16.不等式|3x-2|>4的解集是______.答案:由|3x-2|>4可得

3x-2>4

或3x-2<-4,∴x>2或x<-23.故為:(-∞,-23)∪(2,+∞).17.若f(x)=ax(a>0且a≠1)的反函數(shù)g(x)滿足:g()<0,則函數(shù)f(x)的圖象向左平移一個單位后的圖象大致是下圖中的()

A.

B.

C.

D.

答案:B18.將一枚均勻硬幣

隨機擲20次,則恰好出現(xiàn)10次正面向上的概率為()

A.

B.

C.

D.答案:D19.到兩定點A(0,0),B(3,4)距離之和為5的點的軌跡是()

A.橢圓

B.AB所在直線

C.線段AB

D.無軌跡答案:C20.“神六”上天并順利返回,讓越來越多的青少年對航天技術(shù)發(fā)生了興趣.某學校科技小組在計算機上模擬航天器變軌返回試驗,設計方案

如圖:航天器運行(按順時針方向)的軌跡方程為x2100+y225=1,變軌(航天器運行軌跡由橢圓變?yōu)閽佄锞€)后返回的軌跡是以y軸為

對稱軸、M(0,647)為頂點的拋物線的實線部分,降落點為D(8,0),觀測點A(4,0)、B(6,0)同時跟蹤航天器.試問:當航天器在x軸上方時,觀測點A、B測得離航天器的距離分別為______時航天器發(fā)出變軌指令.答案:設曲線方程為y=ax2+647,由題意可知,0=a?64+647.∴a=-17,∴曲線方程為y=-17x2+647.設變軌點為C(x,y),根據(jù)題意可知,拋物線方程與橢圓方程聯(lián)立,可得4y2-7y-36=0,y=4或y=-94(不合題意,舍去).∴y=4.∴x=6或x=-6(不合題意,舍去).∴C點的坐標為(6,4),|AC|=25,|BC|=4.故為:25、4.21.若數(shù)據(jù)x1,x2,…,xn的方差為3,數(shù)據(jù)ax1+b,ax2+b,…,axn+b的標準差為23,則實數(shù)a的值為______.答案:數(shù)據(jù)ax1+b,ax2+b,…,axn+b的方差是數(shù)據(jù)x1,x2,…,xn的方差的a2倍;則數(shù)據(jù)ax1+b,ax2+b,…,axn+b的方差為3a2,標準差為3a2=23解得a=±2故為:±222.已知a,b,c,d都是正數(shù),S=aa+b+d+bb+c+a+cc+d+a+dd+a+c,則S的取值范圍是______.答案:∵a,b,c,d都是正數(shù),∴S=aa+b+d+bb+c+a+cc+d+a+dd+a+c>aa+b+c+d+ba+b+c+d+ca+b+c+d+da+b+c+d=a+b+c+da+b+c+d=1;S=aa+b+d+bb+c+a+cc+d+a+dd+a+c<aa+b+bb+a+cc+d+dd+c=2∴1<S<2.故為:(1,2)23.如圖,△ABC中,AD=2DB,AE=3EC,CD與BE交于F,若AF=xAB+yAC,則()A.x=13,y=12B.x=14,y=13C.x=37,y=37D.x=25,y=920答案:過點F作FM∥AC、FN∥AB,分別交AB、AC于點M、N∵FM∥AC,∴FMAC=DMAD且FMAE=BMAB∵AD=2DB,AE=3EC,∴AD=23AB,AE=34AC.由此可得AM=13AB同理可得AN=12AC∵四邊形AMFN是平行四邊形∴由向量加法法則,得AF=13AB+12AC∵AF=xAB+yAC,∴根據(jù)平面向量基本定理,可得x=13,y=12故選:A24.如圖,把橢圓x225+y216=1的長軸AB分成8等份,過每個分點作x軸的垂線交橢圓的上半部分于P1,P2,P3,P4,P5,P6,P7七個點,F(xiàn)是橢圓的一個焦點,則|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=______.答案:如圖,把橢圓x225+y216=1的長軸AB分成8等份,過每個分點作x軸的垂線交橢圓的上半部分于P1,P2,P3,P4,P5,P6,P7七個點,F(xiàn)是橢圓的一個焦點,則根據(jù)橢圓的對稱性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余兩對的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故為35.25.如圖,⊙O與⊙O′交于

A,B,⊙O的弦AC與⊙O′相切于點A,⊙O′的弦AD與⊙O相切于A點,則下列結(jié)論中正確的是()

A.∠1>∠2

B.∠1=∠2

C.∠1<∠2

D.無法確定

答案:B26.若關于x的方程x2+ax+a2-1=0有一正根和一負根,則a的取值范圍為______.答案:令f(x)=x2+ax+a2-1,∴二次函數(shù)開口向上,若方程有一正一負根,則只需f(0)<0,即a2-1<0,∴-1<a<1.故為:-1<a<1.27.如圖,AB是平面a的斜線段,A為斜足,若點P在平面a內(nèi)運動,使得△ABP的面積為定值,則動點P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:本題其實就是一個平面斜截一個圓柱表面的問題,因為三角形面積為定值,以AB為底,則底邊長一定,從而可得P到直線AB的距離為定值,分析可得,點P的軌跡為一以AB為軸線的圓柱面,與平面α的交線,且α與圓柱的軸線斜交,由平面與圓柱面的截面的性質(zhì)判斷,可得P的軌跡為橢圓.28.圓x2+y2=1上的點到直線x=2的距離的最大值是

