機械外文翻譯_第1頁
機械外文翻譯_第2頁
機械外文翻譯_第3頁
機械外文翻譯_第4頁
機械外文翻譯_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

鄭州航空工業(yè)管理學院英文翻譯2012屆機械設計制造及其在自動化專業(yè)1006962班級姓名郝振興學號100696208指導教師賀紅霞職稱教^~~一二0一二年三月十二日---NewTrendsandProblemsinMaterialProcessingMachine

DesignTheoryAbstract:Basedonreviewingthehistoricalbackground,prospectingforthedevelopmenttrend,analyzingthecomplicacyandmechanismandsummingupsomeachievementsandexperiencesinscientificresearch,severalnewproblemsandthepossibledirectionofdevelopmentinmaterialprocessingtechnologyandmachineareproposed,suchas,producingnewconceptmaterialspossessingsomespecificandextraovdinarypropertiesbymeansofintegratingandcoalescingconelativefrontierscienceandtechnology;andthereafterabriefdiscussionisgiven.Keywords:interface;extraordinaryphysicalfield;processionmachine;functionmaterialTheTimeBackgroundofMaterialProcessingMachineInthelongspanofhistoryofhumanprogress,manytools,machinesandmethodswerecreatedandavarietyofmaterialswithdifferentpropertieswereprocessed.Materialsanditsprocessinghavebecomeoneofpillaranddrivingforceofmankindprogress.Inpacewithmulti-polarcompetitionincurrentworldandpeople’sstrivingperseveringlyforhappierlife,materialfunctiongoesbeyondunceasinglymen’sknowledgeandimagination,forexample,crypticfunctionmaterial,semiconductormaterial,energymaterial,vibration-absorptivematerial,super-strengthaluminumalloyaccountingfor70percentofapplicationofaeronauticsandspace,metalfoilof4?5Am,deepdrawingplatewithanisotropybelow1percent,electronicaluminumfoilwithmicro-orientationupto95percent,heatresistingaluminumalloywithsuperstrongspecificstrengthusedinaeronautics,spaceanddeepsea,etc.Thusseveralimportantdevelopmenttrendswithdistincttimefeaturesinmaterialprocessingdomainareshapedupasfollows:Creatingmaterialprocessingmachinewithextraordinaryphysicalfieldforprocessingmaterialwithspecialtexturestructuresandfunctions.Forexample,applicationsofthermalenergyandmechanicalenergyarebreakingthroughunceasinglytechnologylimit,andsomenon-traditionenergy,suchasmicrowave,chemicalenergy,bioenergy,etc.,areintroducedintomaterialprocessingprocedureoneafteranother,sothatsomematerialprocessingmachineswithextraordinaryenergycircumstanceareproduced.Breakingthroughtraditionalphysicallimitsandintegratingmelting,solidifying,plasticdeformationandheattreatmenttoobtainspecialfunctionofmaterialandcutdownexpenses[3].Forexample,near-netshapingmaterialprocessingtechnology,suchasfastrolling,sprayingdeposition,over-plasticmolding,injectionmolding,highenergybeam,etc,isapplied.Materialprocessingprocessisforgedaheadinthedirectionofhighspeed,heavy-dutyandhighaccuracyonlinecontrol,forinstance,therollingspeedgoesupto130m?s-1,thedeformationpressurerisesupto300MPa,accuracyofdimensionupto0.1Am,accuracyofshapeupto0