______.答案:根據(jù)題意,圓上點到直線距離最大值為:半徑+圓心到直線的距離.而根據(jù)圓x2+y2=1圓心為(0,0),半徑為1∴dmax=1+2=3故為:329.已知點P是長方體ABCD-A1B1C1D1底面ABCD內(nèi)一動點,其中AA1=AB=1,AD=2,若A1P與A1C所成的角為30°,那么點P在底面的軌跡為()A.圓弧B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:如圖,∵A1P與A1C所成的角為30°,∴P點在以A1C為軸,母線與軸的夾角為30度的圓錐面上,在直角三角形A1CC1中,A1C1=3,CC1=1,∴∠C1AC1=30°當截面ABCD與圓錐的母線A1C1平行時,截得的圖形是拋物線,故點P在底面的軌跡為拋物線的一部分.故選D.30.指數(shù)函數(shù)y=ax的圖象經(jīng)過點(2,16)則a的值是()A.14B.12C.2D.4答案:設指數(shù)函數(shù)為y=ax(a>0且a≠1)將(2,16)代入得16=a2解得a=4所以y=4x故選D.31.若將方程|(x-4)2+y2-(x+4)2+y2|=6化簡為x2a2-y2b2=1的形式,則a2-b2=______.答案:方程|(x-4)2+y2-(x+4)2+y2|=6,表示點(x,y)到(4,0),(-4,0)兩點距離差的絕對值為6,∴軌跡為以(4,0),(-4,0)為焦點的雙曲線,方程為x29-y27=1∴a2-b2=2故為:232.圓C1:x2+y2-6x+6y-48=0與圓C2:x2+y2+4x-8y-44=0公切線的條數(shù)是()

A.0條

B.1條

C.2條

D.3條答案:C33.已知向量a=(0,-1,1),b=(4,1,0),|λa+b|=57且λ>0,則λ=______.答案:∵λa+b=λ(0,-1,1)+(4,1,0)=(4,1-λ,λ),|λa+b|=57,∴42+(1-λ)2+λ2=57,化為λ2-λ-20=0,又λ>0,解得λ=5.故為5.34.如圖所示的多面體,它的正視圖為直角三角形,側(cè)視圖為矩形,俯視圖為直角梯形(尺寸如圖所示)

(1)求證:AE∥平面DCF;

(2)若M是AE的中點,AB=3,∠CEF=90°,求證:平面AEF⊥平面BMC.答案:(1)證法1:過點E作EG⊥CF交CF于G,連結(jié)DG,可得四邊形BCGE為矩形,又四邊形ABCD為矩形,所以AD=EG,從而四邊形ADGE為平行四邊形故AE∥DG

因為AE?平面DCF,DG?平面DCF,所以AE∥平面DCF

證法2:(面面平行的性質(zhì)法)因為四邊形BEFC為梯形,所以BE∥CF.又因為BE?平面DCF,CF?平面DCF,所以BE∥平面DCF.因為四邊形ABCD為矩形,所以AB∥DC.同理可證AB∥平面DCF.又因為BE和AB是平面ABE內(nèi)的兩相交直線,所以平面ABE∥平面DCF.又因為AE?平面ABE,所以AE∥平面DCF.(2)在Rt△EFG中,∠CEF=90°,EG=3,EF=2.∴∠GEF=30°,GF=12EF=1.在RT△CEG中,∠CEG=60°,∴CG=EGtan60°=3,BE=3.∵AB=3,M是AE中點,∴BM⊥AE,由側(cè)視圖是矩形,俯視圖是直角梯形,得BC⊥AB,BC⊥BE,∵AB∩BM=B,∴AE⊥平面BCM又∵AE?平面ACE,∴平面ACE⊥平面BCM.35.如圖所示的方格紙中有定點O,P,Q,E,F(xiàn),G,H,則=()

A.

B.

C.

D.

答案:C36.以下程序輸入2,3,4運行后,輸出的結(jié)果是()

INPUT

a,b,c

a=b

b=c

c=a

PRINT

a,b,c.

A.234

B.324

C.343

D.342答案:C37.紙制的正方體的六個面根據(jù)其方位分別標記為上、下、東、南、西、北.現(xiàn)在沿該正方體的一些棱將正方體剪開、外面朝上展平,得到右側(cè)的平面圖形,則標“△”的面的方位()

A.南

B.北

C.西

D.下

答案:B38.用0、1、2、3、4、5這6個數(shù)字,可以組成無重復數(shù)字的五位偶數(shù)的個數(shù)為______(用數(shù)字作答).答案:末尾是0時,有A55=120種;末尾不是0時,有2種選擇,首位有4種選擇,中間有A44,故有2×4×A44=192種故共有120+192=312種.故為:31239.一個長方體共一頂點的三個面的面積分別是2、3、6,這個長方體的體積是()A.6B.6C.32D.23答案:可設長方體同一個頂點上的三條棱長分別為a,b,c,則有ab=2、bc=3、ca=6,解得:a=2,b=1,c=3故這個長方體的體積是6故為B40.(參數(shù)方程與極坐標)已知F是曲線x=2cosθy=1+cos2θ(θ∈R)的焦點,M(12,0),則|MF|的值是

______.答案:y=1+cos2θ=2cos2θ=2?(x2)2化簡得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故為:2241.若函數(shù)f(x)=x+1的值域為(2,3],則函數(shù)f(x)的定義域為______.答案:∵f(x)=x+1的值域為(2,3],∴2<x+1≤3∴1<x≤2故為:(1,2]42.直線y=2的傾斜角和斜率分別是()A.90°,斜率不存在B.90°,斜率為0C.180°,斜率為0D.0°,斜率為0答案:由題意,直線y=2的傾斜角是0°,斜率為0故選D.43.已知D、E、F分別是△ABC的邊BC、CA、AB的中點,且,則下列命題中正確命題的個數(shù)為(

①;

③;

A.1

B.2

C.3

D.4

答案:C44.已知a=log132,b=(13)12,c=(23)12,則a,b,c大小關系為______.答案:∵a=log132<log131=0,又∵函數(shù)y=x12在(0,+∞)是增函數(shù),∴(23)12>(13)12>0.所以,c>b>a.故為c>b>a.45.在空間直角坐標系O-xyz中,已知=(1,2,3),=(2,1,2),=(1,1,2),點Q在直線OP上運動,則當取得最小值時,點Q的坐標為()

A.(,,)

B.(,,)

C.(,,)

D.(,,)答案:C46.計算機的程序設計語言很多,但各種程序語言都包含下列基本的算法語句:______,______,______,______,______.答案:計算機的程序設計語言很多,但各種程序語言都包含下列基本的算法語句:輸入語句,輸出語句,賦值語句,條件語句,循環(huán)語句.故為:輸入語句,輸出語句,賦值語句,條件語句,循環(huán)語句.47.在平面直角坐標系xoy中,曲線C1的參數(shù)方程為x=4cosθy=2sinθ(θ為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,得曲線C2的極坐標方程為ρ=2cosθ-4sinθ(ρ>0).

(Ⅰ)化曲線C1、C2的方程為普通方程,并說明它們分別表示什么曲線;

(Ⅱ)設曲線C1與x軸的一個交點的坐標為P(m,0)(m>0),經(jīng)過點P作曲線C2的切線l,求切線l的方程.答案:(Ⅰ)曲線C1:x216+y24=1;曲線C2:(x-1)2+(y+2)2=5;(3分)曲線C1為中心是坐標原點,焦點在x軸上,長半軸長是4,短半軸長是2的橢圓;曲線C2為圓心為(1,-2),半徑為5的圓(2分)(Ⅱ)曲線C1:x216+y24=1與x軸的交點坐標為(-4,0)和(4,0),因為m>0,所以點P的坐標為(4,0),(2分)顯然切線l的斜率存在,設為k,則切線l的方程為y=k(x-4),由曲線C2為圓心為(1,-2),半徑為5的圓得|k+2-4k|k2+1=5,解得k=3±102,所以切線l的方程為y=3±102(x-4)(3分)48.已知θ是三角形內(nèi)角且sinθ+cosθ=,則表示答案:C49.從1,2,…,9這九個數(shù)中,隨機抽取3個不同的數(shù),則這3個數(shù)的和為偶數(shù)的概率是()A.59B.49C.1121D.1021答案:基本事件總數(shù)為C93,設抽取3個數(shù),和為偶數(shù)為事件A,則A事件數(shù)包括兩類:抽取3個數(shù)全為偶數(shù),或抽取3數(shù)中2個奇數(shù)1個偶數(shù),前者C43,后者C41C52.∴A中基本事件數(shù)為C43+C41C52.∴符合要求的概率為C34+C14C25C39=1121.50.已知a>0,且a≠1,解關于x的不等式:

答案:①當a>1時,原不等式解為{x|0<x≤loga2②當0<a<1時,原不等式解為{x|loga2≤x<0解析:原不等式等價于原不等式同解于7分由①②得1<ax<4,由③得從而1<ax≤210分①當a>1時,原不等式解為{x|0<x≤loga2②當0<a<1時,原不等式解為{x|loga2≤x<0第2卷一.綜合題(共50題)1.將一個等腰梯形繞著它的較長的底邊所在的直線旋轉(zhuǎn)一周,所得的幾何體是(

)答案:B2.設向量a=(32,sinθ),b=(cosθ,13),其中θ∈(0,π2),若a∥b,則θ=______.答案:若a∥b,則sinθcosθ=12,即2sinθcosθ=1,∴sin2θ=1,又θ∈(0,π2),∴θ=π4.故為:π4.3.已知某人在某種條件下射擊命中的概率是,他連續(xù)射擊兩次,其中恰有一次射中的概率是()

A.

B.

C.

D.答案:C4.等邊三角形ABC中,P在線段AB上,且AP=λAB,若CP?AB=PA?PB,則實數(shù)λ的值是______.答案:設等邊三角形ABC的邊長為1.則|AP|=λ|AB|=λ,|PB|=1-λ.(0<λ<1)CP?AB=(CA+AP)?AB=CA?AB+

AP?AB=PA?PB,所以1×1×cos120°+λ×1×cos0°=λ×(1-λ)cos180°.化簡-12+λ=-λ(1-λ),整理λ2-2λ+12=0,解得λ=2-22(λ=2+22>1舍去)故為:2-225.設P是邊長為23的正△ABC內(nèi)的一點,x,y,z是P到三角形三邊的距離,則x+y+z的最大值為______.答案:正三角形的邊長為a=23,可得它的高等于32a=3∵P是正三角形內(nèi)部一點∴點P到三角形三邊的距離之和等于正三角形的高,即x+y+z=3∵(x+y+z)2=(1×x+1×y+1×z)2≤(1+1+1)(x+y+z)=9∴x+y+z≤3,當且僅當x=y=z=1時,x+y+z的最大值為3故為:36.如圖所示的圓盤由八個全等的扇形構(gòu)成,指針繞中心旋轉(zhuǎn),可能隨機停止,則指針停止在陰影部分的概率為()A.12B.14C.16D.18答案:如圖:轉(zhuǎn)動轉(zhuǎn)盤被均勻分成8部分,陰影部分占1份,則指針停止在陰影部分的概率是P=18.故選D.7.若向量a=(2,-3,3)是直線l的方向向量,向量b=(1,0,0)是平面α的法向量,則直線l與平面α所成角的大小為______.答案:設直線l與平面α所成角為θ,則sinθ=|cos<a,b>|=|a?b||a|

|b|=222+(-3)2+(3)2×1=12,∵θ∈[0,π2],∴θ=π6,即直線l與平面α所成角的大小為π6.故為π6.8.在四邊形ABCD中,若=+,則()

A.ABCD為矩形

B.ABCD是菱形

C.ABCD是正方形

D.ABCD是平行四邊形答案:D9.已知圓錐的母線長為5,底面周長為6π,則圓錐的體積是______.答案:圓錐的底面周長為6π,所以圓錐的底面半徑為3;圓錐的高為4所以圓錐的體積為13×π32×4=12π故為12π.10.設集合A={x|},則A∩B等于(

A.

B.

C.

D.答案:B11.如圖是2010年青年歌手大獎賽中,七位評委為甲、乙兩名選手打出的分數(shù)的莖葉圖(其中m為數(shù)字0~9中的

一個),去掉一個最高分和一個最低分后,甲、乙兩名選手得分的平均數(shù)分別為a1,a2,則一定有()A.a(chǎn)1>a2B.a(chǎn)2>a1C.a(chǎn)1=a2D.a(chǎn)1,a2的大小與m的值有關答案:由題意知去掉一個最高分和一個最低分以后,兩組數(shù)據(jù)都有五個數(shù)據(jù),代入數(shù)據(jù)可以求得甲和乙的平均分a1=1+4+5×35+80=84,a2=4×3+6+75+80=85,∴a2>a1故選B12.某種產(chǎn)品的廣告費支出x與銷售額y(單位:萬元)之間有如下一組數(shù)據(jù):

x24568y3040605070若y與x之間的關系符合回歸直線方程y=6.5x+a,則a的值是()A.17.5B.27.5C.17D.14答案:由表格得.x=5,.y=50.

∵y關于x的線性回歸方程為y=6.5x+a,∴50=6.5×5+a,∴a=17.5.故選A.13.點B是點A(1,2,3)在坐標平面yOz內(nèi)的正投影,則|OB|等于()

A.

B.

C.

D.答案:B14.設i為虛數(shù)單位,若(x+i)(1-i)=y,則實數(shù)x,y滿足()

A.x=-1,y=1

B.x=-1,y=2

C.x=1,y=2

D.x=1,y=1答案:C15.“a=0”是“復數(shù)z=a+bi(a,b∈R)為純虛數(shù)”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:依題意,復數(shù)z=a+bi(a,b∈R)為純虛數(shù),?a=0且b≠0,∴“a=0”是“復數(shù)z=a+bi(a,b∈R)為純虛數(shù)”的必要不充分條件,故選B.16.拋物線y=ax2(其中a>0)的焦點坐標是(

A.(,0)

B.(0,)

C.(,0)

D.(0,)答案:D17.9、從4臺甲型和5臺乙型電視機中任意取出3臺,其中至少要有甲型與乙型電視機各1臺,則不同的取法共有()

A.140種

B.84種

C.70種

D.35種答案:C18.用數(shù)學歸納法證明不等式:1n+1n+1+1n+2+…+1n2>1(n∈N*且n.1).答案:證明:(1)當n=2時,左邊=12+13+14=1312>1,∴n=2時成立(2分)(2)假設當n=k(k≥2)時成立,即1k+1k+1+1k+2+…+1k2>1那么當n=k+1時,左邊=1k+1+1k+2+1k+3+…+1(k+1)2=1k+1k+1+1k+2+1k+3+…+1k2+2k+1(k+1)2-1k>1+1k2+1+1k2+2+…+1(k+1)2-1k>1+(2k+1)?1(k+1)2-1k>1+k2-k-1k2+2k+1>1∴n=k+1時也成立(7分)根據(jù)(1)(2)可得不等式對所有的n>1都成立(8分)19.如圖,AB,CD是半徑為a的圓O的兩條弦,他們相交于AB的中點P,PD=2a3,∠OAP=30°,則CP=______.答案:因為點P是AB的中點,由垂徑定理知,OP⊥AB.在Rt△OPA中,BP=AP=acos30°=32a.由相交弦定理知,BP?AP=CP?DP,即32a?32a=CP?23a,所以CP=98a.故填:98a.20.如圖為某平面圖形用斜二測畫法畫出的直觀圖,則其原來平面圖形的面積是(

A.4

B.

C.

D.8

答案:A21.如圖,正方體ABCD-A1B1C1D1的棱長為3,點M在AB上,且AM=13AB,點P在平面ABCD上,且動點P到直線A1D1的距離與P到點M的距離相等,在平面直角坐標系xAy中,動點P的軌跡方程是______.答案:作PN⊥AD,則PN⊥面A1D1DA,作NH⊥A1D1,N,H為垂足,由三垂線定理可得PH⊥A1D1.以AD,AB,AA1為x軸,y軸,z軸,建立空間坐標系,設P(x,y,0),由題意可得M(0,1,0),H(x,0,3),|PM|=|pH|,∴x2+(y-1)2=y2+9,整理,得x2=2y+8.故為:x2=2y+8.22.已知復數(shù)z0=1-mi(m>0),z=x+yi和,其中x,y,x',y'均為實數(shù),i為虛數(shù)單位,且對于任意復數(shù)z,有w=.z0?.z,|w|=2|z|.

(Ⅰ)試求m的值,并分別寫出x'和y'用x、y表示的關系式:

(Ⅱ)將(x、y)用為點P的坐標,(x'、y')作為點Q的坐標,上述關系式可以看作是坐標平面上點的一個變換:它將平面上的點P變到這一平面上的點Q.已知點P經(jīng)該變換后得到的點Q的坐標為(3,2),試求點P的坐標;

(Ⅲ)若直線y=kx上的任一點經(jīng)上述變換后得到的點仍在該直線上,試求k的值.答案:(I)由題設得,|w|=|.z0?.z|=|z0||z|=2|z|,∴|z0|=2,由1+m2=4,且m>0,得m=3,∴z0=1-3i,∵w=.z0?.z,∴x′+y′i=.(1-3i)?.(x+yi))=(1+3i)(x-yi)=x+3y+(3x-y)i,由復數(shù)相等得,x′=x+3yy′=3x-y,(Ⅱ)由(I)和題意得,x+3y=33x-y=2,解得x=343y=14

,即P點的坐標為(343,14).