.1I,strengthaccuracycomesupto0.1MPa.Forthesereasons,itisnecessaryformaterialprocessingmachinedesigntheorytointegrateandcoalesceingeniouslycorrelativefrontierscienceandtechnologytocreateandproducesomenewconceptmaterialprocessingmachinewithfollowingfunctions.DueFunctionsofNewConceptMaterialProcessingMachineTohavetheabilitytoproduceandbearextraordinaryphysicalfieldandtransmitextraordinaryenergyflowwiththeaimofprovidingextraordinaryphysicalcircumstancesnecessaryfornewconceptmaterialprocessing.Forexample,highgradienttemperaturefieldwiththespeedofcool-downofworkinterfacewhichexceeds104?106K?s-1,linewaveandpulsecomplexexertedinsolidifying-deformingarea,super-strengthcontactstressfieldofmaterialforminginterface,turbulentflowfieldofmoltenmetalwithverybigflakinessratio,lowfrequencymagneticfieldwithrandomfrequency,microwavefieldforpowdermetalheating,ultrasonicfieldforlargevolumesolidifying,etc.[4],areapplied.Tohavetheabilitytoworkincriticalstatesothathighstabilityandidealperformanceofprocessingmachineisensuredunderthecircumstanceofreinforcedtechnologicalconditionandmulti-fieldcouplingoperation.Forexample,chattersuppressingcapabilityoffastultra-thinrollingundertheconditionofboundarylubricatingstate[5],thecapabilityofself-excitedvibrationsuppressingundertheconditionofspecialfrictionstate,synergismstabilityanddisturbancestabilityofflexibleconnectingparallelshaftwithmulti-drivingsystem,etc.[4],areensured.Tohavetheabilitytoaccuratelycontrolthematerialprocessinginordertoobtainlowloss,highefficiencyandhighqualityofmaterialprocessing.Forexample,super-highaccuracyon-linemonitorofproductsform,on-linemonitorandon-lineadjustmentofproductstextureandproperties,precisioncoordinationcontrolofmulti-procedure,on-linemonitorofmicro-orientationofmetalplasticdeformation,etc.[4],areensured.Someproductsaccuracyindexmaybeenumeratedasfollows:dimensionalaccuracycomingto0.1um,microstructureuniformitytocrystallattice,strengtherrorto0.1MPa,etc.[4]Inshort,onlybynewconceptmaterialprocessingmachinewithextraordinaryfunctionbeingdesignedandmade,canspecialfunctionmaterialbeprocessed.ScienceProblemsandStudyContentsofMetalMaterialProcessingMachineUndertheCircumstanceofExtraordinaryPhysicalFieldInviewofthesefactsandbackgroundmentionedabove,severalnewresearchtopicscanbeadvancedasfollows.3.1CouplingHeatTransferMechanismofMulti-PhaseInterfaceTemperature-StressFieldAbrand-newmicrostructurecanbeobtainedthroughcontinuouslylargedeformationandfastsolidifyingwhenmeltingmetalisincriticalstateofliquidsolid.Atthisverymoment,highdensityheatflowanddynamicheatresistancearepresentinmaterialprocessingcircumstance.Abasictheoryproblemofdesigningthiskindofmachineistostudymechanismofheattransmittanceandenergyconversion,andtoestablishmathematicalmodel.3.2FrictionConstraintMechanismofPlasticFlowInterfaceofMaterialProcessingMachineThecouplingbetweenoperationmechanismandworkpieceisverycomplicatedbecauseplasticflowispresentinprocessinginterface.Theinterfacestate,determinedbyvelocity,loadthermodynamicprocess,elasticityofoperationmechanism,plasticityofworkpiece,dynamicbehaviourofinterfacesticking-slidingandpartialhydrodynamiclubrication,etc,affectandformfrictionconstraintsmechanismpeculiartomaterialprocessingmachine,becausetheseconstraintspresentstrongnon-linearity;andundercertaincircumstances,theconstraintsmaybedestroyedormismatchedinstantaneouslyandthusdynamicinstabilityisresultedin.Thusfollowingproblemscanbeputforward:Mechanismof“spectrechatter”arosefromsticking-slidingfrictionandpartialhydrodynamiclubricationinrollinginterface,instabilityconditionandmechanismofconstraintbetweensmoothsurfaceandrotatingbodyunderthecircumstanceofhighspeed,heavy-dutyandboundarylubrication,Lubricationfilmabsorptionmechanismandphysicalchemistrybehaviourofinterfaceofunceasinglyregenerativesurface,therelationshipbetweenrheologicalcharacteristicandmachineoperationparameters.3.3Multi-BodyNon-LinearContactMechanismUndertheConditionofExtra-HighPressureFieldTobuildthesuperstrengthpressurefieldonlargeareaisoneofbasicfunctionofmaterialprocessingmachine,anditisalsonecessarytoformbyoncelarge-sizestructureelement(suchasspacecraft,intercontinentalvehicles,carandlarge-scaleaeroplaneetc).Theabilitytobuildsuperstrongpressurefieldisoneofimportantfeatureandthebaseofindependentnationaldefense.Underthecircumstanceofsuperstrengthpressurefield,multi-bodystrongnonhertzcontactandnon-linearfrictionwillbeproduced,thuslocalpermanentdeformationanddegradingofelementaccuracymaybeled.Newtheoryfoundationofdesignofmachinewithsuperstrengthpressurefieldwillbefurnishedthroughstudyofmulti-bodystrongnon-hertzcontactmechanism,multi-bodynon-linearfrictionmechanism(suchasprovidingforce-displacementmixedsolvingprocessofthree-dimensionmulti-body).3.4LoadDistributionLawinMulti-SlidingPairWithStructureBiasLoadWithregardtostaticallyindeterminatestructure,loaddistributionofconstraintpointisdeterminedbydeformationcompatibilitycondition.However,concerningsomeplanelarge-sizestaticallyindeterminatestructurewithslidingdegreeoffreedominthirddimension,loaddistributioncannotbedeterminedbydeformationcompatibilitycondition.Thusnewtheorybasiswillbeprovidedbyanalyzingofcontactbehaviourandmechanismofslidingpair(suchascreep,forceoffriction,integraldeformationcompatibilitycondition,etc).3.5CouplingMechanismandStabilityofMulti-PhysicalFieldsinMaterialProcessingSystemsInthewakeofsystemfunctionbecomingmoreandmorediversified,conventionaltechnologylimitsinmaterialprocessingmachineisbeingbrokethroughunceasingly,systemstructurealsobecomesincreasinglycomplicated,andsystemperformancebecomesincreasinglymulti-causal.Forexample,anyinstantaneousstateofrollerinfastrollingmillsisaffectedbyelasticdeformation,plasticflow,heattransferprocess,hydro-dynamiclubricationprocess,interfacephysicalchemistrymolecularstateandsoon.Inaddition,electromechanicalcouplinginprocessingsystemhavealreadygonebeyondconventionalconcept,forinstance,somesingularpointphenomenon(suchasmicro-variablecanbetransformedintomacro-variable),arepresent,thusrolleroperationinstabilitymaybeledbyperturbation[8].Therefore,thissubjectwillstudytheinteractionmechanismofmulti-physicalfieldandtheinfluenceonprocessingsystemstabilityandprocessingmaterialqualitystartedwithanalysisofmicro-stateofexecutivebody.3.6Multi-TechnologyIntegrationandCoalescenceofAccurateControlThematerialprocessingmachine,whichoperateunderthecircumstanceofextraordinaryphysicalfield,isacomplicatedlarge-scalesystem,andsomeparametersofthesystemvaryonfeasiblefieldboundary;thereby,tokeepunderaccuratecontrolandadjustmentofmultifieldcircumstance,multi-dimensioncoordination,multi-energyconversion,multi-levelinformationtransfer,interfacemulti-processcoupling,etc.isofmuchsignificance.Sinceavarietyofmulti-interactionexistsincontrolmodel,itisnecessarytoestablishintegrationframeworkofcoordinationworkaccordingtodecouplingofcontrolmodel,soastoaccuratecontrolbasedonthemulti-technologyintegrationandcoalescenceisrealized.3.7Quasi-RealityDesignandConcurrentDesignBasedonKnowledgeInnovationSystemsDigitalizationandvisualizationofmaterialprocessingtechnologywillpromoteimmediatelythequalityofdesign,operationandcontrol.Thereforeoptimizationofmaterialprocessingtechnologyandmaterialprocessingmachinebymeansofrealizationofvirtualsimulationofprocessingprocedurethroughquasi-realitydesignandconcurrentdesignisoneofourpressingstudysubjects.3.8MechanicalBehaviorofSpecialFunctionMaterialsintheExtraordinaryPhysicalFieldManykeyelementsandpartsinmaterialprocessingmachineareoftenunderthecircumstanceofsuperstrongforcefield,temperaturefield,electronicmagneticfieldandflowfield,andmusthavethefunctionsofconstructingspecialphysicalinterface.However,itisdifficultforcommonsingle-substancematerialsuchasmetal,ceramicpolymer,etc.tohavebothhighindexofsinglepropertyandexcellentoverallquality.Thereforeweneedtousecertainmaterialwithnewfunctionsforkeyposition[9],forinstance,multi-dimensionfunctiongradientmaterialwithultrahighphysicalproperty,multi-dimensionfunctiongradientmaterialwithintelligence.Forthesereasons,itisnecessarytostudybasiclawandmechanismofthesekindoffunctionmaterialmentionedabove,forinstance,stress(strain)distributionfunction,failuremechanismanddesigncriteriaofmaterialunderthecircumstanceofextraordinaryphysicalfield,static(dynamic)stiffnessanddamping