(Ⅲ)∵直線y=kx上的任意點P(x,y),其經(jīng)變換后的點Q(x+3y,3x-y)仍在該直線上,∴3x-y=k(x+3y),即(3k+1)y=(3-k)x∵當k=0時,y=0,y=3x不是同一條直線,∴k≠0,于是3k+11=3-kk,即3k2+2k-3=0,解得k=33或k=-323.如圖,小圓圈表示網(wǎng)絡的結(jié)點,結(jié)點之間的連線表示它們有網(wǎng)線相聯(lián),連線標注的數(shù)字表示該段網(wǎng)線單位時間內(nèi)可以通過的最大信息量,現(xiàn)從結(jié)點B向結(jié)點A傳遞信息,信息可以分開沿不同的路線同時傳遞,則單位時間內(nèi)傳遞的最大信息量為()

A.26

B.24

C.20

D.19

答案:D24.3科老師都布置了作業(yè),在同一時刻4名學生都做作業(yè)的可能情況有()

A.43種

B.4×3×2種

C.34種

D.1×2×3種答案:C25.在同一平面直角坐標系中,直線變成直線的伸縮變換是()A.B.C.D.答案:A解析:解:設直線上任意一點(x′,y′),變換前的坐標為(x,y),則根據(jù)直線變成直線則伸縮變換是,選A26.某細胞在培養(yǎng)過程中,每15分鐘分裂一次(由1個細胞分裂成2個),則經(jīng)過兩個小時后,1個這樣的細胞可以分裂成______個.答案:由于每15分鐘分裂一次,則兩個小時共分裂8次.一個這樣的細胞經(jīng)過一次分裂后,由1個分裂成2個;經(jīng)過2次分裂后,由1個分裂成22個;…經(jīng)過8次分裂后,由1個分裂成28個.∴1個這樣的細胞經(jīng)過兩個小時后,共分裂成28個,即256個.故為:25627.已知點P1(3,-5),P2(-1,-2),在直線P1P2上有一點P,且|P1P|=15,則P點坐標為()

A.(-9,-4)

B.(-14,15)

C.(-9,4)或(15,-14)

D.(-9,4)或(-14,15)答案:C28.已知|a=2,|b|=1,a與b的夾角為60°,求向量.a+2b與2a+b的夾角.答案:由題意得,a?b=2×1×12=1,∴(a+2b)?(2a+b)=2a2+5a?b+2b2=15,|a+2b|=a2+4a?b+4b2=23,|2a+b|=4a2+4a?b+b2=21,設a+2b與2a+b夾角為θ,則cosθ=(a+2b)?(2a+b)|a+2b||2a+b|=1523×21=5714,則θ=arccos571429.若不等式(﹣1)na<2+對任意n∈N*恒成立,則實數(shù)a的取值范圍是

[

]A.[﹣2,)

B.(﹣2,)

C.[﹣3,)

D.(﹣3,)答案:A30.5顆骰子同時擲出,共擲100次則至少一次出現(xiàn)全為6點的概率為(

)A.B.C.D.答案:C解析:5顆骰子同時擲出,沒有全部出現(xiàn)6點的概率是,共擲100次至少一次出現(xiàn)全為6點的概率是.31.“a>2且b>2”是“a+b>4且ab>4”的()A.充分非必要條件B.必要非充分條件C.充要條件D.既不充分也不必要條件答案:若a>2且b>2,則必有a+b>4且ab>4成立,故充分性易證若a+b>4且ab>4,如a=8,b=1,此時a+b>4且ab>4成立,但不能得出a>2且b>2,故必要性不成立由上證明知“a>2且b>2”是“a+b>4且ab>4”的充分不必要條件,故選A32.從裝有5只紅球和5只白球的袋中任意取出3只球,有如下幾對事件:

①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”;

②“取出兩只紅球和一只白球”與“取出3只紅球”;

③“取出3只紅球”與“取出的3只球中至少有一只白球”;

④“取出3只紅球”與“取出3只白球”.

其中是對立事件的有______(只填序號).答案:對于①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”,由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.對于②“取出兩只紅球和一只白球”與“取出3只紅球”,由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.對于③“取出3只紅球”與“取出的3只球中至少有一只白球”,它們不可能同時發(fā)生,而且它們的并事件是必然事件,故它們是對立事件.④“取出3只紅球”與“取出3只白球”.由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.故為③.33.,不等式恒成立的否定是

答案:,不等式成立解析::,不等式成立點評:本題考查推理與證明部分命題的否定,屬于容易題34.一個正三棱錐的底面邊長等于一個球的半徑,該正三棱錐的高等于這個球的直徑,則球的體積與正三棱錐體積的比值為()

A.

B.

C.