,digitalizationdesignandvisualizationdesignofprocessingsystemmadeofgradientfunctionmaterial,etc,sothatthegeneralmechanicslawofelementwhichisunderthecircumstanceofextraordinaryphysicalfieldandmadeofanisotropymulti-dimensiongradientfunctionmaterialisobtained.Nowadays,materialprocessingscienceandtechnologyisforgingrapidlyahead.Aforward-lookingstudyaimingatkeytechnologyproblemofmaterialprocessingmachinewillprovidetheoryandtechnologyreserveformanufacturingscienceandindustryof21stcentury.4DesignexperienceGraduationdesigniswelearnedintheuniversityoftechnologyandthebasiccourses,allcourseallprofessionalclassafterthe.Thisiswehaveallofthecourseofthefirstin-depthcomprehensivereviewofthetotal,isalsoourintosocialworkinfrontofatheorywiththepracticeoftraining.Therefore,itisinourfouryearuniversitylifeholdsanimportantposition.Personally,IhopeIcanpassthegraduationdesignforyourfuturewillbeengagedintheworkofalighttraining,toexercisehisanalysisproblem,problem-solvingability,forthefutureofourmotherlandinthefourconstructionlayagoodfoundation.Turnaneyeforfourweeksofmechanicalmanufacturingtechnologyandspecialjigdesignwillbeover,thedesignofcurriculumreviewaroundthefeelingoflifeasaprocessofascension,andinthecurriculumdesign,weconstantlyseetheteachingmaterial,lookatreferenceseematerial,meettheproblemandnotunderstandweanalyzedtogetherorasktheteacherforadviceandsoontofindausefultoourdesignofdataandmaterial,andthenwilltheybecomeourdesignsuchasrawmaterial,throughthisdesignwe'velearnedalotofknowledge,andlearntoandfamiliarwiththelook-uptableandcheckreferencebook,alsomasteredproeandCADrelatedoperations,forpartsoftheprocessdesignhadadeepunderstandingandtheunderstandingoffixturedesignalsohasanunderstandingofandknowsomebasicfixturethespecificstructureparts,suchasflap,drillset,mandrelsThroughthecooperationandteammembersmakeprocessandfixturethatIunderstandcooperationisveryimportant,divisionoflaborcooperationcanworkbetterandfaster.Inthiscoursedesign,theteachergaveusvaluablereferenceopinions,letusknowhowtocompleteacoursedesign,howtoputyourthingsdone,thankstotheteachercarefullycounselling.Andwehavemoreanalysisandproblemsolvingability.Intheprocess,wefoundthatthemostlackisthesocialpracticeexperience,emptyhavebookstheoryknowledge,noperceptualcognition,oftenwilllikelyandactualapart.Ingeneral,dothiskindofdesigncanmakethewewillhavelearnedknowledgesystemrelatedtolink,whichexposedthedeficiencies.Alsohopeweinthelaterstudycanintosociety,makemoresocialpractice,inordertoimprovetheirabilitytoadapttosociety.ReferenceXuZhiGang.Basedonthecombinationofthegeneralizedmappingprinciplefixturestructuredesignautomation[J].Journalofmechanicalengineering,2000(12):105~108.ZhuYaoXiang,meltsalsosound.Flexibleclampandcomputeraidedfixturedesigntechnologydevelopment