D.答案:A35.過點(1,0)且與直線x-2y-2=0平行的直線方程是()

A.x-2y-1=0

B.x-2y+1=0

C.2x+y-2=0

D.x+2y-1=0答案:A36.不等式:>0的解集為A.(-2,1)B.(2,+∞)C.(-2,1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)答案:C解析:不等式:>0,∴,原不等式的解集為(-2,1)∪(2,+∞),選C。37.將一枚質(zhì)地均勻的硬幣連續(xù)投擲4次,出現(xiàn)“2次正面朝上,2次反面朝上”和“3次正面朝上,1次反面朝上”的概率各是多少?答案:將一枚質(zhì)地均勻的硬幣連續(xù)投擲4次,出現(xiàn)“2次正面朝上,2次反面朝上”的概率p1=C24(12)2(12)2=38.將一枚質(zhì)地均勻的硬幣連續(xù)投擲4次,出現(xiàn)“3次正面朝上,1次反面朝上”的概率p2=C34(12)3?12=14.38.已知(2x+1)3的展開式中,二項式系數(shù)和為a,各項系數(shù)和為b,則a+b=______.(用數(shù)字表示)答案:由題意可得(2x+1)3的展開式中,二項式系數(shù)和為a=23=8令x=1可得各項系數(shù)和為b=(2+1)3=27∴a+b=35故為:3539.北京期貨商會組織結(jié)構(gòu)設置如下:

(1)會員代表大會下設監(jiān)事會、會長辦公會,而會員代表大會于會長辦公會共轄理事會;

(2)會長辦公會設會長,會長管理秘書長;

(3)秘書長具體分管:秘書處、規(guī)范自律委員會、服務推廣委員會、發(fā)展創(chuàng)新委員會.

根據(jù)以上信息繪制組織結(jié)構(gòu)圖.答案:繪制組織結(jié)構(gòu)圖:40.曲線x=sin2ty=sint(t為參數(shù))的普通方程為______.答案:因為曲線x=sin2ty=sint(t為參數(shù))∴sint=y,代入x=sin2t,可得x=y2,其中-1≤y≤1.故為:x=y2,(-1≤y≤1).41.若a=(1,2,-2),b=(1,0,2),則(a-b)?(a+2b)=______.答案:∵a=(1,2,-2),b=(1,0,2),∴a-b=(0,2,-4),a+2b=(3,2,2).∴(a-b)?(a+2b)=0×3+2×2-4×2=-4.故為-4.42.設D為△ABC的邊AB上一點,P為△ABC內(nèi)一點,且滿足AD=23AB,AP=AD+14BC,則S△APDS△ABC=()A.29B.16C.754D.427答案:由題意,AP=AD+DP,AP=AD+14BC∴DP=14BC∴三角形ADP的高三角形ABC=ADAB=23∴S△APDS△ABC=23×14=16故選B.43.

若向量,滿足||=||=2,與的夾角為60°,則|+|=()

A.

B.2

C.4

D.12答案:B44.將一個總體分為A、B、C三層,其個體數(shù)之比為5:3:2,若用分層抽樣的方法抽取容量為180的樣本,則應從C中抽取樣本的個數(shù)為______個.答案:由分層抽樣的定義可得應從B中抽取的個體數(shù)為180×25+3+2=36,故為:36.45.設集合A={1,2,3,4},集合B={1,3,5,7},則集合A∪B=()A.{1,3}B.{1,2,3,4,5,7}C.{5,7}D.{2,4,5,7}答案:∵A={1,2,3,4},B={1,3,5,7},∴A∪B={1,2,3,4,5,7},故選B.46.

已知橢圓(θ為參數(shù))上的點P到它的兩個焦點F1、F2的距離之比,

且∠PF1F2=α(0<α<),則α的最大值為()

A.

B.

C.

D.答案:A47.如圖,AB是半圓O的直徑,C是AB延長線上一點,CD切半圓于D,CD=4,AB=3BC,則AC的長是______.答案:∵CD是圓O的切線,∴由切割線定理得:CD2=CB×CA,∵AB=3BC,設BC=x,由CA=4x,又CD=4∴16=x×4x,x=2∴則AC的長是8.故填:8.48.等于()

A.

B.

C.

D.答案:B49.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關系是()

A.內(nèi)切

B.相交

C.外切

D.外離答案:B50.直線和圓交于兩點,則的中點

坐標為(

)A.B.C.D.答案:D解析:,得,中點為第3卷一.綜合題(共50題)1.若已知A(1,1,1),B(-3,-3,-3),則線段AB的長為()

A.4

B.2

C.4

D.3答案:A2.四個森林防火觀察站A,B,C,D的坐標依次為(5,0),(-5,0),(0,5),(0,-5),他們都發(fā)現(xiàn)某一地區(qū)有火訊.若A,B觀察到的距離相差為6,且離A近,C,D觀察到的距離相差也為6,且離C近.試求火訊點的坐標.答案:設火訊點的坐標P(x,y),由于觀察到的距離相差為6,點P在雙曲線上,由于離A近,所以點P在雙曲線x29-y216=1(x≥3)上;由于離C近,所以點P在雙曲線Y29-X216=1(Y≥3)上;由這兩個方程解得:x=1277y=1277答:火訊點的坐標為:(1277,1277).3.下列各式中錯誤的是()

A.||2=2

B.||=||

C.0?=0

D.m(n)=mn(m,n∈R)答案:C4.用反證法證明命題“若a2+b2=0,則a、b全為0(a、b∈R)”,其反設正確的是()

A.a(chǎn)、b至少有一個不為0

B.a(chǎn)、b至少有一個為0

C.a(chǎn)、b全不為0

D.a(chǎn)、b中只有一個為0答案:A5.(理科)若隨機變量ξ~N(2,22),則D(14ξ)的值為______.答案:解;∵隨機變量ξ服從正態(tài)分布ξ~N(2,22),∴可得隨機變量ξ方差是4,∴D(14ξ)的值為142D(ξ)=142×4=14.故為:14.6.O、A、B、C為空間四個點,又為空間的一個基底,則()

A.O、A、B、C四點共線

B.O、A、B、C四點共面,但不共線

C.O、A、B、C四點中任意三點不共線

D.O、A、B、C四點不共面答案:D7.如圖所示的幾何體ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥AB,M是EC的中點,

(Ⅰ)求證:DM⊥EB;

(Ⅱ)設二面角M-BD-A的平面角為β,求cosβ.答案:分別以直線AE,AB,AD為x軸、y軸、z軸,建立如圖所示的空間直角坐標系A-xyz,設CB=a,則A(0,0,0),E(2a,0,0),B(0,2a,0),C(0,2a,a),D(0,0,2a)所以M(a,a,a2).(Ⅰ):DM=(a,a,-3a2)

,EB=(-2a,2a,0)DM?EB=a?(-2a)+a?2a+0=0.∴DM⊥EB,即DM⊥EB.(Ⅱ)設平面MBD的法向量為n=(x,y,z),DB=(0,2a,-2a),由n⊥DB,n⊥DM,得n?DB=2ay-2az=0n?DM=ax+ay-3a2z=0?y=zx+y-3z2=0取z=2得平面MBD的一非零法向量為n=(1,2,2),又平面BDA的一個法向量n1=(1,0,0).∴cos<n,n1>

=1+0+012+22+22?12+02+

02=13,即cosβ=138.對任意實數(shù)x,y,定義運算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運算是通常的加法和乘法運算。已知1*2=3,2*3=4,并且有一個非零常數(shù)m,使得對任意實數(shù)x,都有x*m=x,則m的值是(

)。答案:49.在空間直角坐標系中,已知點P(a,0,0),Q(4,1,2),且|PQ|=,則a=()

A.1

B.-1

C.-1或9

D.1或9答案:C10.在調(diào)試某設備的線路設計中,要選一個電阻,調(diào)試者手中只有阻值分別為0.7KΩ,1.1KΩ,1.9KΩ,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七種阻值不等的定值電阻,他用分數(shù)法進行優(yōu)法進行優(yōu)選試驗時,依次將電阻值從小到大安排序號,則第1個試點的電阻的阻值是(

).答案:3.5kΩ11.已知兩直線a1x+b1y+1=0和a2x+b2y+1=0的交點為P(2,3),求過兩點Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直線方程.答案:∵P(2,3)在已知直線上,2a1+3b1+1=0,2a2+3b2+1=0.∴2(a1-a2)+3(b1-b2)=0,即b1-b2a1-a2=-23.∴所求直線方程為y-b1=-23(x-a1).∴2x+3y-(2a1+3b1)=0,即2x+3y+1=0.12.某教師出了一份三道題的測試卷,每道題1分,全班得3分、2分、1分和0分的學生所占比例分別為30%、50%、10%和10%,則全班學生的平均分為______分.答案:∵全班得3分、2分、1分和0分的學生所占比例分別為30%、50%、10%和10%,∴全班的平均分是3×30%+2×50%+1×10%+0×10%=2,故為:213.如果雙曲線的焦距為6,兩條準線間的距離為4,那么該雙曲線的離心率為()

A.

B.

C.

D.2答案:C14.已知兩條直線y=ax-2和y=(a+2)x+1互相垂直,則a等于(

A.2

B.1

C.0

D.-1答案:D15.在直角梯形ABCD中,已知A(-5,-10),B(15,0),C(5,10),AD是腰且垂直兩底,求頂點D的坐標.答案:設D(x,y),則∵DC∥AB,∴y-10x-5=0+1015+5,又∵DA⊥AB,∴y+10x+5?0+1015+5=-1.由以上方程組解得:x=-11,y=2.∴D(-11,2).16.在空間直角坐標系中,點(-2,1,4)關于x軸的對稱點的坐標為()

A.(-2,1,-4)

B.(-2,-1,-4)

C.(2,1,-4)

D.(2,-1,4)答案:B17.極坐標系中,若A(3,π3),B(-3,π6),則s△AOB=______(其中O是極點).答案:∵極坐標系中,A(3,π3),B(-3,π6),3cosπ3=32,3sinπ3=332;-3cosπ6=-332,-3sinπ6=-32.∴在平面直角坐標系中,A(32,332),B(-332,-32),∴OA=(32,332),OB=(-332,-32),∴|OA|

=

3,|OB|=3,∴cos<OA,OB>=-934-93494+274=-32,∴sin<OA,OB>=1-34=12,∴S△AOB=12×3×3×12=94.故為:94.18.已知隨機變量X的分布列是:(

)

X

4

a

9

10

P

0.3

0.1

b

0.2

且EX=7.5,則a的值為()

A.5

B.6

C.7

D.8答案:C19.已知向量a,b滿足|a|=2,|b|=3,|2a+b|=則a與b的夾角為()

A.30°

B.45°

C.60°

D.90°答案:C20.已知集合A={x|log2x<1},B={x|0<x<c,其中c>0},若A=B,則c=______.答案:集合A={x|log2x<1}={x|0<x<2},B={x|0<x<c,其中c>0},若A=B,則c=2,故為2.21.已知定直線l及定點A(A不在l上),n為過點A且垂直于l的直線,設N為l上任意一點,線段AN的垂直平分線交n于B,點B關于AN的對稱點為P,求證:點P的軌跡為拋物線.答案:證明:如圖所示,建立平面直角坐標系,并且連結(jié)PA,PN,NB.由題意知PB垂直平分AN,且點B關于AN的對稱點為P,∴AN也垂直平分PB.∴四邊形PABN為菱形,∴PA=PN.∵AB⊥l,∴PN⊥l.故點P符合拋物線上點的條件:到定點A的距離和到定直線l的距離相等,∴點P的軌跡為拋物線.22.已知直線l:(t為參數(shù))的傾斜角是()

A.

B.

C.