[A].Nationalproductionengineering8thacademicconferenceproceedings[C].Beijing:mechanicalindustrypress,1999.204~209.ZhouZhenBao.Theaccuracyofthemachinetoolfixturesanalysis[J].Machinetoolandhydraulicpressure,2004(2):137~138.LiuLiJuan.Machinetoolsinthedesignoffixturesidetwopositioningpin[J].Jlubricationandsealing,2003(3):107~108.Yanzhizhong,LiuXianMei.Computeraidedfixturedesignmethodanddevelopmenttrend[J].JournalofInnerMongoliaforestryuniversity,1996,(3):69~74.WangFengQi,XuGongJing,GuoWei.Computeraidedfixturedesignreview[J].Aviationmanufacturingtechnology,2003(11):38to40.ZhuYaoXiang,meltsalsoblare.Fixturedesignautomationpresentsituationanddevelopmenttrendof[J].Mechanicalscienceandtechnology,1993(10):14to17.ZhangFuRun,XuHongthis,LiuYanLin.Mechanicalmanufacturingtechnologyfoundation[M].Wu:huazhonguniversityofscienceandtechnologypress,2000.288~320.ZhaoGuJi.Mechanicalmanufacturingtechnologycoursedesigninstruction[M].Beijing:mechanicalindustrypress,1997.60~61.GuChongbitetc.Mechanicalmanufacturingtechnology[M].Xian:thescienceandtechnologypress,1990.4~58.WangQiPing.Machinetoolclampdesign[M].Harbin:Harbinindustrialuniversitypress,1996.1~134207~249.WangXiaoHua.Machinetoolfixturespictures[M].Beijing:mechanicalindustrypress,1992.36~,40~and37.DingDianZhong,JiangHongWei.Metaltechnologycoursedesign[M].Beijing:mechanicalindustrypress,1997.6~14.nationalstandardfull-textdatabasesystem[EB/OL].:6006/,1989-7-1.northeastinstituteofheavymachinery,luoyangengineering,thefirstcarfactoryworkeruniversity.Machinetoolclampdesignmanual[M].Shanghai:Shanghaiscienceandtechnologypublishinghouse.LiuYouand.Metalprocessdesign[M].Guangzhou:instituteofsouthChina,and1982.1~13.CuiJian.Steelfiberconcretepolymermaterialsoptimizationanditsmachinetoolofthelathebed[D].Fuxin,liaoningprovince:liaoningengineeringtechnologyuniversity,2003.XuGuJun.AutomotiveshockabsorberCAPPsystemdevelopmentandresearch[D].Changshainhunan:zhongnanforestryuniversity,2004.XuGongJing.Computeraidedfixturedesignsystemresearchanddevelopment[D].Tianjin:tianjinuniversity,2004.中文譯文:材料制備機械設計理論中的新趨勢和新問題摘要:在全面綜述材料制備機械技術(shù)及設備發(fā)展動態(tài)的基礎上,提出了研究領域的幾個新問題和發(fā)展方向,如通過集成和融合現(xiàn)代相關前沿科學和技術(shù),生產(chǎn)具有超常和特殊性能的新概念材料等,并進行了簡要分析和討論.關鍵詞:界面;超常物理場;制備機械;功能材料1機械材料加工的時代背景在人類進步的一段長時間范圍內(nèi),原料用不同的工具來加工。在人類進步的一段長時間范圍內(nèi),原料用不同的工具來加工。許多工具、機械和方法被提出來;不同的原料及其處理過程已經(jīng)變成了推動人類進步不可缺的一部份。在當前世界中日益激烈的競爭和人們追求幸福生活的今天,已經(jīng)遠遠超出了人類現(xiàn)有的并不斷增長的知識及想象。例如:神秘原料功能,導體材料,原料能量有吸力的材料,在航空領域中占有一部份。在當前世界中日益激烈的競爭和人們追求幸福生活的今天,已經(jīng)遠遠超出了人類現(xiàn)有的并不斷增長的知識及想象。例如:神秘原料功能,導體材料,原料能量有吸力的材料,在航空領域中占有4~5um的薄金屬片,用各向異性深口壓金屬板在合金已經(jīng)被應用到航空、宇宙及深海領域中,的時間段里,材料重要發(fā)展趨勢就這樣形成了:(1)在特殊的物理領域里制造原料加工機械,輔助性的加工功能。例如:運用熱能和機械能能夠突破科學技術(shù)的極限,物質(zhì)的功能半70%份額的強力鋁合金1%以下;電子鋁箔與強耐熱鋁等等;在原料加工加工領域中不同是為了能有特殊的質(zhì)地結(jié)構(gòu)和將一些不常用的能量,例如:微波、化學能、生物能等等,一個接一個的被引入到材料加工中來,因此一些加工特殊能量原材料的加工設備就被制造出來了。