D.答案:D23.設集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M與P的關系為______.答案:由x+y<0,xy>0,?x<0,y<0.∴M=P.故為M=P.24.函數(shù)f(x)=x2+(a+1)x+2是定義在[a,b]上的偶函數(shù),則a+b=______.答案:∵函數(shù)f(x)=x2+(a+1)x+2是定義在[a,b]上的偶函數(shù),∴其定義域關于原點對稱,既[a,b]關于原點對稱.所以a與b互為相反數(shù)即a+b=0.故為:0.25.已知空間三點的坐標為A(1,5,-2),B(2,4,1),C(p,3,q+2),若A,B,C三點共線,則p=______,q=______.答案:∵A(1,5,-2),B(2,4,1),C(p,3,q+2),∴AB=(1,-1,3),AC=(p-1,-2,q+4)∵A,B,C三點共線,∴AB=λAC∴(1,-1,3)=λ(p-1,-2,q+4),∴1=λ(p-1)-1=-2λ,3=λ(q+4),∴λ=12,p=3,q=2,故為:3;226.若向量兩兩所成的角相等,且,則等于()

A.2

B.5

C.2或5

D.或答案:C27.若x~B(3,13),則P(x=1)=______.答案:∵x~B(3,13),∴P(x=1)=C13(13)(1-13)2=49.故為:49.28.在極坐標系中,過點(22,π4)作圓ρ=4sinθ的切線,則切線的極坐標方程是______.答案:(22,π4)的直角坐標為:(2,2),圓ρ=4sinθ的直角坐標方程為:x2+y2-4y=0;顯然,圓心坐標(0,2),半徑為:2;所以過(2,2)與圓相切的直線方程為:x=2,所以切線的極坐標方程是:ρcosθ=2故為:ρcosθ=229.在平行六面體ABCD-A′B′C′D′中,若AC′=xAB+2yBC-3zC′C,則x+y+z等于______.答案:根據(jù)向量的加法法則可得,AC′=AC+CC′=AB+BC+CC′∵AC′=xAB+2yBC-3zC′C∴x=1,2y=1,-3z=1∴x=1,y=12,z=-13∴x+y+z=1+12-13=76故為:7630.在Rt△ABC中,∠A=90°,AB=1,BC=2.在BC邊上任取一點M,則∠AMB≥90°的概率為______.答案:過A點做BC的垂線,垂足為M',當M點落在線段BM'(含M'點不含B點)上時∠AMB≥90由∠A=90°,AB=1,BC=2解得BM'=12,則∠AMB≥90°的概率p=122=14.故為:1431.有一個正四棱錐,它的底面邊長與側(cè)棱長均為a,現(xiàn)用一張正方形包裝紙將其完全包?。ú荒懿眉艏?,但可以折疊),那么包裝紙的最小邊長應為()A.2+62aB.(2+6)aC.1+32aD.(1+3)a答案:由題意可知:當正四棱錐沿底面將側(cè)面都展開時如圖所示:分析易知當以PP′為正方形的對角線時,所需正方形的包裝紙的面積最小,此時邊長最小.設此時的正方形邊長為x則:(PP′)2=2x2,又因為PP′=a+2×32a=a+3a,∴(

a+3a)2=2x2,解得:x=6+22a.故選A32.隨機變量ξ的分布列為

ξ01xP15p310且Eξ=1.1,則p=______;x=______.答案:由15+p+310=1,得p=12.由Eξ=0×15+1×12+310x=1.1,得x=2.故為12;2.33.若log

23(x-2)≥0,則x的范圍是______.答案:由log

23(x-2)≥0=log231,可得0<x-2≤1,解得2<x≤3,故為(2,3].34.下面的結(jié)論正確的是()A.一個程序的算法步驟是可逆的B.一個算法可以無止境地運算下去的C.完成一件事情的算法有且只有一種D.設計算法要本著簡單方便的原則答案:算法需每一步都按順序進行,并且結(jié)果唯一,不能保證可逆,故A不正確;一個算法必須在有限步內(nèi)完成,不然就不是問題的解了,故B不正確;一般情況下,完成一件事情的算法不止一個,但是存在一個比較好的,故C不正確;設計算法要盡量運算簡單,節(jié)約時間,故D正確,故選D.35.設a1,a2,…,a2n+1均為整數(shù),性質(zhì)P為:對a1,a2,…,a2n+1中任意2n個數(shù),存在一種分法可將其分為兩組,每組n個數(shù),使得兩組所有元素的和相等求證:a1,a2,…,a2n+1全部相等當且僅當a1,a2,…,a2n+1具有性質(zhì)P.答案:證明:①當a1,a2,…,a2n+1全部相等時,從中任意2n個數(shù),將其分為兩組,每組n個數(shù),兩組所有元素的和相等,故性質(zhì)P成立.②下面證明:當a1,a2,…,a2n+1具有性質(zhì)P時,a1,a2,…,a2n+1全部相等.反證法:假設a1,a2,…,a2n+1不全部相等,則其中至少有一個整數(shù)和其它的整數(shù)不同,不妨設此數(shù)為a1,若a1在取出的2n個數(shù)中,將其分為兩組,每組n個數(shù),則a1在的那個組所有元素的和與另一個組所有元素的和不相等,這與性質(zhì)P矛盾,故假設不成立,所以,當a1,a2,…,a2n+1具有性質(zhì)P時,a1,a2,…,a2n+1全部相等.綜上,a1,a2,…,a2n+1全部相等當且僅當a1,a2,…,a2n+1具有性質(zhì)P.36.直線l1到l2的角為α,直線l2到l1的角為β,則cos=()

A.

B.

C.0

D.1答案:A37.若f(x)在定義域[a,b]上有定義,則在該區(qū)間上()A.一定連續(xù)B.一定不連續(xù)C.可能連續(xù)也可能不連續(xù)D.以上均不正確答案:f(x)有定義是f(x)在區(qū)間上連續(xù)的必要而不充分條件.有定義不一定連續(xù).還需加

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論