2)突破傳統(tǒng)的物質(zhì)限制,將溶化、凝固、造型一體化,然后加熱得到具有特殊功能的原料,這樣就可以降低加工費用。例如:材料加工整形技術(shù),比如像快速翻滾,噴霧處理、塑膠成型、噴射造型法、高能量射束等等被應用。3)原料加工處理正在向高速、重載和高精度在線控制方向上邁進。例如:0.1um,成型精□□□□□130m/s,壓力變形已達到300MPa,0.1um,成型精度已達到0.1i;□□□□□□□0.1MPa。由于這些原因,原料加工機械設備設計理論將科學與技術(shù)相關聯(lián)的領域有機的結(jié)合起來設計生產(chǎn)一中新概念材料加工設備是可能的。2對于新概念材料加工設備的期望功能(1)要有能力生產(chǎn)具有特殊物質(zhì)的領域;能傳送那些對于新概念材料加工在特定的物質(zhì)環(huán)境下是非常必要的特殊能流。例如:在高溫環(huán)境下能使那些高溫波或者脈沖以超過104?106K/s的速度冷卻下來;將外表面的凝固、變形合成一體,然后在將超強接觸面應力重新組合成新的分界面;融化的大金屬薄片的湍流;隨機的低頻率磁場用于金屬末加熱的微波、用于大量凝固的超聲波等等都已經(jīng)被應用了。(2)有能力在臨界狀態(tài)下工作,因此高穩(wěn)定性和理想性能的處理設備是在加強技術(shù)條件和室外操作的保證。例如:禁止在潤滑狀態(tài)下邊界上的搖晃;在特有的摩擦狀態(tài)下的抗震能力;有韌性的連接管的合力穩(wěn)定性和干擾穩(wěn)定性與軸相比更易驅(qū)動系統(tǒng)。(3)有能力精確的控制原料加工而獲得低損耗、高功率、高性能的原料加工。例如:精確的在線監(jiān)測產(chǎn)品成型;在線監(jiān)測和在線調(diào)整產(chǎn)品品質(zhì)和器具還有在線控制金屬、塑膠成型的程序。產(chǎn)品的精確度指數(shù)可以列舉如下:宏觀上精確度可達到0.1um,微觀上的晶狀體結(jié)構(gòu)非常均勻,濃度誤差在0.1MPa。簡而言之,擁有特別功能的新概念原料加工設備應該被設計和生產(chǎn)出來。這樣的話,那些特別性能的原料就能被處理加工了。3在特殊的物理領域和環(huán)境下金屬材料加工設備的問題和需要學習的內(nèi)容由于這些原因和以上提到的背景,如下的一些新的研究主題應該被改進:連接傳熱裝置和溫度應力場的相界面當融化金屬處于液體和固體的臨界狀態(tài)時通過連續(xù)的變形和快速凝固,一種全新的微觀結(jié)構(gòu)可以被獲得。在這個非常時刻,高濃度的熱流和動態(tài)的熱阻力在材料加工處理中成了主要事項。關于設計這個設備的基本理論問題是要學習核心傳動系統(tǒng)合能量轉(zhuǎn)化和建立數(shù)學模型。材料加工設備表面粘流摩擦力的抑制操作裝置和工件的連接是相當復雜的因為粘流阻擋了加工表面界面態(tài)由周轉(zhuǎn)速度、熱力學處理工作量、操作裝置的彈性、工件的可塑性、滑性界面的動態(tài)行為、局部水力的潤滑油等等來決定。它們影響著材料加工設備抗摩擦裝置的成型。因為它們會會強制其產(chǎn)生很大的非線性,這種強制會在瞬間被損壞或者是失諧,最后會導致動態(tài)不穩(wěn)定性。因此提出了以下的問題:機械裝置的噪聲可能在晃動的界面引起滑動摩擦、不穩(wěn)定狀態(tài);在高速、重載和邊界潤滑狀態(tài)下在光滑表面和旋轉(zhuǎn)式噴灌器之間的裝置抑制。潤滑油薄膜吸收裝置和不斷再生的表面的物理化學行為;流變學的特征和操作參數(shù)之間的關系。在高壓場條件下非線性接觸式機械裝置在大范圍內(nèi)組建一個超強力壓力場是材料加工設備的一個基本功能。當然形成一個大結(jié)構(gòu)的元素也是可能的(例如太空船、大陸洲際間的交通工具、汽車、飛機)。組建一個超強壓力場是最重要的特征之一,也是保衛(wèi)國家獨立最基本的裝備。在強壓力場環(huán)境下,接觸式和非線性摩擦將會產(chǎn)生;因此將會導致局部的永久的變形和不好的因素。在強壓力場下設計過程中,將會涉及到設備的設計新理論,例如:非接觸式、非線性摩擦機構(gòu)。負荷分配規(guī)律關于超靜定結(jié)構(gòu),抑制點的負荷分配規(guī)律由相容性條件決定。雖然,關于那些大尺寸的、不定的、靜止的結(jié)構(gòu)在真實空間中是自由變化的,但負荷分配規(guī)律是不能決定相容性條件。因此新的基礎理論由分析接觸行為和變形裝置獲得(例如:摩擦力、變形相容性條件,等等)。耦合裝置和在材料加工系統(tǒng)中物理領域內(nèi)的穩(wěn)定性隨著系統(tǒng)的功能越來越多元化;許多限制材料加工進度的傳統(tǒng)技術(shù)正在不斷的被改善;系統(tǒng)結(jié)構(gòu)也逐漸變得越來越復雜,系統(tǒng)性能變得越來越好。例如:鋼扎廠的快速瞬間反轉(zhuǎn)受彈性形變、粘流、散熱處理、水動力潤滑處理的,物理化學分子狀態(tài)的影響。另外,機電的耦合在處理系統(tǒng)中已經(jīng)超出了傳統(tǒng)的概念;例如,一些奇特的現(xiàn)象(微小的變化可以引起很大的變化)已經(jīng)出現(xiàn);因此,滾筒操作的不穩(wěn)定性可能會導致混亂。所以,這個主題將會在機械裝置的物理領域中,在處理系統(tǒng)穩(wěn)定性的影響和加工助劑質(zhì)量上被提及和充分關注;技術(shù)綜合和合并精準的控制在特定的物理條件下進行操作的材料加工設備是一個相當復雜系統(tǒng),一些系統(tǒng)的參數(shù)在領域的邊界上也是可以改變的;因此在領域環(huán)境下精確的控制與調(diào)整,調(diào)和尺寸,能量轉(zhuǎn)換,信息傳遞,界面耦合等等是非常重要的。因為在控制模型中多種交互作用的存在,根據(jù)退耦控制模型而建立綜合框架是必要的;精確的控制基于綜合技術(shù)。優(yōu)化的和創(chuàng)新的設計基于創(chuàng)新的知識材料加工技術(shù)能促進產(chǎn)品的設計質(zhì)量的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論